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Abstract

According to optimal foraging theory, foraging decisions are based on the forager’s current estimate of the quality of its
environment. However, in a novel environment, a forager does not possess information regarding the quality of the
environment, and may make a decision based on a biased estimate. We show, using a simple simulation model, that when
facing uncertainty in heterogeneous environments it is better to overestimate the quality of the environment (to be an
‘‘optimist’’) than underestimate it, as optimistic animals learn the true value of the environment faster due to higher
exploration rate. Moreover, we show that when the animal has the capacity to remember the location and quality of
resource patches, having a positively biased estimate of the environment leads to higher fitness gains than having an
unbiased estimate, due to the benefits of exploration. Our study demonstrates how a simple model of foraging with
incomplete information, derived directly from optimal foraging theory, can produce well documented complex space-use
patterns of exploring animals.
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Introduction

For animals facing novel environments (due to dispersal or

translocation) gaining information about the environment is

critical, as experienced (i.e. informed) animals succeed better than

animals without the relevant experience in almost all aspects of

their life cycle. Such individuals are more successful at reproducing

[1,2], they are better foragers [3,4], and they show enhanced anti-

predatory behavior [5]. Thus, acquiring (and in a changing

environment, also updating) information is a vital function

affecting individual fitness.

Theory suggests that animals facing an unknown environment

should perform exploratory movement behaviors aimed at

constructing a spatial representation of the new environment in

order to allow for efficient resource utilization, predator

avoidance, mate location and so forth [6,7,8]. Exploratory

behavior can be defined as the gathering of information about

aspects of the environment that does not necessarily satisfy

immediate needs [9]. Despite the obvious long-term advantages of

exploratory behavior, it may incur high costs on the exploring

animal. These costs include elevated risk of predation due to

higher exposure and lower vigilance while engaged in exploring

[10,11], and increased energetic costs due to energy requirements

and missed foraging opportunities [12]. Thus, animals are

expected to face a trade-off between their need to learn their

environment and their need to exploit the already familiar

resources (the exploration-exploitation trade-off, [13]).

Once animals become familiar with their surroundings, they

often restrict their foraging to a limited area that is commonly

called the home range [14,15]. This transition from an exploratory

stage to foraging within a confined and familiar landscape calls for

notable changes in the movement behavior of the dispersing

animals [16,17]. In environments that are composed of renewable

resource patches, trap-lining, defined as repeated visitation to a

series of resource patches in a predictable order, is usually the most

beneficial foraging strategy [18]. Thus, dispersed or translocated

animals are expected to exhibit dynamical and complex space-use

patterns, shifting from exploratory movement to home range

establishment and, in many cases, trap-lining. Indeed, such

patterns have been reported in the wild for a wide range of

species (e.g, [19–21]). Here, we demonstrate that these seemingly

complex patterns can arise from a simple model of foraging with

incomplete information, derived directly from optimal foraging

theory.

According to Charnov’s seminal marginal value theorem [22],

optimal foragers maximize their long-term intake rate by leaving

patches when the intake rate of resources in the patch falls to a rate

that equals the long-term average intake rate in the environment.

The theorem however, is based on several unrealistic assumptions

such as a deterministic environment and a perfectly informed

forager [23,24]. As in reality environments are stochastic and real

foragers do not possess perfect information about them, optimal

foragers are expected to behave in an approximately Bayesian

manner (i.e., to update their estimate of the environment as they

forage, [24–26]). At any rate, an optimal forager’s decisions (e.g.,

where to forage and for how long) are based on its current estimate

of the quality of the environment. However, in a novel

environment, a forager does not possess precise information
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regarding the quality of the environment, and may make a

decision based on a biased estimate (i.e., either an overestimation

or an underestimation of the true value). This is not necessarily a

bad thing as several studies have demonstrated that biased

behaviors in the face of uncertainty can become adaptive and

evolve due to trade-offs between short-term and long term payoffs

[27–32]. The exploration-exploitation trade-off represents such a

trade-off and might therefore call for a biased behavior as an

adaptive lifetime strategy.

We argue that in the face of a novel environment, having a

biased initial estimate of the environment is in many cases an

adaptive strategy. Specifically, we argue that for animals that can

move with relative ease between patches (e.g., ungulates or

rodents), having a positively biased estimate of the environment

(being an ‘‘optimist’’) promotes exploration and is consequently a

more successful strategy than having a negatively biased estimate

(being a ‘‘pessimist’’). This is due to the fact that an optimistic

forager will underestimate the relative value of the patches it

encounters (compared to the expected environment), and will

more readily leave them. Since optimistic foragers explore more

than pessimistic foragers, they will also be quicker in learning the

true value of the environment and improve their decision making

more rapidly. We further argue that when the forager has the

ability to remember the location and quality of resource patches,

being an optimist can be a better strategy than having an unbiased

(‘‘correct’’) estimate of the environment, as an optimistic forager

may encounter high quality patches during its explorations,

converging on a trap-line of a higher quality than the average of

the environment.

To validate our predictions, we constructed a simple spatially

implicit model simulating foraging with incomplete information in

a novel heterogeneous landscape of renewable resource patches.

Methods

We consider an animal foraging in a novel environment

following the simple rules of Charnov’s marginal value theorem

[22] – the forager leaves a patch once its intake rate drops below

the expected intake rate elsewhere. We look at three different types

of foragers according to their learning and spatial memory

capabilities. We define learning as the ability of the forager to

update its estimate of the environment’s mean quality as it

encounters new patches, and spatial memory as the ability of the

forager to store the attributes of each visited patch and return to it

at a later stage. While memory is an integral part of any learning

mechanism, we separate spatial memory from learning. A forager

without spatial memory can still learn (i.e., update its estimate of

the environment as it encounters new patches), but it cannot assign

the newly learned value to a particular location and is unable to

return to any of the patches it previously visited. Similarly, a

forager can remember the location and quality of each patch it

visited but not update its expectation regarding the quality of a

novel patch (i.e., not learn). We investigated the performances of a

forager that can learn but cannot remember, a forager that can

remember but cannot learn, and finally, a forager that can both

learn and remember.

Model overview
Our model simulates the foraging patterns of a consumer

feeding in, and moving among, discrete, heterogeneous and

renewable resource patches following the general approach of

[33–34]. The time required to consume a single food unit (the term

is used here to denote a mouthful, a bite, or a single resource item)

is calculated based on patch density (the number of available food

units in the patch), according to a type II functional response [35].

Search rate and handling time are kept constant throughout all

simulations (0.01 and 1 respectively; a preliminary sensitivity

analysis revealed little qualitative effects on the simulation results).

The forager is assumed to instantly know the quality of the patch

upon encountering it. After the consumption of each food unit, a

decision is made of whether to stay in the current patch or move to

another. This decision is based on the assumption that if patch

departure is the best alternative, the current patch density is the

optimal giving-up density (GUD, [36–37]). The expected intake

rate in the next patch is calculated as the number of food units

available in that patch above the current GUD, divided by the

time it should take to consume them (based on the functional

response and the expected travel time). If this expected intake rate

exceeds the expected immediate intake rate at the current patch

(the inverse of the time required to consume the next food unit),

the consumer will shift to a new patch where it would consume the

next food unit. Otherwise, the consumer will consume the next

food unit in the current patch. This sequence of events is repeated

until some predefined number of food units has been consumed.

We assume that the rate of energy expenditure is constant,

regardless of whether the animal is foraging or moving between

patches. This assumption is reasonable as many animals

continuously move (and thus spend energy) while they forage.

The environment is heterogeneous with respect to two

properties. The maximum quality of each of the resource patches

(i.e., the quality in the absence of any consumption) is drawn from

a Poisson distribution whose average represents the mean

landscape quality. The traveling time between patches is drawn

from an exponential distribution with an average that represents

the mean traveling time in this landscape. In the results presented

here, both the mean landscape quality and the mean traveling

time were kept constant (100 and 10 respectively) after an

extensive sensitivity analysis revealed that changes in these

parameters did not qualitatively change the results.

We define a forager as optimistic or pessimistic according to its

estimate of the environment’s quality. A forager is considered an

optimist if its initial estimate of the environment is positively biased

(i.e. higher than the true average quality of the environment). In a

similar fashion, a forager is considered a pessimist if its initial

estimate of the environment is negatively biased. The model

focuses on the estimates of patch quality and assumes the estimate

of the mean traveling time is unbiased as the two aspects have

similar quantitative effects with no non-additive interactions.

When the forager has no learning capabilities its estimate of the

environment remains constant throughout the simulation. Note

that our definitions of optimism and pessimism differ from those

found in ref. [31] as we do not refer to reproduction but rather to

the way an animal assesses its environment. However, just as in

ref. [31], our definitions are purely mechanistic and make no

assumptions regarding the mental state of the forager.

Learning
In our model, a forager with learning capabilities updates its

estimate of the environment’s quality every time it visits a new

patch as a weighted mean of its past estimate and the quality of the

current patch. We used the linear operator rule [38–39]:

Qtz1~hKz(1{h)Qt,

where Qt is the estimate of the environment’s quality at time t, K is

the quality of the current patch, and h is the weighing factor

ranging from 0 to 1. A large h results in a very rapid update of the

forager’s estimate of the environment with every new patch it

Foraging in Novel Environments
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encounters, while a h of zero result in an estimate that always stays

constant (i.e., there is no learning). In the results presented here, a

learning forager had a h of 0.01. The linear operator rule has been

shown to perform well relative to other learning rules [40], and

often nearly as well as computationally demanding Bayesian

learning strategies [41]. However, like any other rule that is

Bayesian in nature, it is dependent on the animal having a prior

expectation of the quality of the environment (i.e. the forager’s

initial estimate of the environment Qt = 0 must have some value).

We refer to a forager as optimistic or pessimistic according to its

initial estimate of the environment as explained above.

Spatial memory
A forager with spatial memory stores the location and quality of

every patch it encounters in its memory, and can decide to return

to these patches at a later time. Thus, a forager with spatial

memory faces three options after consuming every food unit – to

continue feeding in the current patch, to leave the patch and

return to a previously visited patch, or to travel to a new patch. As

before, the decision is made according to the best expected long-

term intake rate. Resource patches in our simulation regenerate

according to a logistic growth model [42] where patch quality at

time t, kt, is a function of the maximum patch quality, K, the

patch’s quality Dt time units ago, kt2Dt, and the maximum growth

rate, r ( = 0.001):

kt~
Kkt{Dte

rDt

Kzkt{Dt(erDt{1)
:

Hence, the rate of patch re-growth diminishes as the patch

approaches its maximum quality. We assume that the forager has

perfect knowledge of the rate of patch renewal and therefore

knows the current quality of each previously visited patch.

Fitness currency
The simulation ends once a forager consumes a fixed amount of

food units. Depending on their patch departure decisions, different

foragers consume the same fixed amount of food at different rates.

We considered foragers with high long-term intake rate (i.e.,

foragers who consumed the fixed amount of food rapidly) as

foragers with higher fitness than foragers who took longer to

consume the same amount of food. The use of long-term intake

rate is a common proxy of fitness, especially in an optimal foraging

framework [43]. As the relative performance of different foraging

strategies may vary with the time-frame available for foraging, we

consider three different time-frames: short, intermediate and long,

by varying the amount of food that the forager needs to consume

(100, 1000, and 10,000 food units respectively).

Appendix S1 gives a description of the parameters used in the

simulations. We conducted a sensitivity analysis to verify that our

results are not qualitatively affected by the values of any of the

fixed parameters in our model. In our sensitivity analysis we

repeated all simulations, each time changing one of the fixed

parameters by either reducing or increasing its value by one order

of magnitude (except for h where we only increased its value, as

one of our treatments includes reducing it to 0). In all cases the

qualitative results of the model did not change as a function of

variations in these parameters.

A MATLAB 7.6.0 (MathWorks, Natick, Massachusetts) simu-

lation codes are given in Appendix S2 (simulation without spatial

memory) and Appendix S3 (simulation with spatial memory). Each

unique parameters combination was used to simulate 100

replicates (differing due to the stochastic nature of the landscape).

Results

Foragers with learning capabilities but no spatial
memory

When the forager is able to learn but has no spatial memory, the

best initial strategy was to know the true value of the

environment’s quality (Fig. 1). Nonetheless, there was a difference

between the performances of foragers with an optimistic strategy

and foragers with a pessimistic one. All foragers updated their

estimate of their environment based on every new resource patch

they encountered. However, due to their higher exploration rate

(the number of arrivals to new patches per time unit), the rate at

which the optimistic foragers updated their estimate of the

environment was much higher than that of the pessimistic foragers

(Figure 1a), resulting in a more rapid convergence to the optimal

GUD (i.e., the GUD of perfectly informed foragers according to

the marginal value theorem; Fig. 1b). Foragers with mild biases in

their estimate of the environment had practically the same intake

rate (amount of food consumed per time unit) as a perfectly

informed forager. The initial intake rate of foragers with extreme

biases was much lower than the intake rate of the perfectly

informed forager, with the extreme optimistic strategy being the

worst at first. However, the extremely optimistic forager was quick

to improve its intake rate and equalize it to the optimal one, while

the extremely pessimistic forager had a sub-optimal intake rate for

a much longer period of time (Fig. 1c).

Foragers with spatial memory but no learning
capabilities

The average life-time intake rate of remembering-yet-not-

learning foragers was influenced both by their estimate of the

environment (which remained constant throughout the simulation)

and by the time-frame (the predefined resource quantity to be

consumed during the simulation). Foragers whose time-frame of

foraging was long (10000 food units) had the highest life-time

intake rate when they were mildly optimistic (i.e., when their

estimate of the environment was 20% higher than the true average

of the environment). Foragers with an intermediate time-frame of

foraging (1000 food units) showed a similar but weaker trend, and

foragers whose time-frame was short (100 food units), had the

highest intake rate when their estimation of the environment

equaled its true value (Fig. 2).

Initial exploration rates (the number of arrivals to new patches

per time unit) reflected the direction and magnitude of the

foragers’ initial estimate bias. Despite the fact that foragers did not

update their estimate of the environment, the exploration rate of

all foragers but the extreme optimist declined with time until the

foragers performed no exploration (Fig. 3a). This decline in

exploration rate was the result of foraging in a subset of the

landscape that was at least as valuable as the forager’s estimate (the

extreme optimist continued exploring as no subset could match its

high expectations). This happened quickly for pessimistic foragers,

and more slowly for the mild optimistic forager who explored until

the average value of the patches it visited increased to its

estimation of the environment. These trends are reflected in the

temporal dynamics of the foragers’ range quality (the average

quality of visited patches within each of 20 equal time bins;

Fig. 3b). Finally, for all the foragers, the range size (the number of

unique patches visited within each of 20 equal time bins) stabilized

and became constant over time with significantly higher values for

the extreme optimist (Fig. 3c).
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Foragers with both spatial memory and learning
capabilities

Learning and memorizing foragers with a long time-frame of

foraging had the highest life-time intake rate when they were

optimistic, regardless of how optimistic they were (Fig. 4). As the

time-frame of foraging decreased, the price for extreme optimism

increased. Foragers with a short time-frame exhibited the same

life-time intake rate curve as forgers with a short time-frame and

no learning capabilities (Fig. 2). All foragers decreased their

exploration rate with time until they stopped exploring, converg-

ing to a stable range with a stable average value (Fig. 5).

Discussion

We have shown that in many cases having a positively biased

estimate of the environment’s quality (i.e., being an ‘‘optimist’’)

outperforms pessimism in a novel environment. Moreover, when

an animal can remember and therefore return to previously visited

resource patches, optimism may perform even better than having

an unbiased estimate of the environment.

One of the better known concepts in optimal foraging theory is

Charnov’s marginal value theorem [22] that considers when a

forager should leave a patch of resources. Criticism of the

theorem’s assumptions regarding the deterministic nature of the

resource patches led to the rise of Bayesian foraging theory [23–

25]. Bayesian foragers decide when to leave a resource patch

based on the weighted average of a prior estimate of patch

qualities and sampling information from the current patch [44].

This strategy is more successful in stochastic environments than

classical optimal foraging. The main criticism of the Bayesian

approach is over the source of the prior estimate of the

environment quality [45–46], which is supposedly gained by past

experience or through evolution by natural selection [24]. Our

results demonstrate that a positively biased prior estimate of the

environment converges to the true estimate of the environment

much faster than a negatively biased estimate of the same

magnitude. This is due to the fact that an optimistic forager’s

overestimation of the environment is motivating it to leave

resource patches and explore. The high exploration rate allows for

a fast update of the estimate of the environment compared to a

pessimistic forager’s much slower update rate. This is true

regardless of the travel distance between the patches (see methods).

Thus, when an animal with learning capabilities faces a novel

environment and is required to ‘‘guess’’ its quality in order to make

Figure 1. The estimate of the environment, giving-up density, and intake rate (panels a-c respectively) as a function of time, for
foragers with learning capabilities but no spatial memory. The lines’ color and shape represent different foragers making decisions according
to different estimates of the environment quality. The black solid line represents foragers making their decision according to an estimate of 100 food
units, which is equal to the true mean value of the environment quality. The dashed black line represents mild pessimists making their decisions
according to an estimate of 75 food units - a 25% negative bias. The dashed-dotted black line represents extreme pessimists with an estimate of 25
food units – a 75% negative bias. The dashed and dashed-dotted gray lines represent mild and extreme optimists with a 25% and 75% positive bias
respectively (i.e., estimates of 125 and 175 food units). In all cases the lines represent the average of 100 simulation runs, each terminated after the
consumption of 10,000 food units. Error bars represent one standard deviation.
doi:10.1371/journal.pone.0034578.g001

Figure 2. The average life-time intake rate (the intake rate average over the whole period of the simulation) as a function of the
initial estimate of the environment quality for foragers with memory but without learning capabilities. The solid line represents a
forager with a long time-frame of foraging (i.e., a simulation which ended after the forager consumed 10,000 food units). The dashed line represents a
forager with an intermediate time-frame (1,000 food units), and the dotted line represents a forager with a short time-frame (100 food units). The
dotted vertical line indicates on the average quality of the environment. Error bars represent one standard deviation.
doi:10.1371/journal.pone.0034578.g002
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foraging decisions, overshooting is always a better strategy than

undershooting, making optimism an adaptive strategy that can

evolve by natural selection.

We consider a forager that overestimates the quality of the

environment as an optimist. However, it’s worth noting that what

we regard as optimism about the environment can also be

regarded as pessimism towards the quality of the current patch.

Optimism regarding the quality of the environment will promote

exploration while optimism regarding the quality of the current

patch will have the opposite effect.

A forager with spatial memory capabilities is able to re-visit high

quality patches, creating a sub-group of patches of a higher

average quality than the environment’s average. As long as the

forager’s positive bias is relatively small, the increase in the average

quality of the forager’s memorized environment can reduce its

exploration rate without the need for a learning mechanism.

Instead of adjusting its perceived value of the environment, the

forager is focusing its activity in a high quality subset of its

environment. Thus, memory (or spatial learning) can serve as an

alternative mechanism to learning for decreasing exploration with

time. In the case of extreme optimists, learning capabilities are a

necessity in order to avoid the high costs of constant exploration

(as the forager can never converge to a range that has a quality as

high as it expectation; Fig. 2, 3).

While the notion of animals using optimism to promote

exploration in order to improve the quality of their future home

range is novel, the use of optimism to promote exploration is

widely used in the fields of machine learning, artificial intelligence,

and neural network research [32]. Just like foragers, machines that

learn need to balance between exploration (of actions whose

outcomes are still not well known) and exploitation (of actions with

known positive outcomes). By having an optimistic initial value, a

learning apparatus is encouraged to explore different actions,

thereby gaining valuable information on the distribution of their

outcomes which can improve their future performance [32].

One of the characteristics of the exploration-exploitation trade-

off is that there is, to some extent, a temporal partition between the

costs and the benefits of exploration [13] - a forager in a novel

environment is expected to first pay a cost for high exploration

rates which in later stages will be superseded by the benefits of

information. Thus, the forager’s relevant time frame or life

expectancy should have a strong influence on the advantages of

exploratory behavior. Indeed, our results show that as the relevant

time frame becomes shorter, the benefit from exploration

decreases, and the animal should be less optimistic. This follows

closely the theoretical and empirical findings ref. [47] who found

that female Anaphes victus parasitoids remained for a longer time on

host patches as they approached the end of their life (i.e., the

females reduced their exploration rate as the time horizon for

foraging diminished).

Animals facing novel environments exhibit dynamical and

complex space-use patterns, shifting from exploratory movement

Figure 3. The exploration rate, average range quality, and range size (panels a–c respectively) as a function of time, for foragers
with spatial memory but without learning capabilities. The different lines represent foragers with different initial estimates of the
environment, as detailed in the caption for figure 1. Error bars represent one standard deviation.
doi:10.1371/journal.pone.0034578.g003

Figure 4. The average life-time intake rate (the intake rate average over the whole period of the simulation) as a function of the
initial estimate of the environment quality for foragers with both spatial memory and learning capabilities. The solid line represents a
forager with a long time-frame of foraging (i.e., a simulation which ended after the forager consumed 10,000 food units). The dashed line represents a
forager with an intermediate time-frame (1,000 food units), and the dotted line represents a forager with a short time-frame (100 food units). The
dotted vertical line indicates on the average quality of the environment. Error bars represent one standard deviation.
doi:10.1371/journal.pone.0034578.g004
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to home range establishment [19–21]. We showed that these

seemingly complex patterns can arise from a simple model of

foraging with incomplete information, derived directly from

optimal foraging theory. Optimistic animals show a high rate of

exploratory movements which declines with time. This decline is

not enforced on the forager, but rather an emergent property of

the model – as the forager encounters new patches, it reduces its

estimate of the environment, which in turn decreases its

exploration rate. In order to facilitate the establishment of a

home range, a forager requires memory capabilities [15]. In our

model, memory-enabled foragers with learning capabilities

reduced their exploration rate to zero after a certain amount of

time (Fig. 5a), indicating the establishment of a stable home range.

With the exception of ref. [15], movement models that lead to the

emergence of a home range behavior out of potentially

unrestricted movement paths have only been demonstrated for

territorial species or central-place foragers [48]. Ref. [15]

presented a model based on correlated random walk in which

the use of a two-part memory system by a foraging animal could

lead to an establishment of a stable home range. We show that by

simply allowing an optimal forager with incomplete information to

update its estimate of the environment while foraging, stable home

range behavior can emerge after a period of nomadic exploration.

Moreover, if the initial estimate bias is small enough, and as long

as the forager has spatial memory, stable home range behavior can

emerge from optimal foraging patch leaving rules even without the

need for a learning mechanism.

In our simulation, the number of patches a forager with spatial

memory visited and their average quality became stable over time,

which strongly suggests, albeit indirectly, that it was trap-lining

(but see ref. [49] on the difficulties of statistically identifying trap-

lining). One of the costs of complete trap-lining (i.e., having an

invariable foraging route between a set of known patches) is that if

the value of the patches changes with time, the forager might get

‘stuck’ in an inefficient foraging route. Ref. [18] suggested that

foragers should switch between complete trap-lining and ‘sample

and shift’ trap-lining (i.e., when the forager encounters a less

rewarding patch in its trap-line, it might leave it and go exploring

for an alternative patch). Although not the focus of the current

investigation, such a strategy is likely to emerge in our model as a

result of degradation in the quality of patches that are part of the

forager’s trap-line. The forager would then have a higher estimate

of the environment’s average than the current average in these

patches, motivating it to explore new patches and update its trap-

line, thus performing a ‘sample and shift’ trap-line. The emergence

of such complex temporal dynamics from a simple set of foraging

and learning rules may help identify possible behavioral response

to environmental changes and should be investigated in future

research.

Two major assumptions of our model require further discussion.

First, the costs of exploration in our model are solely due to the fact

that the exploring animal foregoes resource exploitation in order to

travel to a new patch (which may or may not be a better patch). The

underlying assumption of this approach is that the energetic cost of

moving between patches is equivalent to the energetic cost of

foraging in a patch. There are obviously instances at which this

assumption fails due to high energetic costs of locomotion or to

increased risk of predation while on the move [36,50]. However, as

long as these additional costs increase linearly with time spent

traveling (and the forager is fully aware of them), their inclusion

should have the same effect as increasing the distances between

patches. While this has a quantitative effect on our results (i.e., all

intake rates are suppressed and a longer time-frame is required for

optimism to outperform perfect information), it does not have any

qualitative effect on our conclusions. The second assumption is the

focus on the optimal behavior of a single forager while in reality,

foragers are rarely alone. When in a group, foragers can gain

information by following other individuals (social information, [51]).

This may lead to producers-scroungers dynamics [52] in which

some individuals specialize in exploring while others specialize in

following explorers. Alternatively, multiple foragers may compete

by exploitation, thus destabilizing any individual trap-line. At any

rate, for non-solitary foragers, the advantages of optimism may be

frequency dependent.

We have demonstrated how movement and food consumption

patterns might emerge and evolve as a result of the interaction

between animals’ memory and learning abilities and their prior

expectations from a novel environment. These ideas could and

should be put to empirical tests using captive or relocated animals.

By first conditioning individuals to an environment of certain

mean quality and then introducing these individuals to a novel

environment characterized by a similar or a different mean

quality, one might be able to directly test the ideas suggested here.

Furthermore, additional theoretical research is needed to test the

validity of our results in explicit space and with different levels of

spatial and temporal variability in resource quality (such as when

the resources are clumped, [44]). At any rate, this work adds to

recent advances (e.g., [53]) linking optimal foraging theory and the

newly emerging movement ecology paradigm [54]. A link that

should help promote a deeper cognitive-adaptive understanding of

animal space use patterns.
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