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Abstract

Capturing nature’s statistical structure in behavioral responses is at the core of the ability to
function adaptively in the environment. Bayesian statistical inference describes how sen-
sory and prior information can be combined optimally to guide behavior. An outstanding
open question of how neural coding supports Bayesian inference includes how sensory
cues are optimally integrated over time. Here we address what neural response properties
allow a neural system to perform Bayesian prediction, i.e., predicting where a source will be
in the near future given sensory information and prior assumptions. The work here shows
that the population vector decoder will perform Bayesian prediction when the receptive
fields of the neurons encode the target dynamics with shifting receptive fields. We test the
model using the system that underlies sound localization in barn owls. Neurons in the owl’'s
midbrain show shifting receptive fields for moving sources that are consistent with the pre-
dictions of the model. We predict that neural populations can be specialized to represent
the statistics of dynamic stimuli to allow for a vector read-out of Bayes-optimal predictions.

Author Summary

Many behaviors require predictive movements. Predictive movements are especially
important in prey capture where a predator must predict the future location of moving
prey. How sensory information is transformed to motor commands for predictive behav-
iors is an important open question. Bayesian statistical inference provides a framework to
define optimal prediction and Bayesian models of the brain have received experimental
support. However, it remains unclear how neural systems can perform optimal prediction
in time. Here we use a theoretical approach to specify how a population of neurons should
respond to a moving stimulus to allow for a Bayesian prediction to be decoded from the
neural responses. This provides a novel theoretical framework that predicts properties of
neural responses that are observed in auditory and visual systems of multiple species.
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Introduction

Predicting the future position of an object in the environment is a common and critical compo-
nent of many tasks that involve reaching or orienting toward moving targets [1-4]. To execute
these prediction tasks successfully, motor plans must extrapolate beyond accumulated sensory
input to account for delays in sensory and motor processing, as well as for the future move-
ments of the object. The ability to make accurate predictions of the location of a moving target
is especially critical in prey capture.

Prey capture for moving targets has been studied at the behavioral and neural levels for ani-
mals that rely on visual [5-9] and auditory [10-12] information. For example, salamanders use
visual input to predict the position of moving prey, make a head orienting movement toward
the target, and then generate a ballistic movement of the tongue to capture the prey [7]. Barn
owls also visually track their prey when possible [13], but are additionally able to use auditory
information to capture moving prey [10]. After estimating a sound source’s trajectory, the owl
makes a head orienting movement to localize a moving target before preparing to bring its feet
forward to strike the prey [10]. Interestingly, salamanders and barn owls have neurons with
similar specialized receptive fields that shift in time to mediate predictive prey capture [12,6,8].
These specializations occur in the fast-OFF retinal ganglion cells of the salamander [6,8] and
the auditory spatially selective neurons in the optic tectum (OT) of the barn owl [12]. The
receptive fields of these neurons shift toward a moving source, where the amount of shift is suf-
ficient to account for delays in sensory and motor processing. Furthermore, it has been shown
in the salamander that it is possible to read out the predicted location of a moving target from
the fast-OFF retinal ganglion cells using a population vector average (PV) [8]. Here, we use the
PV to model the computations performed by the barn owl as it tracks a moving sound source
and address how such a neural circuit may approach optimal performance.

These studies open several questions about the neural basis of predictive behaviors. What
information is represented in these populations of neurons? Is the observed neural representa-
tion an optimal solution to the prey capture problem faced by each species? An optimal solu-
tion to the prediction problem would take into account the source dynamics, sensory statistics,
and prior information to guide the solution. This approach to an optimal solution can be for-
mulated as Bayesian prediction [14]. There is support for Bayesian models of perception and
behavior in diverse tasks across multiple species [15-18]. Additionally, there have been multi-
ple proposals for how neural systems can implement Bayesian inference [19-23,16,24-26]. In
particular, several studies have addressed the problem of inference in time in the context of
hidden Markov models [20,27,28] and tracking using the Kalman filter [29,19,22,30,31]. How-
ever, it remains unknown how a neural system can perform Bayesian prediction.

Here we specify how a population of neurons should respond to a moving stimulus to allow
for a Bayesian prediction to be decoded from the neural responses. We approach this question
in the context of auditory-based prey capture by the barn owl. The Bayesian prediction prob-
lem we consider is that of predicting a sound source’s future direction, given a sequence of sen-
sory observations and a prior distribution for direction and angular velocity. It has been shown
that the owl’s sound localization for brief sounds is consistent with a Bayesian model [24].
Here, evolutionary pressure for optimality may be expected, given the dependence of owls on
successful sound localization during hunting.

The success of the PV in decoding predictive movements of visual targets in the salamander
[8] and dragonfly [32] makes this a viable candidate mechanism for implementing Bayesian
prediction. It has been shown that the owl’s map of auditory space decoded by a PV is consis-
tent with the owl’s localization behavior for brief stationary stimuli [24]. More generally, it has
been shown that a population code can encode the statistical properties of the environment to

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004360 July 30, 2015 2/20



©PLOS

COMPUTATIONAL

BIOLOGY

Optimal Prediction of Moving Sound Source Direction

allow a PV to match a Bayesian estimator [23,26,24]. This model for the neural implementation
of Bayesian inference is attractive because it matches the common observation that population
codes are adapted to natural statistics [33]. However, the applicability of the PV model to
Bayesian inference in time is unknown. Here, we determine the conditions under which a pop-
ulation of neurons with spatial-temporal receptive fields can perform Bayesian prediction for
moving sound sources.

Results
Bayesian prediction

We consider the problem of predicting the future direction of a moving source from a temporal
sequence of auditory observations. Specifically, the prey capture problem is that of predicting
the direction of a moving sound source a short time in the future based on the sequence of
interaural time difference (ITD) measurements from the sounds reaching the left and right
ears (Fig 1). ITD is the difference in the arrival time of sounds at the two ears and is a primary
cue for localization in the horizontal dimension [34,35].

The Bayesian filtering approach to predicting at time k the direction at a point n time steps
in the future 6y, given the sequence of observations up to time k, ITD; 4 = [ITD,, ITD,, . ..
ITDy], is to compute an estimate from the posterior distribution py, (6, w|ITD; ). The form of
the posterior distribution is determined by a model for the dynamics of the moving target and
the statistical relationship between the state of the target and the ITD observations.

Generative model

The temporal dynamics of the horizontal direction of the moving target are modeled as

0, =0, + Aty +1n,

Wy = Wy + Ve

where 0y is the target direction, wy is the angular velocity, 7y is a zero-mean circular Gaussian
noise process, vy is a zero-mean Gaussian noise process, k is the current time step, and At is the
time step duration. The sensory information ITD is modeled as a sinusoidal function of direc-
tion that is corrupted by noise:

ITD, = Asin(2nf0,) + &,

where & is a zero-mean Gaussian noise process with standard deviation 12.5 ps and the ampli-
tude A and frequency fare determined by the shape of the owl’s head and facial ruff [24]. The
sinusoidal mapping between direction and ITD is based on direct measurements of ITD for the
barn owl [36]. All noise processes are assumed to be mutually independent and uncorrelated
across time.

The noise process v, influencing the prey velocity depends on the type of behavior displayed
by the prey. A large standard deviation of the noise corresponds to irregular fleeing behavior
displayed by prey under close attack when there is no place to hide [37]. A small standard devi-
ation produces a smoother trajectory for the prey, which corresponds to escape toward cover
[37]. Here we use a velocity-noise standard deviation of 0.125 deg/s corresponding to mouse
escape behavior under close-distance owl attack where prey trajectories are smooth [37]. This
parameter value has the effect of keeping the velocity roughly constant over a short period of
time.
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Fig 1. Graphical model describing the prey capture problem. The unobserved state of the prey is described by the direction 6, and the angular velocity
wy at time k. The state at time k is conditionally independent of states at previous times i given the value of an intermediate state at time j, where i <j <k. The
observed sensory input at each time is the interaural time difference (ITD), which only depends on the state of the source at that time step.

doi:10.1371/journal.pcbi.1004360.9001

The prior depends on both the natural prey behavior and the owl’s bias as determined by
the behavioral cost function [24]. Here we assume that the prior emphasizes directions at the
center of gaze [24] and slow source velocities. We also assume that there is a weak negative cor-
relation between direction and velocity such that there is a bias for sources moving into the
center of gaze [38,39]. The form of the prior is a Gaussian with zero mean for both direction
and velocity. The standard deviation for direction is 23.3 deg [24], the standard deviation for
velocity is 50 deg/s, and the correlation between direction and velocity is -0.05. The parameter
values for the velocity standard deviation in the prior (o, = 50 deg/s) and during movement
(ka = 0.125 deg/s, k > 1) describe a situation where the initial velocity can take on a wide

range of values, but the velocity will be roughly constant over a short period of time.

Bayesian tracking and prediction

The Bayesian prediction at time k of the direction at a point # steps in the future, 0., given the
sequence of observations ITD, ., is computed as the mean of the posterior # steps in the future
Prin(0, W|ITDy ;) Because we are estimating a circular variable, the Bayesian prediction is the
direction of the Bayesian prediction vector, defined as the vector that points in the direction of
the mean value of the direction # steps in the future:

BV, = [ u0)pe., 011D, )do

where u(0) is a unit vector pointing in direction 8 (Methods). Solving the Bayesian prediction
equations may be computationally difficult for nonlinear or non-Gaussian models [40]. If the
system is linear with Gaussian noise, then the Kalman filter can be used for Bayesian prediction
[41]. Our model includes Gaussian noise but the mapping from direction to ITD is nonlinear.
We found that relationship between direction and ITD is nearly linear for sound sources in the
frontal hemisphere (Fig 2). The root-mean-square (RMS) error between the measured ITD
and the linear approximation ITD = 2.67 us / deg x 8 was 15.1 ps for directions between -100

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004360 July 30, 2015 4/20



@' PLOS | soMpuTaTioNAL
NZJ : BIOLOGY Optimal Prediction of Moving Sound Source Direction

3007

200t

100}

ITD (us)

-100

-200

-150  -100 -50 0 50 100 150
Direction (deg)

-300

Fig 2. Linear approximation to ITD. The measured relationship between direction and ITD is approximately
sinusoidal (black curve; [39]). The linear approximation /ITD = 2.67 us / deg x 6 (gray line) accurately
describes the relationship between direction and ITD over the frontal hemisphere.

doi:10.1371/journal.pcbi.1004360.9002

deg and 100 deg. We therefore used the Kalman filter to perform Bayesian prediction for
computational simplicity (Methods).

The Bayesian model successfully predicts future directions of the prey for smoothly moving
sources (Fig 3). We chose the prediction time step 7 in order to predict the source direction
100 ms in the future [12]. Initially the Bayesian prediction is dominated by the prior distribu-
tion, which emphasizes central directions (Fig 3A). Because of the influence of the prior, the
posterior does not initially lead the source direction. However, after a short delay the posterior
Prin(0, W|ITDy ) predicts the future direction of the source (Fig 3A and 3B). Note that the per-
formance of the Bayesian prediction differs from the Bayesian tracking estimate. Whereas the
tracking algorithm seeks to place the center of posterior at the current source position (Fig 3C),
the prediction algorithm seeks to place the center of posterior at the future position of the
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Fig 3. Bayesian prediction and tracking. (A) The predictive posterior is shown for a source trajectory starting at 20 deg to the right and moving across the
frontal hemisphere. Red indicates regions of high probability density and blue indicates regions of low probability density. The center of the predictive
posterior (pink dashed line) initially trails the stimulus, but then leads the source by approximately 100 ms. (B) The predictive posterior zoomed in near the
peak between 800 and 1000 ms from (A) shows the prediction leading the source by approximately 100 ms. (C) The posterior for tracking is similar to the
posterior for prediction, but is used to estimate the current, not future, direction of the source.
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doi:10.1371/journal.pcbi.1004360.9003
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source. Also, the predictive posterior (Fig 3A) is wider than the posterior for tracking (Fig 3C)
because uncertainty increases as the time window for prediction increases beyond the current
time where observations are available.

Population vector implementation

It has been shown that the owl’s map of auditory space decoded by a PV is consistent with the
owl’s localization behavior for brief stationary sounds [24]. Here we investigate conditions on a
population of neurons with spatial-temporal receptive fields under which the PV will match
the Bayesian prediction in time. The PV at time k is given by an average of weighted preferred
direction vectors:
¢ - .
PV, = N Z a(ITDlszU)a w(/))u(@(f))

=1

where the preferred directions 6 are defined by the motor output. The PV at time k depends
on the sequence of past ITD measurements and predicts the future direction of the target. By
associating each neuron with a fixed preferred direction 8%, we are making the assumption
that the motor neurons that the OT neurons ultimately influence are fixed. This assumption
means that the effect of a given level of response for an OT neuron on the motor output stays
constant. The rate function a(ITD, |6, w?) is the firing rate of the j* neuron in response to
the sequence of ITD values ITD; ... We now state our main result, which specifies sufficient
conditions so that the PV will approximate the Bayesian prediction estimate.

Proposition. If the neural activities satisfy

(l(ITDLk‘HO), w(j)) _ (xpk+n(0m7 F’UO) |ITD1k)
q(0", ")
for neurons with indices j =1, 2, . . . N, where o does not depend on 6 or w, and the preferred
directions 8 and angular velocities @ are drawn from the proposal density g(6", ©?), then
the PV converges to a vector pointing in the same direction as the Bayesian prediction vector
as the number of neurons N approaches infinity.
Proof: Suppose that the neural activities satisfy

apk+n(0(j)7 wV[ITD, )

1D, [0V, ") = :
Ll( lzk‘ y (W ) q(00)7w0>)

forj=1,2,... Nand that the preferred directions 8 and angular velocities w"’ are drawn
from the density (6, @"). As the number of neurons in the population N approaches infin-
ity, the PV converges to an expected value

PV, — [[ u(0)q(0,)a(ITD,,|0, »)dwdo.

With the neural activities defined as the ratio of the posterior to the proposal density, the
PV converges to

PV, — [[u(0)q(0, w)a(ITD,, |0, »)dwdd o [ u(0)p,,,(0, w|ITD,, )dwdd = BV,

and thus points in the same direction as the Bayesian prediction vector.

A special case of this result occurs when the proposal density from which the preferred sti-
muli are drawn is the prior density. The more general result stated in the proposition allows for
the distribution of preferred stimuli to possibly have more neurons in the periphery than
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would be predicted by the prior as long as the neural responses compensate for this increase in
the number of neurons by decreasing the gain of the responses in the periphery. Current exper-
imental evidence, however, is consistent with the distribution of preferred directions matching
the prior distribution [24]. In particular, for a brief static stimulus, the special case corresponds
to the preferred stimuli being drawn from the prior and the neural responses being propor-
tional to the likelihood function, for which there is experimental support [24,42]. We therefore
predict that neural responses supporting Bayesian prediction in time are given by a ratio of the
posterior at a time 7 steps in the future to the prior distribution. In the following we explore
the implications of this prediction for receptive field properties of neurons supporting Bayesian
prediction.

Receptive field shifts

The first prediction derived from our result is that neurons implementing Bayesian prediction
using this type of population code will have receptive fields that shift in time towards the mov-
ing source (Fig 4A-4D). This is the type of shift that is necessary to compensate for delays and
allow for the owl to capture the moving source [6,12,8]. These delays include signal processing
in the brain as well as motor delays, and total approximately 100 ms [12]. While the receptive
fields shift in time, there is a delay to the onset of the shift of the receptive field. This delay in
the shift occurs in the Bayesian model because the response is initially dominated by the prior
before sufficient sensory information has been accumulated. Therefore, the predictive posterior
initially lags behind the source direction (Fig 3A). It is only after a delay that the predictive pos-
terior leads the current source direction. The model also predicts that receptive fields get
sharper with time. The sharpening of the receptive fields follows the sharpening of the poste-
rior as more sensory information is collected (Fig 3A). Additionally, the model predicts that
the shift of the receptive field depends on the speed of the moving source. Faster source veloci-
ties lead to larger shifts, while slower source velocities correspond to smaller shifts of the recep-
tive field (Fig 5A). This prediction follows from the fact that the posterior shifts faster for faster
sources.

The receptive field shifts predicted by the model are consistent with experimental results in
the barn owl [12] (Figs 4 and 5). Neurons in the owl’s OT that are involved in generating head
orienting movements show shifting receptive fields for moving sources [12] (Fig 4E and 4F).
The receptive field shifts in the owl are consistent with the Bayesian prediction model in that
the shift toward the source is not instantaneous, but occurs after a delay (Fig 4E and 4F).
Receptive fields of midbrain neurons also get sharper in time, as predicted by the model
[12,43]. Additionally, the size of the shift varies with the speed of the moving source (Fig 5B).
The time course and magnitude of the observed shifts correspond well to the predicted shifts in
the model.

The model predicts an asymmetry in the shifts of the receptive fields for sounds moving
into and out of the center of gaze that increases with the eccentricity of the receptive field (Fig
6). For neurons with receptive fields at the center of gaze, the shifts for clockwise and counter-
clockwise sources are mirror images (Fig 6A-6C). For neurons with more peripheral receptive
fields, the shifts for clockwise and counterclockwise moving sources are asymmetric (Fig 6D-
61). For neurons with peripheral receptive fields, the initial shift of the receptive field for
sources moving into the center of gaze is in the opposite direction than one would expect based
on the idea that receptive fields should move towards the source. This occurs because of the
effect of the prior on the performance of the posterior (Fig 3A). Initially, the posterior is domi-
nated by the prior and thus at stimulus onset is not leading the source by the desired 100 ms.
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Fig 4. Predicted and measured receptive field shifts. (A,B) Stimulus trajectories moved at a constant
velocity across the frontal hemisphere. (C,D) Predicted receptive field shifts from the model for rightward (C)
and leftward (D) motion. The solid line represents the preferred ITD for static stimuli. The black stars
represent the peak ITD of the response at the given time. Color codes for firing rate, with red indicating a high
firing rate and blue indicating a low firing rate. (E,F) Experimentally measured receptive field shifts of an optic
tectum neuron from [12]. Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience [12].

doi:10.1371/journal.pcbi.1004360.9004

The asymmetry of the receptive field shifts for peripheral OT neurons has not been investi-
gated in the owl. However, neurons in the owl’s external nucleus of the inferior colliculus (ICx)
do have an asymmetry in their direction selectivity for sounds moving into and out of the cen-
ter of gaze, which may be related to asymmetric shifts [38,39]. Testing this prediction will
require further study.

The prediction of asymmetry in the receptive field shift for clockwise moving and counter-
clockwise moving sources depends on the presence of a prior that emphasizes central direc-
tions. We found that predicted receptive field shifts were symmetric for clockwise moving and
counterclockwise moving sources in both central and peripheral neurons when the prior in the
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Fig 5. Receptive field shifts and velocity. (A) Shifts of the best ITD as a function of time for different source
velocities. Faster velocities are coded by thicker lines (5 ps ITD/s, 20 ps ITD/s, 40 s ITD/s, 80 ps ITD/s). (B)
Shifts of best ITD as a function of time for different source velocities of optic tectum neurons from [12].
Reprinted by permission from Macmillan Publishers Ltd: Nature Neuroscience [12].

doi:10.1371/journal.pcbi.1004360.9005

model was uniform (Fig 7). As noted above, the asymmetry is caused by the initial dominance
of the prior on the location of the peak in the posterior. When the prior is uniform, this effect
is removed and the posterior can quickly lead the source direction for motions both into and
out of the center of gaze.

The receptive field shifts predicted by the model were robust to parameter variation (Fig 8).
We examined the receptive field shifts for different standard deviations of the noise terms and
different prior standard deviations for direction and velocity. The model predicted similar
magnitudes of shifts for the chosen values (center column) and when each parameter was
halved (left column) or doubled (right column). Changing the standard deviation of the noise
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Fig 6. Asymmetry in predicted receptive field shifts. (A,B) Receptive field shifts for counterclockwise (A) and clockwise (B) moving sources for a neuron
with preferred direction 0 deg. (C) The shift of best ITD is symmetric for the two directions. The shift is plotted as measured for the counterclockwise motion
and is the negative of the shift for clockwise motion, for comparison between the cases. (D-F) The shifts are asymmetric for a neuron with preferred direction
35 deg. (G-l) The asymmetry is more pronounced for a neuron with preferred direction 70 deg.

doi:10.1371/journal.pcbi.1004360.9006

corrupting ITD had the greatest effect on the receptive fields (Fig 8A-8C). This parameter
influences the width of the posterior and therefore influences the width of the receptive field.

Population decoding

The net effect of the receptive field shifts is that the activity moves across the population so that
it predicts the future direction of the moving source (Fig 9A). It is this activity that must be
decoded by the PV to approximate the Bayesian prediction. To test the PV implementation of
Bayesian prediction, we constructed a model of 5000 Poisson neurons with receptive fields that
shift according to the posterior (Methods). The PV matched the Bayesian prediction closely for
different stimulus conditions (Fig 9). The PV approximated the Bayesian prediction to within
3 degrees (root-mean-square (RMS) error) for velocities up to 125 deg/s (Fig 9B). The RMS
error in the approximation of the Bayesian prediction by the PV depended strongly on the
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doi:10.1371/journal.pcbi.1004360.g007

fraction of time the predicted source direction was in the frontal hemisphere (spearman rank
correlation = 0.92; Fig 9C). Since all of the preferred directions of the model neurons are in the
frontal hemisphere, the model will necessarily fail when the posterior is localized at source
directions behind the head. We also computed the RMS error using a population of determin-
istic neurons to determine the contribution of the Poisson variability of the neurons to the
error (Fig 9D). The Poisson variability increased the RMS error for many trajectories

(mean =+ s.d. ratio of RMS error for deterministic neurons to RMS error for Poisson neurons
0.43 + 0.23). However, the largest errors in the approximation are primarily due to the limited
range of preferred directions of neurons in the population. The pattern of error as the initial
direction and velocity of a moving source varied is explained by larger errors occurring when
the predicted source trajectory spends more time behind the head.

Discussion

We showed that the PV can read out the Bayesian prediction in time from a population of neu-
rons. The PV will approximate the Bayesian prediction when the population has specialized
responses with shifting receptive fields. The types of shifting receptive fields predicted by our
analysis are observed in the OT of the owl [12] and the retina of the rabbit [6] and salamander
[6,8]. This result shows that with the appropriate encoding of the stimulus, a simple decoding
algorithm can perform complex computations [44,19,8].

Our work provides a theoretical framework in which to interpret observations about circuits
underlying prediction. Previous work identified neurons in the OT [12] and retina [6,8] with
shifting receptive fields that account for delays in neural processing. Leonardo and Meister
(2013) further showed that decoding a population of such responses with a PV can predict a

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004360 July 30, 2015 11/20
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Fig 8. Parameter dependence of the receptive field shifts. Receptive field shifts are shown for a neuron
with preferred direction 0 deg for parameter values at the selected values (center column), half this value (left
column) and twice the value (right column). The pink dots show the best ITD at the parameter values used in
other figures and are the same for all panels. Parameters were changed individually and included (A-C) the
standard deviation of the ITD noise, (D-F) the standard deviation of the direction noise in the dynamics model,
(G-1) the standard deviation of the velocity noise in the dynamics model, (J-L) the standard deviation of the

direction in the prior, and (M-O) the standard deviation of the velocity in the prior.

doi:10.1371/journal.pchi.1004360.g008

moving target position. Our work shows that this type of network computation can be optimal

and capture the statistics of a dynamic target.
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Fig 9. Population decoding of predicted source direction. (A) Example model population activities plotted together with the true source direction (pink),
the Bayesian prediction direction (green) and the PV estimate (blue). The color map codes for firing rate with white and black indicating high and low firing
rates, respectively. (B) RMS error between the Bayesian prediction and the PV estimate averaged over one-second duration stimuli at the given initial
direction and angular velocity. The values in gray indicate stimulus conditions where the RMS error was less than 3 deg. (C) The RMS error is highly
correlated with the fraction of time the predicted source direction is behind the head. This occurs because all preferred directions are in the frontal
hemisphere. (D) RMS error between the Bayesian prediction and the PV estimate for deterministic neurons and Poisson neurons. The solid line is the identity

line.

doi:10.1371/journal.pcbi.1004360.g009

This work shows that a non-uniform population code model with a PV decoder can imple-
ment Bayesian inference for stationary and moving sources. The non-uniform population code
model proposes that a prior distribution is encoded in the distribution of preferred stimuli and
that the statistics of the sensory input are encoded by the pattern of neural responses across the
population [23,24]. Here we extend this model to show that the dynamics of a population code
can represent the statistics of a dynamical system. This is an important extension of the non-
uniform population code model due to the dynamic nature of ethologically relevant stimuli.

We make several predictions about the receptive field shifts necessary for optimal predic-
tion. First, we predict that neurons have receptive fields that shift towards a moving source

PLOS Computational Biology | DOI:10.1371/journal.pcbi.1004360 July 30, 2015
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where the shift increases with the source velocity. This prediction is consistent with observa-
tions in the OT [12] and retina [6,8]. We also predict that the shift is sluggish when a non-uni-
form prior is present. This is consistent with responses of OT neurons [12]. Our analysis also
leads to several predictions that have not been tested in the auditory or visual systems. In par-
ticular, we predict an asymmetry in the shifts of receptive fields for sources moving into and
out of the center of gaze when a prior emphasizes the center of gaze (Fig 6). We also predict
that for noisier stimuli, the magnitude of the shift will decrease and the receptive fields will
become wider (Fig 8 A-8C). Finally, we predict that receptive fields should become narrower
over time to reflect the accumulation of sensory information. Studies of neurons thought to
support predictive behaviors have not yet investigated all of these response features predicted
by our model.

Bayesian theories of perception propose that neural systems represent statistical models of
the environment, where the models may contain many parameters. The parameters of these
models may be learned by an animal over multiple time scales. For the owl, information about
the prior and the basic relationship between sound localization cues and source directions is
primarily due to a combination of genetic changes over an evolutionary time scale and learning
over the life of the animal [45]. There is evidence, however, that the owl adjusts to the noise
level of the stimulus on a trial-to-trial basis [46]. We therefore predict that the noise-level
parameter of the model is learned rapidly, leading to wider and more slowly shifting receptive
fields in high noise environments. Future work is required to determine how the parameters of
the model are learned in the owl’s auditory system.

Previous studies have shown that a cascade model with a gain control component can pro-
duce the experimentally observed shifting receptive fields [6,12,8]. This model involves a nega-
tive feedback loop, causing the neural response at each time step to be influenced by its
predecessors. This model is phenomenological, but it suggests that a recurrent network within
the OT is sufficient to generate the receptive field shifts necessary for Bayesian prediction.
However, neurons upstream from OT in ICx show direction selectivity [39,47] and it is there-
fore possible that shifting receptive fields originate in ICx. Furthermore, the asymmetric direc-
tion selectivity observed in ICx may possibly be explained by single-cell adaptation [39] rather
than by a network effect. Therefore, the mechanism underlying receptive field shifts in OT
remains an open question.

Previous work has addressed inference in time using the Kalman filter [19,22,30,48]. While
we determine how a population of neurons should respond to a moving stimulus but did not
specify a mechanism for implementing the responses, these studies constructed networks to
represent the Kalman filter estimate and variance as a function of time. One type of model pro-
duces a population code where the estimate of the target location is at the peak of a symmetric
population response [22,30]. This is accomplished through a nonlinear encoding model involv-
ing divisive normalization. It is possible to read out the estimate using a center-of-mass
decoder, but the model is limited to Gaussian distributions. Another model encodes the target
estimate and variance using a linear probabilistic population code [48]. This model also relies
on divisive normalization to implement the Kalman filter, but requires a nonlinear decoder to
determine the estimated location from the activities. The model of Eliasmith and Anderson
(2003) utilizes nonlinear responses and linear decoding. However, unlike the preferred direc-
tion vectors in the PV, the linear decoders are not in general equal to the preferred directions
and are obtained using supervised learning. These models may be extended to consider the
case of prediction, but the responses of neurons performing prediction in these schemes has
not been investigated. Our model differs from the previous models in that the preferred direc-
tion at the peak of the population activity profile will not in general equal the PV estimate (Fig
9). This occurs because our model includes a non-uniform population, whereas previous
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models use a uniform population. An additional distinction between our model and previous
models is that our predictions apply to nonlinear and non-Gaussian models.

It has previously been shown that the PV performs poorly when decoding arm movements
from motor cortical responses [49]. The work presented here does not conflict with this previ-
ous finding. We show that the PV will perform well in tracking and prediction when the recep-
tive fields of the neurons encode the state dynamics with shifting receptive fields. This is not a
general-purpose decoder, but rather must be used to read out the activity of a specialized popu-
lation with shifting receptive fields such as those in the OT. Experimental evidence suggests
that populations of neurons with response properties that are adapted to the natural statistics
are important for perception and behavior. The work presented here shows how network prop-
erties tailored to the dynamics of moving prey allow for optimal Bayesian prediction by a popu-
lation of neurons.

Methods
Bayesian prediction equations

The Bayesian prediction at time k of the direction at a point # steps in the future 6y, ,, given the
sequence of observations ITD., is computed from the posterior # steps in the future py.,(6, w|
ITD ). To construct the posterior at time k+#n we first compute the posterior at the current
time step pi(6, w|ITD, ), then predict n steps in the future using the transition probability den-
Sity Prnjk(Ok+n Win| Ok @i). Using the dependence relationships between direction, velocity,
and ITD indicated in Fig 1, the posterior at time k+# is given by

Piin(0,0|ITD,,) = ffpk+n\k(07wwk?wk>pk(0k7wk‘ITDl:k)dedwk'

The Bayesian prediction of the direction of the sound source at time k+n conditioned on the
observations ITD, is the mean of the predictive posterior over direction py.,(6|ITD;.;). This
posterior is found by marginalizing py, (6, w|ITD; ) over the angular velocity w. Because we
are estimating a circular variable, the Bayesian prediction is the direction of the Bayesian pre-
diction vector, defined as the vector that points in the direction of the mean value of direction
n steps in the future:

BV, = [ u(Op,., (017D, )do.

where u(0) is a unit vector pointing in direction 6.

Kalman filter prediction

We used the Kalman filter to compute the Bayesian prediction for simulations where the linear
approximation to the relationship between direction and ITD was valid. The Kalman filter
computes the mean and covariance of the posterior when the system is linear with Gaussian
noise [41]. Given that the relationship between azimuth and ITD is nearly linear for the frontal
hemisphere, a linear model is a reasonable approximation to our system. The dynamical system
for the moving source can be described as:

X, =Ax_, + G

where the state vector consists of the direction and angular velocity
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0 1 t
X, = [ k ] , the matrix A = lO . ] describes the state dynamics, and the noise vector
Wy

un

] . The noise at time k > 1 is Gaussian
Vi

contains the noise for direction and velocity ¢, = [

with zero mean and covariance matrix Q and is uncorrelated across time.

The output of the system is a linear approximation to the mapping from direction to ITD

plus noise:

ITD, = Cx, + &,
where C = [2.67 0] and &, is a Gaussian noise process with zero mean and variance R that is
referred to as the observation error.

The Kalman filter is used to compute the mean and covariance of the posterior at each time.
Define x,; and X;; to be the mean and covariance, respectively, of the posterior at time i given
observations up to time j. The mean of the posterior distribution is computed recursively
through a process of prediction and updating. The prediction one step ahead in time is com-
puted as

Xpk—1 = Axk—l\k—l

2 = Azk—llk—lAT +Q.

Updating the estimate with a new observation is computed as

Xy = Xy + LITD, — CXy ] and

Zk\k = (I - ch)zk\k—l

where the Kalman gain is

L =%, ,C"[CZ,, ,C" + R

When an estimate has been made for the state x,, it is possible to use that estimate as a
basis for predicting future states at time k+n. This requires the estimate at time k to be multi-
plied by the state transition matrix # times:

N ne
Xtk = A Xk

The covariance of the posterior at time k+7 is computed as

Tew = ATIQAM) +AE (A"

Particle filter prediction

We used a particle filter to compute the Bayesian prediction for simulations where the linear
approximation to the relationship between direction and ITD was not valid. Particle filtering
algorithms are sampling-based approaches to approximating the posterior distribution that are
valid for nonlinear and non-Gaussian models [40]. The particle filter algorithm we used was
adapted from [49]. The algorithm is given by the following steps:
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1. Initialize by selecting m particles for direction (;,((/) and angular velocity (Z),(Cj) from the prior
distribution, j =1, 2, . . ., m. Here we used m = 10,000. Set the time index k = 1. For each
time k iterate the following steps.

2. Compute weights for the particles using the likelihood of the ITD measurement at time k:

1
V2102

e—ﬁ([TDk—A sin(an(")l(j)))2

¢/ = pUTD0} &) =

3. Normalize the weights c,((j) so that the sum is one and draw a new sample of n particles with
replacement from the previous set of particles, where the probability of selecting particles

é,@, (I),(p is equal to c,(p. These new particles represent the posterior distribution at time k.
4. The posterior at time k + » is approximated by propagating the particles according to the
source dynamics over n steps

0G) —_ W ~ (7) ~
0/ = 0L + At + N

20— &0 5
Oy = Oy + V55
fori=0,1,...,n-1,where,; and v, are linearly independent circular Gaussian and Gaussian

noise factors, respectively, as in the generative model.

5. The estimate of the source direction under the predictive posterior py.,(6, w|ITD,.) is

found as the circular mean of the particles é,({ﬁ)rn

6. Update the time step to k + 1 and repeat from step 2 using the particles é,({'ll and @1%1
found in step 4.

Neural population model

The neural population model consists of 5000 Poisson neurons with receptive fields that shift
according to the prediction given in the proposition proved in the results. The preferred direc-
tions of the neurons were drawn from the prior Gaussian distribution with mean zero and stan-
dard deviation 23.3 deg. These preferred directions match the model of Fischer and Pena
(2011). To generate the neural responses to a sequence of ITD inputs we first computed the
predictive posterior py, (0, w|[ITD,.;) as described above. We then used our main result specify-
ing that the activities are proportional to the ratio of the posterior and prior to generate the
spiking probabilities for the population of neurons. We scaled the ratio of the posterior to the
prior so that firing rates would be approximately 10 spikes/s for neurons with peak responses.
Spike counts were generated for the population at each time step using independent Poisson
neurons with the specified rate. The direction of the PV was used to estimate the predicted
source direction at each time.

The PV was tested for counterclockwise source trajectories with initial directions covering
-180 deg to 180 deg in 10 deg steps and angular velocities ranging from 0 deg/s to 150 deg/s in
25 deg/s steps. We calculated the RMS error between the PV estimate 8py4(t) and the Bayesian
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prediction 6p,.() to quantify the approximation error where

T

RMS = | [ (0uul) = 0 (1))

0
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