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Abstract

Portal hypertension is most frequently associated with cirrhosis and is a major driver for associated complications, such as
variceal bleeding, ascites or hepatic encephalopathy. As such, clinically significant portal hypertension forms the prelude to
decompensation and impacts significantly on the prognosis of patients with liver cirrhosis. At present, non-selective b-
blockers, vasopressin analogues and somatostatin analogues are the mainstay of treatment but these strategies are far
from satisfactory and only target splanchnic hyperemia. In contrast, safe and reliable strategies to reduce the increased
intrahepatic resistance in cirrhotic patients still represent a pending issue. In recent years, several preclinical and clinical
trials have focused on this latter component and other therapeutic avenues. In this review, we highlight novel data in this
context and address potentially interesting therapeutic options for the future.
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Introduction

Portal hypertension (PHT) is most commonly observed in pa-
tients with liver cirrhosis and is a major driver for associated
complications, such as variceal bleeding, ascites or hepatic en-
cephalopathy. Current PHT treatment strategies orientate on
the existence and characterization of oesophageal varices,
which strongly correlate with the hepatic venous pressure gra-
dient (HVPG)—the gold standard for quantification of PHT. For
prevention of variceal bleeding, oral non-selective beta blockers
(NSBBs) are used, while, in acute bleeding situations, intraven-
ous somatostatin, octreotide or terlipressin are available [1].
These drugs aim to decrease portal pressure; however, not all
patients achieve a haemodynamic response, which is defined
by a HVPG decrease >10% of baseline. Thus, current research in-
tensively seeks new treatment options for PHT. Most experi-
mental strategies aim at structural (liver fibrosis) and/or

dynamic (endothelial dysfunction, hyperdynamic circulation)
factors, which contribute to the severity of PHT. In this review,
we summarize close to 100 different pharmacotherapies and
their potential for future use in PHT.

Adrenoceptor drugs

The dynamic component of PHT is attributed to an increase in
splanchnic arterial vasodilation and intrahepatic vascular re-
sistance, which is at least partly mediated via adrenergic recep-
tors. The established therapy with beta blockers counteracts the
increased cardiac output (via b1) and substantially increases
splanchnic resistance (via b2), which together reduces portal
pressure [2,3]. Furthermore, a-receptor antagonism has been
shown to additionally reduce intrahepatic resistance.

While there exists a plethora of beta-blocking agents, only a
few NSBBs (propranolol, nadolol and carvedilol) are currently
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recommended for the treatment of PHT [1]. Notably, selective b1
blockade might even increase portal pressure, which has been
shown for nebivolol in experimental cirrhosis [4]. On the other
hand, additional a-receptor antagonism supports the NSBB-
mediated decrease in HVPG. This has been demonstrated in
clinical studies by the use of carvedilol (combined non-selective
b and a1-blockade) [5–7] or by add-on therapy with the a1-antag-
onist prazosin [8,9].

Yet, according to a meta-analysis, haemodynamic response
rates to NSBBs are only 46% [10]. Furthermore, beta-blocker
therapy increases the risk of arterial hypotension, which is es-
pecially of concern when combined with a-antagonism (e.g. car-
vedilol) and in decompensated patients, where NSBB therapy
might be even detrimental [2,11]. Thus, research aims to refine
adrenoceptor pharmacotherapy.

In experimental cholestatic cirrhosis, short-term therapy
with the a2 antagonist BRL44408 significantly decreased portal
pressure and did not alter systemic haemodynamics even with-
out NSBB cotherapy, which, however, has been published in
only two abstracts so far [12,13].

While NSBB effects are mediated via b1 and b2 adrenocep-
tors, recent studies also shed light upon the lesser known b3
adrenoceptor, which is up-regulated in experimental and
human cirrhosis. Stimulation of b3 adrenoceptors leads to re-
laxation of hepatic stellate cells (HSCs) and intrahepatic vaso-
dilation via activation of the adenylyl cyclase and by inhibition
of Rho-kinase. Accordingly, in cirrhotic rodent models, two
studies measured significant declines in portal pressure after
treatment with the b3 agonists CGP12177A and SR58611A,
respectively [14,15].

Improving adrenergic vascular contractility in the splanch-
nic area can also be achieved by neuropeptide Y, which seems
to be especially effective in PHT [16,17]. Accordingly, treatment
with neuropeptide Y in cirrhotic rats translated into a signifi-
cant amelioration of the portal hypertensive syndrome and PHT
without changing mean arterial pressure [18]. In line, also ad-
ministration of zolmitriptan, which mediates mesenteric vaso-
constriction not via beta blockade, but via the 5-HT1 receptor,
dose-dependently reduced portal pressure. Although this portal
hypotensive effect was of short duration, co-administration
with NSBBs synergistically prolonged and enhanced the de-
crease in portal pressure [19].

However, none of these approaches has yet been tested in
humans and thus they remain experimental.

Nitric oxide

Imbalance of the potent vasodilator nitric oxide (NO) is a hall-
mark in the pathophysiology of PHT and sinusoidal endothelial
dysfunction [20]. Lack of intrahepatic NO is responsible for
increased intrahepatic resistance, while abundance of NO in the
splanchnic area promotes portal inflow. Hence, targeting tis-
sue-specific NO availability is a compelling treatment strategy,
but systemic side effects (arterial hypotension) have to be
scrutinized.

Historically, the NO donor isosorbide mononitrate has been
used for the treatment of PHT [21], but is now excluded in most
recent guidelines due to missing benefit [22]. Approaches of
using a hepatospecific NO donor (NCX-1000) seemed promising
in animal studies [23], but failed to reduce portal pressure in a
human randomized–controlled trial (RCT) [24]. In a more recent
trial, NO-releasing nanoparticles coated with vitamin A were
used to specifically cause an intrahepatic vasodilation. In bile
duct ligated (BDL) rats, these nanoparticles significantly

decreased portal pressure without affecting mean arterial pres-
sure [25].

Apart from affecting NO availability, also pharmacotherapies
along the NO pathway have been successfully tested. NO is pro-
duced by NO synthases (NOS), which depend on the cofactor
tetrahydrobiopterin. Hence, approaches of increasing NO pro-
duction with the NOS transcription enhancer AVE 9488 or by
supplementation of tetrahydrobiopterin were successful in
reducing portal pressure and improving endothelial dysfunction
in cirrhotic rat models [26–28]. However, in a human RCT, two
weeks of sapropterin treatment had no effects on HVPG [29].

NO-induced vasorelaxation is mediated via cyclic guanosine
monophosphate (cGMP), which is produced by the soluble gua-
nylate cyclase (sGC) and degraded via phosphodiesterases
(PDE). Hence, inhibitors of the PDE5 have been intensively tested
in the setting of cirrhosis. Already, in healthy rats, PDE5 inhib-
ition decreased intrahepatic resistance, and increased hepatic
parenchymal and hepatic arterial flow, which resulted in a
trend towards decreased portal pressure [30]. In BDL rats, acute
infusions of sildenafil had no beneficial effects on portal pres-
sure [31], whereas a weeklong therapy increased sinusoidal flow
and decreased portal pressure [32]. In line, chronic udenafil
treatment decreased portal pressure in BDL rats and further-
more exhibited antifibrotic effects [33].

Similarly, in cirrhotic patients, acute sildenafil administra-
tion decreased hepatic sinusoidal resistance but did not change
HVPG [34–36], while one week of udenafil treatment caused a
significant and dose-dependent HVPG decrease [37]. The PDE5
inhibitor vardenafil decreased HVPG in a pilot trial in four out of
five patients after one hour [38] and its long-term effects on
HVPG are currently being tested in a RCT [39].

More recently, sGC activators were investigated in experi-
mental cirrhosis as antifibrotic effects and recovery of sinus-
oidal architecture have been described in cirrhotic animals
[40,41]. A first report (published as an abstract) showed that
chronic treatment with riociguat significantly decreased portal
pressure in two rat models of biliary and toxic liver cirrhosis
[42].

Vasoconstrictors

Instead of enforcing intrahepatic vasodilation, an alternative
treatment strategy for PHT is to evade intrahepatic vasocon-
striction. Thus, endothelin (ET) and urotensin are the focus of
current research.

ET is a potent vasoconstrictor, which contributes to intrahe-
patic endothelial dysfunction and furthermore promotes liver
fibrosis. In cirrhotic animals, acute and chronic ET-receptor an-
tagonism (ET-A: Ambrisentan, BQ-123, A-147627, LU-135252; ET-
B: BQ-788, A-192621; ET-AB: Bosentan, A-182086, SB209670) sig-
nificantly decreased portal pressure; however, studies diverge
about which receptor is responsible for the decrease in portal
pressure [43–48]. Furthermore, these studies observed improve-
ments in sinusoidal integrity and amelioration of liver fibrosis
in animals treated with ET-receptor antagonists. While a small
human study (published as an abstract) showed that administra-
tion of ET-A blocker (BQ-123 or Ambrisentan) caused a signifi-
cant decrease in HVPG [49], two RCTs showed no effect on HVPG
in cirrhotic patients after acute infusions with selective (BQ-123,
BQ-788) or unselective (Tezosentan) ET antagonists [50,51]. Two
RCTs investigating macitentan [52] or ambrisentan [53] in pa-
tients with portopulmonary hypertension are currently
ongoing.
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Urotensin is a rather newly described peptide, which is also
a strong vasoconstrictor. Indeed, urotensin levels correlate with
HVPG [54] and, in experimental models, the urotensin antagon-
ist palosuran significantly decreased portal pressure without af-
fecting mean arterial pressure via an increase in splanchnic
resistance by affecting RhoA and NO pathways [55]. However,
currently there are no human studies on urotensin antagonists.

Inflammation and bacterial translocation

Inflammation is the natural response for distress and facilitates
the first steps of tissue regeneration; however, chronic or exces-
sive inflammation can lead to permanent damage and patho-
logical changes. In PHT, inflammation contributes on the one
hand to liver fibrosis and on the other hand triggers splanchnic
angiogenesis, which enforces the hyperdynamic circulation and
thus worsens PHT. Since inflammatory markers strongly correl-
ate with HVPG [56,57], modulating inflammation and associated
pathways is a highly investigated rationale for treatment of
PHT.

Thalidomide is a first-generation immunomodulatory drug,
which inhibits the TNFa/NF-jB pathway and thus acts anti-
inflammatory. In cirrhotic models, it improved intestinal muco-
sal damage, suppressed splanchnic angiogenesis and improved
hepatic microvasculature, which translated into a decreased
intrahepatic resistance and portal pressure [58–60]. Similar ef-
fects were seen in pre-hepatic PHT, induced by partial portal
vein ligation (PPVL), where thalidomide treatment decreased
NO production, the hyperdynamic circulation and PHT [61,62].
In a small pilot study, two weeks of thalidomide significantly
decreased HVPG, where five out of six patients had a HVPG
change greater 20% without altering systemic haemodynamics
[63]. Of note, lenalidomide, a derivate of thalidomide, also ex-
hibited anti-portal hypertensive effects in PPVL rats (published as
an abstract) [64].

Further downstream inflammation and apoptosis are regu-
lated by caspases. In a similar approach, the caspase inhibitor
emricasan has been shown to reduce inflammation and fibrosis
in cirrhotic rodent models [65,66] and transaminases in patients
[67]. A multicentre phase 2 trial followed, showing significant
decreases in HVPG after four weeks of therapy in first results
presented as an abstract [68]. Another trial in patients with
non-alcoholic steatohepatitis (NASH) and PHT has just been
started [69].

Chronic inflammation is nurtured by reactive oxygen species
(ROS), which can be targeted by antioxidative therapies [70].
Indeed, strategies for inhibiting ROS-producing enzymes
(NAD(P)H oxidase by apocynin or haemooxygenase by tin por-
phyrins) significantly decreased splanchnic neovascularization
and portal pressure in models of pre-hepatic and intrahepatic
PHT [71–73], although the role of NAD(P)H oxidase has been
questioned [74] and inhibition of haemooxygenase may also
increase intrahepatic vascular resistance in cirrhosis [75].
Alternative approaches aimed to enforce ROS elimination via
the manganese-dependent superoxide dismutase (MnSOD).
Therefore, recombinant MnSOD or adenovector MnSOD gene
transfer were successfully used in CCl4 rats to decrease ROS
content and thus ameliorate liver cirrhosis and portal pressure
[76,77]. In line, tempol, a small molecule and MnSOD mimetic,
led to similar results with increased NO availability in sinus-
oidal endothelial cells and decreased portal pressure in CCl4
rats [78]. Moreover, scavengers of free radicals have been inves-
tigated. In an experimental study with CCl4 rats, cerium oxide
nanoparticles displayed strong antioxidative effects and

significantly reduced PHT [79] and, in a small RCT, vitamin C in-
fusion improved intrahepatic endothelial dysfunction and pre-
vented the postprandial HVPG increase [80].

Eicosanoids promote inflammation and vasoconstriction,
and thus contribute to PHT. In liver cirrhosis, cyclooxygenase
(COX)-derived prostanoids decrease NO bioavailability, cause
endothelial dysfunction and increase the hepatic vascular tone
[81–83]. Consequentially, chronic COX inhibition with (nitro)-
flurbiprofen, celecoxib or thromboxan receptor blockade by ter-
utroban decreased portal pressure in cirrhotic rats, which was
accompanied by decreased liver fibrosis and angiogenesis [84–
86]. Another pathway of metabolizing arachidonic acid, is via
epoxygenases. Specific inhibition using MS-PPOH also signifi-
cantly reduced portal pressure and increased response to
acetylcholine in cirrhotic animals [87]. Although COX inhibitors
are widely distributed in clinics, no human data of their effect
on HVPG have been published yet. However, one RCT seems to
be planned using the thromboxane receptor antagonist ifetro-
ban [88].

In addition to the physicochemical damage, also bacteria
may contribute to intestinal/hepatic inflammation and thus
perpetuate PHT [89]. In cirrhotic patients, dysbiosis and bacter-
ial overgrowth are commonly observed, increasing bacterial
load and pathogenicity. Furthermore, PHT damages the intes-
tinal barrier and thus increases translocation into the portal
system [90]. Notably, NSBB therapy decreases intestinal perme-
ability and inflammatory serum levels in CCl4 rats as well as in
patients with cirrhosis [91,92], but also vice versa influencing
the intestinal flora has shown to affect portal pressure. In germ-
free mice, portal pressure rose significantly less after PPVL com-
pared to wild-type mice [93]. Hence, the effects of antibiotic
therapy on HVPG were intensively investigated in human trials.
Rifaximin is entero-selective and approved for treatment of
hepatic encephalopathy. In cirrhotic patients, a month of
Rifaximin treatment decreased HVPG [94] and improved sys-
temic haemodynamics [95], which furthermore reduced the risk
of developing complications of PHT and improved survival [96].
Yet, a RCT (published as an abstract) could not confirm the benefi-
cial effects of Rifaximin on haemodynamics in decompensated
patients [97]. A prospective double-blind study investigating
Rifaximin and propranolol combination therapy versus pro-
pranolol monotherapy is currently ongoing [98]. In contrast,
treatment with norfloxacin had no effect on HVPG [99–101].
Another approach is to restore intestinal bacterial diversity by
supplementing probiotics. While the impact of the probiotic
VSL#3 alone on HVPG led to conflicting studies [102,103], a RCT
observed an increase in haemodynamic response to NSBB in pa-
tients receiving adjunctive probiotics [104].

Anticoagulants

Cirrhotic patients suffer from a imbalance of anti- and pro-
coagulatory factors, increasing the risk for bleedings, but also
for thrombosis (especially in the portal venous system). While
macro-thrombotic events (e.g. portal venous thrombosis) can be
radiologically diagnosed, microthrombosis in the liver paren-
chyma (which were histologically characterized) cause localized
hypoxia and infarctions [105]. Microthrombosis is closely linked
to inflammation [106] and might contribute to an increase in
intrahepatic vascular resistance and PHT. Indeed, anticoagu-
lants have been shown to prevent hepatic fibrosis in cirrhotic
models [107,108]. Furthermore, enoxaparin treatment prevented
decompensation and improved survival in cirrhotic patients
[109]. Yet, data on portal hypertensive effects are scarce.
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Recently, Cerini et al. [110] found reductions in liver fibrosis and
hepatic stellate cell activation in enoxaparin treated CCl4 cir-
rhotic rats, which translated into a significant decrease in portal
pressure. However, a contrary abstract could not reproduce the
beneficial effects of enoxaparin on liver fibrosis and PHT [111].

At the International Liver Congress 2016, rivaroxaban, a dir-
ect factor Xa inhibitor, has been presented to significantly de-
crease portal pressure in two different cirrhotic rat models and
reduced the frequency of intrahepatic microthrombosis [112].
Of note, the use of direct-acting oral anticoagulants in cirrhotic
patients seems to be effective and safe [113]. Hence, results of
the ongoing CIRROXABAN study investigating survival, compli-
cations and effects on HVPG (as a secondary-outcome param-
eter) in cirrhotic patients with PHT receiving rivaroxaban are
awaited to add more evidence for or against the use of anti-
coagulants in PHT [114].

Angiogenesis

Angiogenesis is triggered by hypoxia, inflammation and ele-
vated vascular pressure. These conditions are present during
hepatic fibrogenesis [115,116] and formation of porto-systemic
collaterals [117], which are major drivers for the development of
PHT. Thus, angiogenesis contributes to an increase in portal
pressure. Vascular growth and remodelling are orchestrated by
a plethora of cytokines, like vascular endothelial growth factor
(VEGF), placental growth factor (PlGF) or platelet-derived growth
factor (PDGF).

Blocking VEGF receptor 2 (with a monoclonal VEGFR2 anti-
body or semaxanib) indeed decreased hyperdynamic splanchnic
circulation and porto-systemic collateral vessel formation in
portal hypertensive rodents, but did not ameliorate portal pres-
sure [117,118]. PlGF plays a crucial role especially during patho-
logical angiogenesis and during vascular maturing. Hence, PlGF
antibodies or PlGF knock-out decreased superior mesenteric
blood flow and additionally decreased portal pressure in non-
cirrhotic and in cirrhotic portal hypertensive animals [119,120].
Similarly, blockade of the PDGF receptor, which affects pericytes
and activates HSCs, using a dominant-negative PDGF receptor
encoding adenovirus decreased portal pressure and hepatic col-
lagen content in cirrhotic rats [121].

The idea of combining growth hormone inhibition (with
rapamycinþimatinib against VEGF/PDGF signalling) led to su-
perior results [122]. Hence, oral tyrosin kinase inhibitors
(Sorafenib [123–125], sunitinib [126], brivanib [127, 128] and
regorafenib [129]), which have the ability to affect multiple
branches of angiogenic pathways simultaneously, were suc-
cessfully tested in cirrhotic and in non-cirrhotic PHT rats, uni-
formly describing a significant decrease in portal pressure and
systemic shunting. Moreover, these tyrosin kinase inhibitors
showed strong evidence to ameliorate liver fibrosis [130]. Of
note, in cirrhotic rats, the beneficial effects of angiogenic block-
ade by Sorafenib synergistically added up to propranolol ther-
apy [131].

So far, the potential of Sorafenib has been confirmed in two
small human studies where significant anti-portal hypertensive
effects have been described [132,133]. However, a small (n ¼ 9)
RCT addressing this question has shown no significant differ-
ences regarding HVPG decrease (published as an abstract) [134].

An additional rationale to modulate angiogenesis in PHT is
to augment endogenous inhibitors of angiogenesis. Over-ex-
pression by adenovirus-mediated gene transfer of pigment
epithelium-derived factor (PEDF) or vasohibin-1 also resulted in
decreased mesenteric angiogenesis, porto-systemic shunting,

PHT and liver fibrosis [135,136]. However, no human studies are
currently available following this approach.

Although the above-mentioned studies are promising, a
total blockade of angiogenic pathways might be deleterious,
since angiogenesis is also required for hepatic tissue repair and
fibrosis resolution [137]. Hence, the optimal window of oppor-
tunity for antiangiogenic therapies presumably is during PHT
and porto-systemic collateral development, respectively.

Statins

Statins, initially designed as lipid-lowering drugs via inhibition
of hydroxymethylglutaryl-CoA (HMG-CoA) reductase, have been
shown to confer striking and potentially far more interesting
vasoprotective effects. While statins are a cornerstone in car-
diovascular prevention therapy [138], their use in the context of
liver disease has been somewhat distrusted because of potential
drug-induced liver injury [139]. However, over the years, the
scepticism towards this drug class in chronic liver disease and
in particular cirrhosis has turned into reserved positivism.

The first proof-of-concept study for statins dates from more
than 10 years ago and notably was a clinical study. Zafra et al.
showed in a small cohort of cirrhotic patients that short-term
treatment with simvastatin increased hepatic NO and
decreased hepatic resistance [140]. Further, simvastatin pre-
treatment significantly attenuated the postprandial increase in
HVPG.

The modes of action of how statins increase NO bioavailabil-
ity and decrease portal pressure are pleiotropic (well described
by Noma et al. [141]) and have been dissected in several preclin-
ical mechanistic studies. On the one hand, simvastatin treat-
ment improved liver sinusoidal endothelial dysfunction by
increasing Akt-dependent endothelial NOS (eNOS) phosphoryl-
ation (activity) and eNOS gene expression [142,143]. On the
other hand, atorvastatin significantly decreased Rho-kinase ac-
tivity and the association between RhoA and Ras [143], which
regulate the vascular tone by inactivation of the myosin light-
chain phosphatase and so maintain hepatic stellate cell
contraction. The importance of RhoA and RhoA kinase for intra-
hepatic resistance in cirrhotic rats has been demonstrated inde-
pendently by use of its inhibitor Y-27632, which significantly
reduced portal pressure in cirrhotic rats [144,145].

In addition, statins (fluvastatin and atorvastatin) have been
shown to ameliorate experimental liver injury, particularly in
the early phase of liver fibrogenesis [146,147], and inhibit the ac-
tivation of HSCs to myofibroblasts [148]. Hereby, the protective
transcription factor Kruppel-like factor 2 (KLF2) plays a central
role which is up-regulated by statins, especially under shear-
stress conditions. In vitro, KLF2 strongly blocks HSC proliferation
and expression of profibrotic and proangiogenic proteins
[149,150]. In a confirmatory in vivo study, adenoviral transfec-
tion enhancing KLF2 expression changed HSC into a quiescent
state. This reduced liver fibrosis and decreased portal pressure
in CCl4 rats, which was accompanied by decreased hepatic vas-
cular resistance and significant improvements in hepatic endo-
thelial dysfunction [151].

While statins have been shown to be beneficial in cirrhotic
PHT, the picture is to the contrary in pre-hepatic PHT. In PPVL
models, statins aggravated angiogenesis and decreased porto-
systemic collateral resistance, which could increase shunting or
even portal pressure [152–154].

Encouraged by preclinical and preliminary clinical data, the
first phase II RCT in 2009 fuelled the interest in statins for cir-
rhotic PHT, as it demonstrated that simvastatin was safe and
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promoted a moderate decrease in portal pressure, when given
both alone or on top of NSBB [155]. Interestingly, patients
randomized to simvastatin showed an improvement in hepatic
function, suggesting an additional amelioration of metabolic ex-
change at the liver microcirculation. A second three-month RCT
confirmed that simvastatin lowers portal pressure and tends to
improve liver function in cirrhotic patients [156]. Thereafter, a
larger double-blind multicentre RCT was performed in the con-
text of secondary prophylaxis of variceal bleeding as an add-on
to standard medical and endoscopic treatment [157]. The results
of this recently published study show that simvastatin adminis-
tration did not improve the risk of re-bleeding, but was associ-
ated with a survival benefit in patients with Child-Pugh A/B
cirrhosis. In another recent RCT (published as an abstract), pa-
tients treated with NSBB for primary prophylaxis and receiving
additional simvastatin had a significantly stronger HVPG re-
sponse [158], thus confirming previous studies.

Finally, two large retrospective cohort studies observed over
40% risk reduction for cirrhosis development, hepatocellular
carcinoma (HCC) incidence, hepatic decompensation and death
in hepatitis C-positive patients taking statins compared to those
without [159,160].

Most recently, a nitric oxide-releasing atorvastatin (NCX
6560) has been studied in two experimental models of liver cir-
rhosis. While the beneficial effects of statins on liver profile and
PHT could be confirmed, the parallel release of NO additionally
improved intrahepatic endothelial dysfunction and reduced
muscular and hepatic toxicity [161].

Farnesoid X receptor

A promising future target in chronic liver disease is the farne-
soid X receptor (FXR). This bile-acid-responsive transcription
factor belongs to the nuclear receptor superfamily and is highly
expressed in the liver and the small intestine [162]. FXR controls
the expression of genes involved in metabolic regulation, in-
flammation, hepatic fibrosis and vascular homeostasis
[163,164].

The development of the semi-synthetic FXR agonist 6-ethyl-
chenodeoxycholic acid, also known as obeticholic acid (OCA),
opened the door for translational and clinical FXR research
[165]. Meanwhile, non-steroidal FXR agonists (PX20606), which,
in contrast to their steroidal counterparts, evade enterohepatic
recirculation, are also increasingly being investigated [166,167].

From the perspective of PHT, FXR agonism seems a strategy
worthy of pursuing due to strong preclinical evidence. In vascu-
lar endothelial cells, FXR activation increased eNOS and thus
NO content [168], while, in endothelial cells and liver tissue, FXR
suppressed the inflammatory response by reducing inducible
NOS (iNOS) and COX2 expression [169,170]. In addition, FXR
agonism improved liver injury in experimental cholestatic
[171,172], toxic [173] and NASH liver disease models [174].

The first proof-of-concept study by Verbeke et al. demon-
strated in two different cirrhotic rodent models that treatment
with OCA improved PHT by decreasing the intrahepatic vascular
tone without deleterious impact on mean arterial pressure or
liver biochemistry [175]. Further evidence came by two subse-
quent rodent studies confirming the anti-portal hypertensive
effects of FXR agonism with OCA and PX-20606, respectively
[176,177]. The underlying molecular mechanisms involved af-
fect (i) NO metabolism, (ii) H2S production, (iii) hepatic inflam-
mation and (iv) bacterial translocation:

• Asymmetric dimethylarginine is a circulating eNOS inhibitor

[178] which correlates with HVPG [179] and which is degraded by

dimethylarginine dimethylaminohydrolases (DDAH). In portal

hypertensive rats, DDAH isoforms have been shown to be up-

regulated by FXR agonists, thus restoring endothelial dysfunc-

tion and contributing to the decrease in portal pressure [175–

177]. In addition, also eNOS expression and activity were stimu-

lated upon FXR agonism [177].
• In CCl4 rats, FXR agonists protected against the down-regulation

of cystathionase expression and increased the production of

vasodilatory H2S, which contributed to the decrease in portal

pressure [177,180].
• Furthermore, in cirrhotic rats, FXR agonists significantly reduced

liver inflammation and fibrosis, which was related to reduced ex-

pression of inflammatory and angiogenic cytokines [177,181]. In

vitro, FXR prevented liver sinusoidal endothelial (LSECs) and

Kupffer cell activation, while the role of HSCs remains to be elu-

cidated, since some studies measured only insignificant expres-

sion levels of FXR in HSCs [182] or reported no effects upon FXR

stimulation [181], while others report that FXR protects from

ET1-mediated HSC contraction and thus decreases portal pres-

sure [183,184].
• The beneficial effects of FXR in cirrhosis and PHT are also medi-

ated via its enteroprotective properties. FXR agonists have been

shown to reduce bacterial overgrowth, intestinal inflammation

and mucosal injury, which improved the gut barrier and reduced

bacterial translocation [185–187]. Accordingly, also clinical obser-

vations found that cirrhotic patients with certain FXR poly-

morphisms predispose to develop spontaneous bacterial

peritonitis [188].

In a recent abstract, the haemodynamic effects of a new FXR
agonist (GS-9674) in combination with NSBB therapy were
explored in cirrhotic NASH animals. Indeed, after long-term
therapy, dose-dependent antifibrotic effects and amelioration
of PHT were confirmed. The combination with propranolol was
safe and resulted in an additional decrease in mesenteric hyper-
perfusion [189].

Going from bench to bedside, at present, there is only one
trial assessing the impact of FXR agonism in patients with cir-
rhotic PHT. In this open label phase 2 proof-of-concept study,
Mookerjee et al. reported that, after a week of OCA, nine out of
16 patients with alcoholic cirrhosis responded with a mean
HVPG reduction of 28% (published as an abstract) [190]. Final re-
sults are still awaited, as are larger controlled confirmatory tri-
als. In respect of antifibrotic properties, the FLINT trial
confirmed amelioration of liver fibrosis in NASH patients
treated with OCA [191]. Taken together, FXR agonism has shown
the positive first steps and further confirmatory data are eagerly
awaited.

Renin–angiotensin–aldosterone system

The renin–angiotensin–aldosterone (RAA) system was acknowl-
edged already 35 years ago in portal and systemic haemody-
namics [192]. As such, plasma renin concentration represents
an independent risk factor for mortality and is associated with
liver dysfunction in patients with cirrhosis [193]. Thus,
angiotensin-converting-enzyme inhibitors (ACEi, e.g. captopril),
angiotensin receptor blockers (ARB, e.g. losartan, candesartan
and irbesartan) and aldosteron antagonists (e.g. spironolactone)
have been tested in numerous rodent and human trials to re-
duce RAA-mediated signalling. In an elegant meta-analysis by
Tandon et al., including 19 controlled trials with a total of> 650
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patients, efficacy of these drugs has been critically scrutinized
[194]. In patients with Child A cirrhosis, the HVPG reduction
with ACEi or ARB was described to be similar to that of NSBBs
(–17% vs –21% mean HVPG decrease). However, decompensated
patients (Child B/C) had an elevated risk of hypotension, wor-
sening of hyperdynamic circulation or renal insufficiency.
Disenchantingly, the add-on approach of using spironolactone
[195], irbesartan [196] or candesartan [197] to NSBB therapy re-
sulted in no additional HVPG decrease, and spironolactone in
addition to NSBB did not help in preventing first variceal bleed-
ing [198].

The findings that angiotensin II affects HSCs (leading to con-
traction and increased collagen expression) [199,200] and chol-
angiocytes (stimulating biliary proliferation) [201] relaunched
the interest in the RAA system from an antifibrotic perspective.
Further experimental studies confirmed that angiotensin II ex-
acerbates liver fibrosis [202] while losartan or spironolactone
reduced collagen deposition, accumulation of myofibroblasts
and inflammation [203,204]—thus improving PHT [204]. These
beneficial antifibrotic effects were confirmed in small trials in
patients with advanced fibrosis or early cirrhosis of different
etiologies [205–208], but are offset by others, as in the HALT-C
cohort, where ACEi/ARB therapy did not decelerate the progres-
sion of hepatic fibrosis [209].

Given the potential of the RAA system (especially in compen-
sated cirrhotic patients) and the limitation of currently available
drugs, alternatives to ACEi or ARBs are the focus of research.

Following the downstream pathway of the angiotensin re-
ceptor, Janus kinase [210] and subsequently Rho-kinase [204]
have been identified as key mediators of (anti-) portal hyperten-
sive effects. Indeed, the Janus kinase inhibitor AG490 signifi-
cantly attenuated liver fibrosis in vivo and in vitro and decreased
hepatic vascular resistance and portal pressure in cirrhotic rats
[210–212]. In contrast to ACEi/ARB, add-on therapy with AG490
to propranolol resulted in an additive portal pressure-lowering
effect in cirrhotic animals [213]. Similarly, the Rho-kinase in-
hibitor Y-27632 decreased fibrosis and lowered portal pressure
without major systemic side effects [144,145] in animal studies.
However, due to the lack of cellular specificity, no human stud-
ies have been performed yet.

An additional approach is to augment liver-selectivity by
coupling drugs to a hepato-specific carrier. Indeed, HSC-
selective ‘mannose-6-phosphate modified human serum albu-
min’ significantly improved effectiveness of losartan [203] or
the Rho-kinase inhibitor Y26732 [145] in experimental studies
and thus supported the decrease in portal pressure.

Next to the classic RAA system, ACE2, its product angioten-
sin 1–7 and its receptor Mas represent an alternative/balancing
downstream pathway, which partly opposes the angiotensin re-
ceptor [214]. This vasoactive pathway is up-regulated in the
splanchnic aeria but also in livers of patients and rats with cir-
rhosis [215–217]. Indeed, the Mas receptor agonists (e.g.
AVE0991) inhibited intrahepatic vasoconstriction, reduced liver
fibrosis and decreased portal pressure in experimental cirrhosis
[216,218,219]. However, stimulation with angiotensin 1–7 ex-
acerbates splanchnic vasodilation in cirrhotic animals and
likely increases porto-systemic shunting [217]. Yet, also the ab-
solute contrary—namely blocking Mas with A779—led to a net
decrease in portal pressure in cirrhotic animals [217], leaving a
lot of room for optimizing this therapeutic approach before
translating it into clinics.

Aside from the RAA system, also vasopressin contributes to
the tight regulation of water/electrolyte homeostasis and diur-
esis by retaining water. According to a large meta-analysis, in

cirrhotic patients, antagonizing vasopressin using vaptans
might have a small benefit on hyponatremia and ascites, but
does not affect mortality [220]. A recent RCT concluded that
conivaptan was generally found to be safe and well tolerated in
cirrhotic patients with clinically significant PHT but acute infu-
sion did not change HVPG [221]. Thus, drugs were refined and,
in an experimental trial, using the partial vasopressin agonists
FE 204038, cirrhotic rats presented a dose-dependent decrease
in portal pressure and an increase in systemic vascular resist-
ance without changes in mean arterial pressure [222]. Based on
these data, a RCT with the partial vasopressin receptor agonist
FE 204205 in patients with cirrhotic portal hypertension has
been initiated—which is currently still ongoing [223].

Metabolism and foods

The liver plays a central role in energy metabolism, which is
deteriorated by liver cirrhosis. Thus, about 30% of patients with
cirrhosis suffer from diabetes mellitus [224]. Furthermore, sar-
copenia is common and special diets are recommended [225].
As already described for statins, also other drugs affecting the
metabolism and even foods have been studied and some pre-
sented remarkable effects on portal pressure.

Metformin, which is used for type 2 diabetes, caused signifi-
cant reductions in liver fibrosis, inflammation and portal pres-
sure in CCl4 cirrhotic rats. Notably, this effect was additive to
NSBB treatment [226]. Similarly, liraglutide, a glucagone-like
peptide receptor agonist, reduced HSC proliferation and portal
pressure in cirrhotic rats and additionally showed antifibrotic
effects in human liver tissue (published as an abstract) [227]. Also,
the antidiabetic pioglitazone, which stimulates the nuclear per-
oxisome proliferator-activated receptor (PPAR) gamma,
decreased porto-systemic shunting by modulating inflamma-
tion and angiogenesis in cirrhotic and non-cirrhotic portal
hypertensive rats, yet it had no impact on portal pressure [228].
On the contrary, this was achieved by the PPAR-alpha agonist
fenofibrat (a drug against hyperlipidemia), which decreased
portal pressure in cirrhotic rats by a reduced thromboxan pro-
duction and increased NO bioavailability. In this study, fenofi-
brat treatment also significantly reduced hepatic fibrosis and
increased mean arterial pressure [229]. While the metabolic
syndrome with hyperglycemia and hyperlipidemia likely con-
tributes to liver fibrosis, and is an established risk factor for
NASH, it is interesting to see that also a week of leptin receptor
blockade slightly decrease portal pressure in a CCl4 model [230].
Another orexogenic receptor is the endocannabinoid receptor,
of which type 2 seems to play a role in hepatic fibrogenesis and
PHT. Notably, receptor-deficient mice suffered from intensified
steatosis and fibrogenesis [231], while agonists (JWH-015, JWH-
133, GP 1a, AM1241) reduced hepatic fibrosis and portal pressure
by inhibiting inflammation and angiogenesis [232–234]. Of note,
long-term cannabinoid therapy also decreases bacterial trans-
location in cirrhotic rats with ascites [235].

Since it is known that coffee is hepatoprotective, it is inter-
esting to know that caffeine has also been shown to decrease
portal pressure, ameliorate hyperdynamic circulation, porto-
systemic shunting, mesenteric angiogenesis, hepatic angiogen-
esis and fibrosis in cirrhotic rats [236]. Also, flavonoid-rich
(dark) chocolate, which has antioxidative properties, success-
fully improved HVPG in a small RCT [237]. The antioxidative
agent resveratrol has its highest concentrations in berries, yet
artificially high amounts were necessary to show its beneficial
effects in CCl4 rats, where it improved endothelial dysfunction,
decreased hepatic fibrosis and portal pressure [238]. The amino
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acid taurine (which occurs in energy drinks) physiologically
builds bile-acid conjugates and acts as an antioxidative.
Beneficial effects on portal pressure were seen in a cirrhotic rat
study [239] and in a small RCT where HVPG decreased signifi-
cantly after long-term high-dose taurin administration
(published as an abstract) [240].

Even though these drugs might be used when clinically indi-
cated and thus give an additional benefit to PHT therapy, more
data are necessary to draw detailed conclusions or give clear
recommendations.

Summary and outlook

In the last 20 years, many studies have been conducted with the
aim of finding new anti-portal hypertensive drugs. While know-
ledge has broadened immensely, only a few molecules made it
into human trials. Yet, this continuous evolving research let us
speculate that, sooner or later, the armamentarium for the
treatment of PHT undoubtedly will extend. The currently avail-
able drugs for PHT (NSBBs) target the dynamic component.
Hence, add-on therapy combinations or drugs which act antifi-
brotic and decrease PHT might have the highest chance of
success in clinics. Indeed, treatment of the underlying disease
is a significant contributor to therapy of PHT. However, since
the static component (fibrosis) changes much slower, drugs af-
fecting fibrogenesis, fibrosis and fibrosis resolution have to be
distinguished and investigated differentially.

For future experimental trials, it is recommended to assess
candidates not only in one particular setting, but in multiple
models, and to consider the different stages of PHT/fibrosis de-
velopment. Thinking back from bed to benchside, it is necessary
to find a drug that safely can be taken for a long time without
losing its effectiveness and with a low risk for drug–drug
interactions.

Conflict of interest statement: none declared.
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