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Simple Summary: In this systematic review, we aim to highlight existing literature devoted to the
study of an association between medical imaging radiomics and cancer biological endpoints. The use
of radiomics as an ancillary tool in cancer treatment would allow for a non-invasive, inexpensive,
three-dimensional characterization of the tumor phenotype, contributing to the delivery of precision
medicine. Nonetheless, its clinical application remains a challenge, as extensive, multi-center vali-
dation studies of radiomic features connection with tumor biology are required. In this review, we
performed a search in PubMed database for peer-reviewed studies which evaluate the association
between radiomic features and the following set of clinically relevant tumor markers: anaplastic
lymphoma kinase (ALK), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), epidermal
growth factor (EGFR), human epidermal growth factor receptor 2 (HER-2), isocitrate dehydrogenase
(IDH), antigen Ki-67, kirsten rat sarcoma viral oncogene homolog (KRAS), programmed cell death
ligand 1 (PD-L1), tumor protein p53 (TP-53) and vascular endothelial growth factor (VEGF).

Abstract: Radiomics supposes an alternative non-invasive tumor characterization tool, which has
experienced increased interest with the advent of more powerful computers and more sophisticated
machine learning algorithms. Nonetheless, the incorporation of radiomics in cancer clinical-decision
support systems still necessitates a thorough analysis of its relationship with tumor biology. Herein,
we present a systematic review focusing on the clinical evidence of radiomics as a surrogate method
for tumor molecular profile characterization. An extensive literature review was conducted in
PubMed, including papers on radiomics and a selected set of clinically relevant and commonly
used tumor molecular markers. We summarized our findings based on different cancer entities,
additionally evaluating the effect of different modalities for the prediction of biomarkers at each
tumor site. Results suggest the existence of an association between the studied biomarkers and
radiomics from different modalities and different tumor sites, even though a larger number of
multi-center studies are required to further validate the reported outcomes.

Keywords: radiomics; tumor biology; cancer; imaging biomarker; tumor molecular marker

1. Introduction

Cancer precision medicine involves therapy adaptation to improve clinical outcome
based on patient-specific characteristics as well as the tumor-specific molecular profile. The
advent of high-throughput gene-sequencing techniques in the last decade has allowed for
the identification of multiple tumor molecular markers, also known as signature molecules,
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which correspond to genomic changes that affect gene and protein expression [1,2]. These
encompass a great variety of biological molecules such as nucleic acids, proteins, peptides,
lipid metabolites and other small molecules, and their assessment can be beneficial for di-
agnosis, prognosis, or prediction of therapy response. Besides assisting in clinical-decision
processes, these signature molecules may also hold the potential for new personalized
molecular targeted or immunologic therapies.

On the other hand, the fast-evolving field of radiomics has experienced an increased
interest in the past decade, especially within cancer research, due to accumulating evidence
of an association between quantitative medical imaging features and clinical and biological
endpoints [3]. The underlying principle behind radiomics is that medical images enclose
latent information which can be unveiled through the extraction of radiomic features,
i.e., quantitative features which describe the shape, size, intensity and texture of a region
of interest. The most common imaging modalities used for this purpose are computed
tomography (CT), magnetic resonance imaging (MRI), positron emission tomography
(PET) and ultrasound (US). Recent advances in machine learning and computer hardware,
together with the availability of large-scale medical imaging data, have redefined radiomics
as a powerful tool for precision medicine in clinical-decision support systems [4]. Moreover,
the non-invasiveness nature of radiomics supposes a great advantage when compared to
current gold-standard techniques for tumor phenotype characterization.

The purpose of this systematic review was to determine which radiomic features have
been linked to tumor biology in peer-reviewed studies and, thus, could be potentially
incorporated in cancer precision medicine. To this end, we chose to summarize current
findings assessing the potential association of radiomics with ten classic proteins or genes
which are relevant clinical prognostic markers, and which may be targeted by either small
molecular inhibitors or antibodies. These are: anaplastic lymphoma kinase (ALK), v-raf
murine sarcoma viral oncogene homolog B1 (BRAF), epidermal growth factor (EGFR), hu-
man epidermal growth factor receptor 2 (HER-2), isocitrate dehydrogenase (IDH), antigen
Ki-67, kirsten rat sarcoma viral oncogene homolog (KRAS), programmed cell death ligand
1 (PD-L1), tumor protein p53 (TP-53) and vascular endothelial growth factor (VEGF).

These factors, when mutated or over-expressed, play important roles in cancer pro-
gression and growth (EGFR, HER-2, KRAS, BRAF, ALK), angiogenesis (VEGF), cell cycle
regulation and cell death (TP-53), the immune response (PD-L1), and metabolic regu-
lation (IDH). At the same time, it is important to understand the proliferation kinetics
(Ki-67 proliferation marker) of the respective cancer types as that can also influence the
treatment response.

• EGFR, HER-2 and ALK are all receptor tyrosine kinases, located on the cell surface
and activated through the binding of ligands, mostly growth factors. This leads to
the activation of a whole range of downstream signaling cascades and results in cell
survival, proliferation and migration [5,6].

• KRAS and BRAF are the genes responsible for making the proteins K-ras and B-raf,
which are, amongst others, involved in important signaling pathways (e.g., Ras-Raf-
MAPK, PI3-K-AKT) [7,8]. Mutation and down-/up-regulation of any of those kinases
can lead to malignancy and especially cancer formation.

• VEGF is a signaling factor promoting the formation of new blood vessels. To grow
and metastasize, solid cancers require blood supply, which they attain by expressing
VEGF to form supporting vasculature [9].

• TP-53 is involved in the regulation and progression through the cell cycle; monitors
genomic stability and can induce apoptosis. It is one of the most prominent tumor-
suppressors [10].

• PD-L1 is involved in suppressing the adaptive arm of the immune system. By upregu-
lating PD-L1 expression, cancer cells may evade the host immune system [11].

• IDH catalyzes the decarboxylation of isocitrate. Through this metabolic deregulation,
cancer progression can be initiated or supported [12].
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• Ki-67 is a protein that is present during all active phases of the cell cycle but absent
in resting (quiescent) cells [13]. Therefore, this cellular proliferation marker is fre-
quently used to distinguish fast growing cell populations, such has cancer cells, from
normal cells.

Throughout this review, the term “biomarker” refers, for the sake of simplicity, to any
of the above-mentioned biological endpoints. This is also in accordance with the World
Health Organization (WHO), which defines biomarker as “any substance, structure, or
process that can be measured in the body, or its products and influences or predicts the
incidence of outcome or disease” [14].

2. Materials and Methods

The analysis was conducted according to the PRISMA-P Preferred Reporting Items
for Systematic Reviews and Meta-Analyses statement [15]. The protocol for this systematic
review was registered at PROSPERO (CRD42020207220) and is available at https://www.
crd.york.ac.uk/prospero/display_record.php?ID=CRD42020207220 (accessed on 11 June
2021). No amendments were performed with respect to the published protocol.

2.1. Literature Search

The search was conducted in PubMed database. According to PRISMA guidelines,
article selection was carried out via multiple steps. The literature search was performed
using the query “Radiomics [All Fields] AND keyword [All Fields]”, where keyword
corresponded to one of the ten molecular markers under study (i.e., ALK, BRAF, EGFR,
HER-2, IDH, Ki-67, KRAS, TP-53, PD-L1 and VEGF) and the possible variations in its
naming (e.g., HER2 and HER-2). The full list of queries is provided in the Supplementary
Materials (List S1). In total, twenty independent searches were performed. No records
were included from other sources such as direct correspondence with authors. The search
had no start date limit and was concluded on 31 March 2020.

For each independent search, all retrieved studies were collected, and duplicates were
posteriorly removed using the open-source reference management software Zotero [16].

2.2. Eligibility Criteria

During the first screening phase, those studies which did not fulfil the following
requirements were excluded: (1) the article had to be written in English, (2) the study had
to be a scientific article excluding reviews, (3) the topic had to be related to biomarkers in
cancer. Following this step, every article was assigned to one of the following categories,
depending on the cancer site: breast, central nervous system (CNS), gastrointestinal, liver,
lung and others.

The full-text articles were then assessed for eligibility. An article was excluded from
the final analysis if at least one of the following criteria applied: (1) only one of the two
groups, biomarker-negative or biomarker-positive, patients were included in the study, (2)
the total number of patients was less than 40, (3) the association between the biomarker and
radiomics features was not investigated, (4) the biomarker analyzed was not among the
ten biomarkers defined in the search and (5) less than 20 image features were investigated.

2.3. Analysis

Those articles that satisfied the screening and eligibility criteria were included in the
following analysis, with each tumor site corresponding to a dedicated subsection in this
review. First, the distribution of the number of patients included within all the studies was
evaluated. The frequency of investigation of a given biomarker for each tumor site was
collected in a dedicated table, together with the total number of studies on each tumor site
and on each biomarker.

For each study, we gathered the following information when available: the studied
biological endpoint and its alteration, e.g., mutation on a specific exon, over-expression,
etc.; the imaging modality; the origin of the dataset; the training set size; the validation set

https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020207220
https://www.crd.york.ac.uk/prospero/display_record.php?ID=CRD42020207220
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size and type of validation, i.e., internal, temporally independent, external, leave-one-out-,
3-, 5- and 10-fold cross-validation (LOOCV, 3-CV, 5-CV, 10-CV) or bootstrap methods;
the initial number of studied radiomic features; the application of feature reduction and
feature robustness analysis methods; the reported performance, i.e., the area under the
receiver-operating characteristic curve (AUC), classification accuracy or c-index; the public
availability of the code and/or data; the reported quality score of the radiomics study, e.g.,
the transparent reporting of a multivariable prediction modelling for individual prognosis
or diagnosis (TRIPOD) score [17] or Radiomics Quality Score (RQS) [4].

Furthermore, radiomic features of the best performing models on the training set
were identified for each combination of tumor site, biomarker and image modality, in
order to provide, when possible, a visual interpretation of the findings. For consistency,
performance on the training set was evaluated since external validation was only performed
on a small fraction of the studies. Moreover, in this comparison, the selection was limited to
models based solely on radiomic features, i.e., mixed models including clinical-radiological
data were excluded. This process was done independently by each of the authors in the
systematic review. If the study provided a visual interpretation of such features, it was
recorded. Otherwise, whenever possible, the missing interpretation was provided by
the authors.

In accordance with PRISMA guidelines, a strategy for bias risk minimization was
adopted as follows: the processes of screening, eligibility evaluation and extraction of data
for the meta-analysis were performed independently by authors ALG, DV, FT, RDB and
VW. Each author analyzed one specific tumor site. The more experienced authors JEvT,
ST-L, MG and MP supervised the process and guaranteed a uniform and unbiased analysis
throughout the different tumor sites. A detailed description of this process can be found
on the PRISMA checklist in the Supplementary Materials (List S2).

3. Results
3.1. Literature Search, Eligibility Criteria and Study Selection

A diagram summarizing the study selection workflow following PRISMA guidelines is
shown in Figure 1. A total of 304 records were first retrieved from PubMed. After duplicate
removal, 183 articles were left for screening. The first screening excluded 33 articles, leaving
150 full-text studies for the eligibility assessment. After further evaluation, 46 references
were excluded because they did not meet the conditions previously defined. As a result,
104 articles were included in the current review.

The size of the dataset under study varied significantly among the reported papers
(43–1010 patients). As above-mentioned, studies including less than 40 patients in total
were excluded from the analysis during the screening phase. The mean number of patients
included was 198. The distribution is shown in Figure 2.

The frequency of investigation of a given biomarker with respect to each tumor site is
presented in Table 1. It should be noted that multiple keywords, i.e., multiple biomarkers,
were allowed for the same article. Therefore, the total sum of the entries (n = 125) is greater
than the number of full-text papers included in the systematic review (n = 104). Similarly,
those articles that investigated more than one tumor site were included in each of the
corresponding subsections. The most frequently studied entity was lung cancer, followed
by CNS tumors and breast cancer. The most frequently analyzed biomarker was EGFR,
followed by Ki-67 and IDH. The association between EGFR and radiomics in lung cancer
was the most frequently investigated (n = 26).
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Figure 1. Flow diagram of the study selection process according to PRISMA guidelines [15].

Figure 2. Distribution of the number of patients in the studies included in the analysis.
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Table 1. Frequency of investigation of each biomarker and entity site.

Breast CNS GI Liver Lung Others Total

ALK 0 0 0 0 3 0 3
BRAF 0 0 1 0 0 2 3
EGFR 0 5 0 0 26 1 32
HER-2 10 0 2 0 0 0 12

IDH 0 24 0 0 0 0 24
Ki-67 8 5 3 3 2 2 23
KRAS 0 0 7 0 5 0 12
PD-L1 0 0 0 2 3 1 6
TP-53 1 2 2 0 1 1 7
VEGF 0 1 0 1 0 1 3

TOTAL 19 37 15 6 40 8 125

3.2. CNS
3.2.1. Summary

A total of thirty-six studies were found which associated CNS tumor molecular mark-
ers with clinical imaging radiomic features, using conventional magnetic resonance imaging
(MRI) alone (n = 21) [18–38], advanced MRI sequences (n = 11) [39–49], Positron Emission
Tomography (PET, n = 3) [50–52] or Amide Proton Transfer-weighted (APTw, n = 1) imag-
ing [53]. Glioma was the tumor type analyzed in the vast majority (n = 35) [18–34,36–53],
including lower-grade glioma (LGG) (n = 20) [18,21–30,32,34,36,37,46–49,53], gliomas of
all grades (n = 9) [33,38,42–45,50–52], and glioblastoma (GBM) [17,18,29,37–39]. One study
focused on pituitary macroadenoma [35]. IDH genotype was the most frequently studied
biomarker (n = 24) [18–30,38,42,43,45–50,52,53], followed by EGFR (n = 5) [31,32,39–41],
Ki-67 (n = 5) [33–35,44,51], TP-53 (n = 2) [30,36] and VEGF (n = 1) [37]. All studies showed
a significant association between the biomarker and radiomic features (AUC = 0.70–0.99).
Thirty-four studies validated their models either on internal cohorts, temporally indepen-
dent cohorts or through cross-validation/bootstrap methods. Two studies validated their
models using externally acquired datasets. Three studies were prospective registered stud-
ies [21,47,53]. None of the studies reported any radiomics quality measure. The findings of
this section are summarized in Table 2.
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Table 2. An overview of the radiomic studies included in the CNS cancer section.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature Reduction Feature
Robustness

# Radiomic
Features Additional Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open
Source

Akbari et al. [41] EGFR

Variant III
mutation

(deletion of
exons 2–7)

MRI,
DWI,
PWI

Hospital of the
University of
Pennsylvania,

Philadelphia, US

75 54 * no no 421

16 tumor spatial
location features;

peritumoral
heterogeneity index

AUC = 0.92
Accuracy = 88.9% Code

Arita et al. [26] IDH

Isoforms 1
(codon 132) and 2

(codon 172)
mutations

MRI

Osaka International
Cancer Institute,

Osaka, Japan;
National Cancer
Center Research

Institute,
Tokyo, Japan

111 58 * yes no 50 59 tumor spatial
location features Accuracy = 87% Code

Features

Binder et al. [39] EGFR

Extracellular
A289D/T/V,

R108G/K and
G598V mutations

MRI,
PWI,
DWI

Hospital of the
University of
Pennsylvania,

Philadelphia, US

260 - yes no 2088

11 tumor spatial
location features;

5 glioma diffusion
properties from tumor

biophysical models

Significant correlation
(p < 0.0444) Code

Choi et al. [20] IDH
Isoforms 1
(codon 132)

mutation
MRI

TCIA/TCGA-GBM;
St. Mary’s Hospital,
Seoul, South Korea

45 91 ** yes no 107 -
AUC = 0.904 (0.805, 1.0)
Accuracy = 86.8% (63.7,

97.8)

Images and
ROI

partially

Fukuma et al.
[27] IDH

Isoforms 1
(codon 132) and 2

(codon 172)
mutations

MRI

Osaka International
Cancer Institute,

Osaka, Japan;
National Cancer
Center Research

Institute,
Tokyo, Japan

127 10-CV yes no 61
3 tumor spatial

location features;
4000 DL features; age

Accuracy = 73.1% -

Han et al. [53] IDH
Isoforms 1
(codon 132)

mutation
APTw Tangdu Hospital,

Xian, China 49 10 * yes yes 1044 - AUC = 0.952
Accuracy = 0.892

Images on
request

Kim et al. [47] IDH
Isoforms 1
(codon 132)

mutation

MRI,
DWI,
PWI

Asan Medical Center,
Seoul, South Korea 127 28 *** yes yes 6472 - AUC = 0.747 (0.66–0.83)

Accuracy = 65.3% -

Kong et al. [51] Ki-67
High Ki-67

expression as
> 10%

FDG-
PET

Peking Union Medical
College Hospital,

Beijing, China
82 41 * yes no 1561

Age; sex; metabolic
pattern; SUVmax;

SUVmean

AUC = 0.73
Accuracy = 78% -

Kuthuru et al.
[28] IDH

Isoforms 1
(codon 132)

mutation
MRI TCGA/TCIA-LGG 108 10-CV no no No

> 35,000 histogram of
oriented gradients,

scale-invariant feature
transform and voxel

intensities

AUC = 0.8224
(0.7856–0.8575)

Images and
ROI

Lee et al. [31] EGFR mutation MRI TCGA/TCIA-GBM 44 3-CV no no - 36 spatial diversity
features

AUC = 0.845
Accuracy = 0.79

Images and
ROI

Lee et al. [48] IDH
Isoforms 1
(codon 132)

mutation

MRI,
DWI,
PWI

Samsung Medical
Center, Seoul,
South Korea

88 35 *** yes no 82 - Accuracy = 83.4% -
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Table 2. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature Reduction Feature
Robustness

# Radiomic
Features Additional Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open
Source

Li et al. [50] IDH

Isoforms 1
(codon 132) and 2

(codon 172)
mutations

FDG-
PET

Peking Union Medical
College Hospital,

Beijing, China
84 43 * yes no 1561

Age; sex; metabolic
pattern; SUVmax;

SUVmean

AUC = 0.900
(0.877–0.923) Code

Li et al. [19] IDH

Isoforms 1
(codon 132) and 2

(codon 172)
mutations

MRI

TCGA/TCIA-GBM;
Sun Yat-sen

University Cancer
Center, Guangzhou,

China; The 3rd
Affiliated Hospital of

Sun Yat-sen
University,

Guangzhou, China;
Guangzhou General

Hospital of
Guangzhou Military

Command,
Guangzhou, China

118 107 ** yes no 1614 Sex; age; KPS AUC = 0.96
Accuracy = 97%

Images and
ROI

(partially)

Li et al. [33] Ki-67
High Ki-67

expression as >
25%

MRI

The Second Hospital
of Hebei Medical

University, Tangshan,
Hebei, China

50

3-CV,
5-CV,
boot-
strap

yes no 396 -
AUC = 0.713
(0.568–0.832)

Accuracy = 66.0%
-

Li et al. [32] EGFR
High EGFR

expression as >
30%

MRI
Beijing Tiantan

Hospital, Beijing,
China

200 70 * yes no 431 - AUC = 0.95
Accuracy = 90.0%

Li et al. [36] TP-53 mutation MRI

Chinese Glioma
Genome Atlas, Beijing

Tiantan Hospital,
Beijing, China

180 92 * yes no 431 - AUC = 0.763
Accuracy = 70.7%

Images and
ROI

Li et al. [34] Ki-67
High Ki-67

expression as >
10%

MRI

Beijing Tiantan
Hospital, Beijing,
China; Chinese

Glioma Genome Atlas

78 39 * yes no 431 - AUC = 0.90
Accuracy = 88.6% -

Li et al. [22] IDH
Isoforms 1
(codon 132)

mutation
MRI Huashan Hospital,

Shangai, China 229 LOOCV yes no 671 16,384 DLR features AUC = 0.9521
Accuracy = 92.44% -

Liu et al. [21] IDH
Isoforms 1
(codon 132)

mutation
MRI

Beijing Tiantan
Hospital, Beijing,

China;
158 102 *** yes yes 431 - AUC = 0.99 -

Lohmann et al.
[52] IDH

Isoforms 1
(codon 132)

mutation

FET-
PET

University Hospital
RWTH Aachen 84 5-CV,

10-CV no yes 33

Slope; TTP;
mean tumor-to-brain

ratio; maximum
tumor-to-brain ratio

AUC = 0.79
Accuracy = 80.0% -

Lu et al. [43] IDH mutation MRI,
DWI

TCGA/TCIA-LGG;
TCGA/TCIA-GBM;

TCIA-REMBRANDT;
Taipei Medical

University, Taipei,
Taiwan

214 70 ** yes no 39,212 - Accuracy = 88.9–91.7%
Images and

ROI
(partially)
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Table 2. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature Reduction Feature
Robustness

# Radiomic
Features Additional Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open
Source

Park et al. [46] IDH
Isoforms 1
(codon 132)

mutation

MRI,
DWI

Yonsei University,
Seoul, South Korea 168 10-CV yes no 411 - AUC = 0.900

(0.855–0.945) -

Rathore et al. [40] EGFR

Variant III
mutation

(deletion of
exons 2–7)

MRI,
DWI,
PWI

Hospital of the
University of
Pennsylvania,

Philadelphia, US

107 10-CV yes no 255

9 tumor spatial
location features; 3
biophysical growth

model-based features

Accuracy = 80.19% -

Ren et al. [49] IDH
Isoforms 1
(codon 132)

mutation

MRI,
DWI,
PWI

Huashan Hospital,
Shangai, China 57 10-CV yes no 260 10 VASARI features;

age; sex; Ki-67
AUC = 0.931

Accuracy = 94.74% -

Su et al. [44] Ki-67
High Ki-67

expression as >
25%

MRI,
DWI,
PWI

Tongji Hospital,
Wuhan, Hubei, China 220 bootstrap yes no 431 - AUC = 0.936 -

Sun et al. [37] VEGF

VEGF expression
at < 5%, 6–25%,

26–50% and
> 50%

MRI
Beijing Tiantan

Hospital, Beijing,
China;

160 79 * yes no 431 - AUC = 0.702
Accuracy = 72.3%

Images on
request

Tan et al. [45] IDH mutation DKI,
DWI

Shanxi Medical
University Shanxi,

China
62 bootstrap yes no 728

Age; sex; grade;
tumor size; tumor

border; hemorrhage;
cystic and necrosis;

edema degree;
enhancement style;

enhancement degree;
signal characteristics;

6 tumor location
features; mean

diffusivity value;
mean kurtosis value

AUC = 0.885
(0.802–0.955)

Accuracy = 80.6%
(71.0–90.3)

-

Tan et al. [42] IDH

Isoforms 1
(codon 132) and 2

(codon 172)
mutations

MRI,
DWI

Shanxi Medical
University Shanxi,

China
74 31 * yes yes 3882

Age; sex; grade;
tumor size; tumor

border; hemorrhage;
cystic and necrosis;

edema degree;
enhancement style;

enhancement degree;
signal characteristics;

6 tumor location
features

AUC = 0.900
(0.859–0.941)

Accuracy = 87.1%

Features,
ROI

Tontong Liu et al.
[25] IDH

Isoforms 1
(codon 132)

mutation
MRI Huashan Hospital,

Shangai, China 110 LOOCV yes no 671 - AUC = 0.90
Accuracy = 0.85 -

Ugga et al. [35] Ki-67
High Ki-67

expression as
> 3%

MRI

University of Naples
“Federico II”

Neurosurgery, Naples,
Italy

53 36 * yes yes 1128 - AUC = 0.87
Accuracy = 91.67% -
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Table 2. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature Reduction Feature
Robustness

# Radiomic
Features Additional Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open
Source

Wu et al. [38] IDH
Isoforms 1
(codon 132)

mutation
MRI TCGA/TCIA-LGG;

TCGA/TCIA-GBM 126 bootstrap yes no 698 6 tumor growth
model parameters

AUC = 0.931
Accuracy = 0.885 Images, ROI

Wu et al. [18] IDH
Isoforms 1
(codon 132)

mutation
MRI Huashan Hospital,

Shangai, China 80 25 * yes no - 968 dictionary
features Accuracy = 88.0% -

Yu et al. [24] IDH
Isoforms 1
(codon 132)

mutation
MRI Huashan Hospital,

Shangai, China 92 LOOCV no no - 116 tumor spatial
location features

AUC = 0.71
Accuracy = 72.0% -

Yu et al. [23] IDH
Isoforms 1
(codon 132)

mutation
MRI Huashan Hospital,

Shangai, China 110 LOOCV yes no 671 - AUC = 0.86
Accuracy = 80.0% -

Zhang et al. [30] IDH,
TP-53 mutation MRI TCGA/TCIA-LGG 73 30 * yes yes 260 16 VASARI features

IDH: AUC = 0.792
Accuracy = 80.0%

TP-53: AUC = 0.869
Accuracy = 85.0%

Images, ROI

Zhou et al. [29] IDH mutation MRI TCGA/TCIA-LGG 84 bootstrap yes no 3360

30 VASARI features;
age; sex; KPS;

histological type;
grade; laterality;

location

AUC = 0.86 Images, ROI,
code

* internal validation; ** external validation; *** temporally independent internal validation. Acronyms: epidermal growth factor (EGFR), isocitrate dehydrogenase (IDH), antigen Ki-67 (Ki-67), tumor protein
p53 (TP-53), vascular endothelial growth factor (VEGF), fluorodeoxyglucose positron emission tomography (FDG-PET), fluoroethyl tyrosine positron emission tomography (FET-PET), perfusion weighted
imaging (PWI), magnetic resonance imaging (MRI), diffusion weighted imaging (DWI), amide proton transfer-weighted imaging (APTw), max and mean standardized uptake value (SUVmax, SUVmean),
The Cancer Imaging Archive/The Cancer Genome Atlas (TCIA/TCGA), glioblastoma (GBM), lower-grade glioma (LGG), Karnofsky Performance Status (KPS), The Repository of Molecular Brain Neoplasia
Data (REMBRANDT), Visually AccesSAble Rembrandt Images (VASARI), deep learning (DL), deep learning radiomics (DLR), time-to-peak (TTP), leave-one-out cross-validation (LOOCV), 3-, 5- and 10-fold
cross-validation (3-, 5- and 10-CV), area under the curve (AUC).
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3.2.2. IDH

A total of fifteen studies were found which investigated the power of MR radiomics to
predict IDH genotype in glioma (AUC = 0.70–0.99, accuracy = 73.1–97%) [18–30,38]. Four
studies exclusively employed MR radiomics [20,21,23,25], whereas eight studies used a
combination of traditional radiomic features with other types of imaging features such as lo-
cation parameters (n = 5) [23–27], Visually AcceSAble Rembrandt Images (VASARI) features
(n = 3) [19,29,30], deep learning radiomics (DLR, n = 2) [22,27], and tumor growth model
parameters (n = 1) [38]. Three studies based their models completely on non-conventional
radiomics: one of them employed purely anatomical location features [24], another one
used histogram of oriented gradients (HoGs), raw voxel intensities and scale-invariant fea-
ture transform (SIFT) descriptors [28] and the third one used fine texture features obtained
by k-means singular value decomposition (K-SVD), a dictionary learning algorithm [18].
Three of the fifteen studies also incorporated clinical-radiological parameters into their
models [19,27,29].

The best predictive performance was achieved by Li et al. on MR images of glioblas-
toma patients by means of a random forests (RF) model based on gray-level co-occurrence
matrix (GLCM), grey-level run-length matrix (GLRLM) and grey-level size zone matrix
(GLSZM) textural features together with patient age (AUC = 0.96, external validation) [19].
Among MR radiomics in both, lower- and higher-grade gliomas, relevant features for IDH
mutation status prediction were associated with textural heterogeneity, suggesting that IDH
wild-type tumors are more heterogeneous and more structurally complex than IDH-mutant
ones [19,20,26]. Another feature that was significantly linked with IDH mutation status
was tumor mean surface-to-volume ratio, which was lower in IDH-mutant cases [20,23].
Moreover, IDH-mutant gliomas were found to occur more frequently in the frontal, insular
and temporal lobes [24,26].

A total of seven studies were found which combined MR radiomics with diffusion
weighted imaging (DWI), perfusion weighted imaging (PWI) and/or diffusion kinetic
imaging (DKI) features to predict IDH mutation status in glioma patients (AUC = 0.747–
0.931) [42,43,45–49]. Among these studies, three of them incorporated clinical-radiological
parameters in their modelling [42,43,45] and one employed additional VASARI imaging
features [49]. The best performance on an external cohort was achieved by Lu et al., who
proposed two support vector machine (SVM) models based on MR and DWI features
together with patient age and sex to predict IDH mutation status in GBM and LGG patients
separately (accuracy = 88.9–91.7%, external validation) [43]. Similar to MRI radiomics, DWI
and PWI textural and intensity features describing increased tumor heterogeneity were
associated with IDH wild-type tumors. Moreover, IDH wild-type LGGs were found to
have smaller minimum Apparent Diffusion Coefficient (ADC) and Cerebral Blood Volume
(CBV) values, which could indicate an increased tumor proliferation index and increased
malignancy [47,49].

Two studies were found which used PET radiomics in conjunction with clinical-
radiological parameters to predict IDH status in gliomas. One of them used fluoroethyl-
tyrosine (FET)-PET standard parameter slope and one texture feature (accuracy = 80.0%,
10-CV) [52], while the other one combined fluorodeoxyglucose (FDG)-PET radiomics with
age and tumor metabolism to achieve an AUC of 0.90 on an internal validation set [50].
Among FDG-PET radiomics, the feature sphericity was found to play a significant role
in IDH mutation status prediction, indicating that IDH-mutant gliomas are less spherical
than IDH wild-type in FDG-PET scans. Lastly, one study used APTw radiomics to predict
IDH status in LGG patients (AUC = 0.84, internal validation) [53]. GLCM and GLRLM
radiomic features describing tumor heterogeneity were identified as main contributors of
IDH genotype prediction, with IDH-mutant tumors being more homogeneous.

3.2.3. EGFR

In total, two studies were found which investigated the relationship between MR ra-
diomics and EGFR alterations in glioma, more precisely, between EGFR over-expression in
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LGG patients and EGFR mutation in GBM patients [31,36]. The former proposed a logistic
regression model based on 41 radiomics features (AUC = 0.95, internal validation) [36],
and the latter study employed a symbolic regression method based on non-conventional
MR spatial diversity descriptors (AUC = 0.845, cross-validation) [31]. In both cases, MR
features describing tumor textural heterogeneity and shape irregularity were linked to
EGFR, suggesting increased diversity in EGFR-mutated and EGFR-amplified tumors.

Three studies were found which employed MR radiomics together with DWI and PWI
radiomics to predict EGFR mutation status in GBM patients. Binder et al. studied a variety
of EGFR missense mutations and concluded that EGFR mutation at alanine 289 (EGFR-
A289D/T/V) presented a unique radiographic phenotype. Authors reported significantly
lower average T1 signal, higher relative cerebral blood volume and longer major axis in
EGFR-A289D/T/V-mutant tumors among other features [39]. The two remaining studies
investigated the prediction of EGFR mutation at exons 2–7 (EGFRvIII) and incorporated
additional imaging features on their modelling such as location parameters, tumor growth
model parameters and the peritumoral heterogeneity index. Authors reported predictive
accuracies of 73.58% [40] and 87% [41] on a temporally independent and on an internal
validation cohort, respectively. Authors of the three above-mentioned studies suggested
that EGFR-mutant tumors present an increase in shape variability and water concentration
as well as a decreased cell density.

3.2.4. Ki-67

Three studies were found which investigated the association between Ki-67 expression
and MR radiomics in CNS tumors: one in lower grade glioma (AUC = 0.9, accuracy = 88.6%,
internal validation) [34], one in both, lower and higher-grade gliomas (AUC = 0.713, accu-
racy = 66%, cross-validation) [33] and one in pituitary macroadenoma (accuracy = 96.7%,
internal validation) [35]. In the three studies, Ki-67 expression was associated with in-
creased textural heterogeneity. One study was found which combined MR, DWI and
PWI radiomics to predict Ki-67 expression in grade I-IV gliomas (AUC = 0.936, training
cohort) [44]. Authors reported that DWI features were more strongly associated with Ki-67
than the other two imaging modalities. Another study focused on Ki-67 prediction using
FDG-PET radiomics (AUC = 0.76, internal validation) [51].

Among the five studies, different cut-off thresholds were employed to distinguish
between low- and high-expressing tumors, with two studies using 10% [34,51], two studies
using 25% [34,44] and one study using 3% [35].

3.2.5. TP-53

Two studies evaluated the power of MR radiomics for TP-53 mutation status prediction
in LGGs with a varying performance (AUC = 0.763–0.869, internal validation) [30,36]. One
of them also included VASARI imaging features in the modelling. Authors concluded that
TP-53 mutant gliomas are more heterogeneous and present higher water content.

3.2.6. VEGF

One study was found which investigated the use of conventional MR radiomics to
predict VEGF expression in LGGs (AUC = 0.702, internal validation) [37].

3.3. Breast Cancer
3.3.1. Summary

Sixteen studies which assessed the relationship between breast tumor molecular
markers and radiomic features were identified. The imaging modalities studied were
PWI (n = 9) [54–62], conventional MRI (n = 2) [63,64], DWI (n = 1) [65], DWI+PWI [66],
Digital Breast Tomography (DBT, n = 1) [67], PET/CT (n = 1) [68] and standard 2D dig-
ital mammography (DMG, n = 1) [69]. Most studies focused on invasive breast can-
cer (n = 13) [54–60,63–67,69], while three studies investigated non-invasive breast cancer
types [61,62,68]. HER-2 was the most frequently investigated biomarker (n = 10), and
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all studies showed some degree of linkage between HER-2 status and radiomic features
(AUC = 0.65–0.95) [54,56–60,62,64,68,69]. Eight studies examined Ki-67, and all except one
study found a significant association to radiomics features (AUC = 0.70–0.81) [56,57,62,63,65–68].
One study investigated TP-53 status (n = 1) (AUC = 0.88) [55]. Thirteen studies employed
internal validation sets or cross-validation and bootstrap methods datasets. None of the
studies reported any radiomics quality measure and only two of them were registered
prospective studies [64,67]. The findings of this section are summarized in Table 3.
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Table 3. An overview of the radiomic studies included in the breast cancer section.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Antunovic et al.
[68]

HER-2,
Ki-67

HER-2:
positive (IHC

3+) vs.
negative (IHC

0 or 1)
Ki-67: High

expression at
>20%

FDG-
PET/CT

Humanitas
Hospital, Milan,

Italy
43 - yes no 20 MTV, SUVmean

and TLG

HER-2: Significant
correlation (p =

0.021–0.046)
Ki-67: No significant

correlation

-

Braman et al. [61] HER-2 mutation PWI

Cleveland Medical
Center, Cleveland,
Ohio, US; City of

Hope
Comprehensive
Cancer Center,

Duarte, California,
US; Yale Cancer

Center, New Haven,
Connecticut, US;

Brown University
Oncology Research
Group, Providence,
Rhode Island, US;

TCIA/TCGA-
BRCA

117 3-CV yes no 495 - AUC = 0.71 (0.63–0.79) images

Castaldo et al.
[60] HER-2 mutation PWI TCIA/TCGA-

BRCA 55 36 * no no 36 - AUC = 0.91
Accuracy = 81–88% images

Fan et al. [59] HER-2

positive (IHC
3+) vs.

negative (IHC
0 or 1)

PWI
Zhejiang Cancer

Hospital,
Hangzhou, China

60 36 * yes no 65

Age, menopausal
status; 29 dynamic
features from BPE

and the lesion;
9 bilateral

differences in BPE

AUC = 0.947 -

Fan et al. [66] Ki-67 mutation PWI, DWI

First Affiliated
Hospital of

Zhejiang Chinese
Medical University,
Hangzhou, China

144 LOOCV yes no 97 - AUC = 0.811 Code

Leithner et al.
[64] HER-2 mutation MRI

Memorial Sloan
Kettering Cancer
Center, New York,

USA; Medical
University Vienna,

Vienna, Austria

91 - yes no 352 - Accuracy = 73.6% Code
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Table 3. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Li et al. [54] HER-2 mutation PWI TCGA/TCIA-
BRCA 91 LOOCV yes no 24

10 kinetic features
(maximum contrast
enhancement, TTP,

uptake rate,
washout rate, curve

shape index,
enhancement at

first post-contrast,
SER, volume of
most enhancing
voxels, total rate

variation,
normalized total

rate variation) and
4 enhancement-
variance kinetic

features (maximum
variance of

enhancement, TTP,
variance increase
rate, and variance

decrease rate)

AUC = 0.65 images

Li et al. [58] HER-2 mutation PWI Cancer Hospital of
Liaoning, China 637 LOOCV yes no 137

5 kinetic features
(standard deviation,

mean, maximum
value, enhancement

rate, absorption
rate)

AUC = 0.83
Accuracy = 87.0% -

Liang et al. [63] Ki-67
High

expression at
>14%

MRI

Guangdong
General Hospital,

Guangdong
Academy of

Medical Sciences,
Guangzhou, China

& Southern Medical
University,

Guangzhou,
Guangdong, China

200 118 *** yes yes 10,207 -
AUC = 0.740
(0.645,0.836)

Accuracy = 0.729
-

Lin et al. [55] TP-53 mutation PWI TCGA/TCIA-
BRCA 88 LOOCV yes no 5234 - AUC = 0.886

(0.817–0.955) images
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Table 3. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Ma et al. [56] Ki-67
High

expression at
>14%

PWI

Tianjin Medical
University Cancer

Institute and
Hospital, National
Clinical Research
Center for Cancer,

Tianjin, China

159 10-CV yes no 56 - AUC = 0.773
Accuracy = 0.757 -

Monti et al. [57] HER-2,
Ki-67 mutation PWI

Hospital of Moscati,
Avellino, Italy;

Institute for
Hospitalization and

Healthcare SDN,
Naples, Italy

HER-2:
48

Ki-67:
49

bootstrap yes no 163 Pharmacokinetic
maps

HER-2: AUC = 0.838
Accuracy = 0.785

Ki-67: AUC = 0.811
Accuracy = 0.677

Tagliafico et al.
[67] Ki-67

High
expression at

>14%
DBT

Emergency
Radiology, IRCCS

Policlinico San
Martino, Genova,

Italy

70 bootstrap yes no 106 - AUC = 0.698 Code, features

Zhang et al. [65] Ki-67
High

expression at
>14%

DWI

The Second
Hospital, Dalian

Medical University,
Dalian, China

101 27 * yes no 1029 - AUC = 0.72 (0.495–0.857)
Accuracy = 0.70 -

Zhou et al. [69] HER-2

positive (IHC
3+) vs.

negative (IHC
0 or 1)

DMG
Henan Provincial
People’s Hospital,

Henan, China
244 62 * yes no 186 -

AUC = 0.787
(0.673–0.885)

Accuracy = 77.00%

Zhou et al. [62] HER-2;
Ki-67

HER-2:
positive (IHC

3+) vs.
negative (IHC

0 or 1)
Ki-67: High

expression at
>20%

PWI

The Affiliated
Huaian No. 1

People’s Hospital
of Nanjing Medical
University, China

126 5-CV yes yes 386 -

HER-2: AUC = 0.68
Accuracy = 0.60

Ki-67: AUC = 0.74
Accuracy = 0.69

* internal validation; *** temporally independent internal validation. Acronyms: human epidermal growth factor receptor 2 (HER-2), antigen Ki-67 (Ki-67), tumor protein p53 (TP-53), fluorodeoxyglucose
positron emission tomography/computed tomography (FDG-PET/CT), perfusion weighted imaging (PWI), magnetic resonance imaging (MRI), diffusion weighted imaging (DWI), digital breast tomosynthesis
(DBT), digital mammography (DMG), metabolic tumor volume (MTV), mean standardized uptake value (SUVmean), The Cancer Imaging Archive/The Cancer Genome Atlas (TCIA/TCGA), BReast invasive
CArcinoma (BRCA), total lesion glycolysis (TLG), background parenchymal enhancement (BPE), signal enhancement ratio (SER), time-to-peak (TTP), leave-one-out cross-validation (LOOCV), 3-, 5- and 10-fold
cross-validation (3-, 5- and 10-CV), area under the curve (AUC).
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3.3.2. HER-2

Ten studies focused on HER-2 status prediction based on radiomic features derived
from PWI (n = 7) [54,57–62], DMG (n = 1) [69], PET/CT (n = 1) [68], and conventional MRI
(n = 1) [64]. The term HER-2 positivity was used equivalently to an immunohistochemistry
(IHC) result of +3 in most studies, while HER-2 negativity corresponded to an IHC score of
0 or +1.

Among PWI radiomics analysis, the highest predictive performance was achieved
by Fan et al. by means of a logistic regression model based on 15 features from dynamic
contrast enhanced MRI (DCE-MRI) images (AUC = 0.95, internal validation) [59]. Conven-
tional MR features were also shown to associate with HER-2 status in [64] (accuracy of
73.6%, training cohort). In the study using PET/CT, only mean standardized uptake value
(SUVmean) and total lesion glycolysis (TLG) were independently associated with HER-2
status (p = 0.021 and p = 0.046, respectively) [68]. DMG radiomic features were employed
to predict HER-2 status in [69]. Authors reported higher prediction performance when
employing a combination of bilateral craniocaudal and mediolateral oblique view images
derived from 2D MG (AUC = 0.787, internal validation), compared to radiomic features
from each view alone.

3.3.3. Ki-67

Three studies investigated the relationship between Ki-67 expression levels and PWI
radiomics (AUC = 0.74–0.81) [56,57,62], with two of them employing pharmacokinetic
radiomic features. Authors in two of the three studies suggested that high Ki-67 expressing
tumors are associated with higher intra-tumoral heterogeneity. On the other hand, DWI
radiomics were employed in [65], achieving a final AUC of 0.72 on an internal validation
cohort. Another study combined both, PWI and DWI radiomics, to predict Ki-67 status
and reported a final AUC of 0.81 after cross-validation by means of a multi-task learning
model which was also trained to predict tumor grade [66].

The study using PET/CT could not find any radiomic features that were significantly
associated with Ki-67 expression level [68]. Another study used DBT images and showed
that a combination of the five most predictive features yielded an AUC of 0.698 for low-
versus high Ki-67 expression [67]. Liang et al. compared the utility of T1-weighted
with contrast (T1 + C) to T2-weighted (T2w) radiomics to predict Ki-67 [63]. The analysis
revealed that the T2w image-based radiomics classifier could significantly associate to Ki-67
expression on an external cohort (AUC: 0.740 (95% CI: 0.645–0.836), whereas T1 + C-based
radiomics failed for the same dataset.

Among the eight studies exploring an association of Ki-67 expression levels with
breast cancer radiomics, four studies employed a cut-off threshold of 14% [56,63,65,67], two
studies used a threshold of 20% [62,68] and the other two did not specify any cut-off value.

3.3.4. TP-53

The strongest association for breast cancer was found in PWI radiomics of 88 patients
in which 13 radiomic features predicted TP-53 alterations with an AUC of 0.886 (95% CI:
0.817–0.955) after cross-validation [55].

3.4. Lung Cancer
3.4.1. Summary

In total, 33 studies investigating radiomics and biological endpoints for lung lesions
were identified. The imaging modalities employed were CT (n = 22) [70–91], PET/CT
(n = 8) [92–99], PET (n = 2) [100,101] and MRI (n = 1) [102]. One study investigated
radiomics from metastases, while all other studies associated tissue biomarkers with
radiomics of the primary tumor. Almost half of the studies selected histological subtypes
and used adenocarcinoma patients only (n = 15), whereas the other half used a mix of
histologies. Research has predominantly focused on EGFR (n = 26) [70–86,92–97,100–102],
followed by KRAS (n = 5) [83,97,100–102], ALK (n = 3) [87,98,102], PD-L1 (n = 3) [88,89,99],



Cancers 2021, 13, 3015 18 of 45

Ki-67 (n = 2) [90,91], and TP-53 (n = 1) [84]. All studies showed a significant relationship
between EGFR and radiomic features (AUC = 0.66–0.95). Two studies that could not find
an association with KRAS status, but all remaining studies found some linkage between
radiomics and the respective biomarker (AUC = 0.66–0.99). In total, 21 studies validated
their predictive models, two of which were external validation. None of the studies
reported any radiomics quality measure, and only one of them was a registered prospective
study [83]. A summary of the findings of this section can be found in Table 4.
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Table 4. An overview of the radiomic studies included in the lung cancer section.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Aerts et al. [70] EGFR Exons 19 and
21 mutations CT

Memorial
Sloan-Kettering
Cancer Center,
New York City,
New York, US

47 - yes yes 183 - AUC = 0.91 Images

Chen et al. [102] EGFR;
KRAS; ALK mutation MR

City of Hope
Medical Center,

Duarte,
California, US

110 LOOCV yes yes 2786

Age; sex; ethnicity;
history of smoking;

histology type;
other metastatic

sites

EGFR: AUC = 0.912
Accuracy = 77.7%
ALK: AUC = 0.915
Accuracy = 86.7%

KRAS: AUC = 0.985
Accuracy = 96.7%

-

Gu et al. [91] Ki-67
High Ki-67

expression as
>50%

CT

The Third
Xiangya Hospital
of Central South

University,
Hunan, China

245 10-CV yes no 103

Lobulation sign;
spicule sign;

cavitation; cystic
necrosis; pleural

indentation; pleural
effusion

AUC = 0.782 -

Hong et al. [85] EGFR
Exons 18, 19,

20, and 21
mutations

CT

The First
Hospital of

China Medical
University,

Shenyang, China

140 61 * yes no 396 Age; sex; history of
smoking

AUC = 0.851
(0.750–0.951)

c-index = 0.835
(0.825–0.845)

-

Huang et al. [71] EGFR mutation CT

The University of
Texas MD

Anderson Cancer
Center, Houston,

Texas

46 - yes yes 89 - AUC = 0.88 Images

Jia et al. [72] EGFR Exons 19 and
21 mutations CT

Shanghai Chest
Hospital,

Shanghai, China
345 158 * no no 440 Age; sex; smoking

history; TNM stage
AUC = 0.828
(0.764–0.892) -

Jiang et al. [99] PD-L1
PD-L1 cutoff
value of 1%

and 50%
PET/CT

Shanghai
Institute of

Medical Imaging,
Zhongshan
Hospital of

Fudan University,
Shanghai, China

266 133 * yes no 1744

SUVmax; age; sex;
smoking status;

TNM stage;
histology type

AUC = 0.97 -

Jiang et al. [92] EGFR mutation PET/CT

Shanghai
Institute of

Medical Imaging,
Zhongshan
Hospital of

Fudan University,
Shanghai, China

80 10-CV yes no 512 12 semantic
features AUC = 0.953 -

Koyasu et al. [93] EGFR mutation PET/CT TCIA- NSCLC
Radiogenomics 138 10-CV yes no Not disclosed

SUVmax;
SUVmean; TLG;

MTV

AUC = 0.659
Accuracy = 81.2% Images, ROI
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Table 4. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Li et al. [94] EGFR Exons 18–24
mutations PET/CT

Tianjin Medical
University

Cancer Hospital,
Tianjin, China

115 10-CV yes no 38

SUVmax;
SUVmean;

SUVpeak; TLG;
MTV; age; sex;

smoking status;
TNM stage; lesion

location

AUC = 0.822
Accuracy = 82.65% -

Li et al. [74] EGFR mutation CT

Second Xiangya
Hospital of

Central South
University,

Hunan, China

51 10-CV yes yes 1695 - AUC = 0.83 (0.68–0.92) Images, ROI

Li et al. [75] EGFR Exon 19 and 21
mutations CT

Shanghai Chest
Hospital,

Shanghai, China
810 200 * yes no 440

DL prediction; age;
sex; smoking

history;
pathological stage

AUC = 0.834
(0.776–0.892) -

Li et al. [76] EGFR Exon 19 and 21
mutations CT

Shengjing
Hospital of

China Medical
University,

Liaoning, China

236 76 *** yes yes 580

Age; sex; tumor
grade; lobe;

smoking history;
intrapulmonary

metastasis

AUC = 0.7750–0.7925 -

Liu et al. [86] EGFR Exons 18–21
mutations CT

Tianjin Medical
University

Cancer Institute
and Hospital,
Tianjin, China

298 bootstrap yes no 209

10 tumor spatial
location features;

age; sex;
histological

subtype;
pathological stage;
smoking history

AUC = 0.709
(0.654–0.766) -

Lu et al. [73] EGFR mutation CT
The First

Hospital of Jilin
University, China

83 21 * yes yes 1025

45 categorical
variables including:
age, sex, smoking
status, CEA level,

vascular infiltration,
visceral pleural

infiltration, lymph
node metastasis,

histological
subtype,

pathological stage,
type of lesion,

tumor location,
tumor size, tumor

necrosis, lobulation,
spiculation,

vacuolization, etc.

AUC = 0.894 code
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Table 4. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Mei et al. [77] EGFR Exon 18–21
mutations CT

Shenzhen
People’s
Hospital,

Guangdong,
China

296 - yes no 94 Age; sex; smoking
status AUC = 0.75 code

Nair et al. [95] EGFR Exons 19 and
21 mutations PET/CT

McGill
University

Health Centre,
2011 and 2015

50 LOOCV yes no 326 - AUC = 0.8713 -

Rios Velazquez
et al. [83]

EGFR;
KRAS mutation CT

Profile and
Harvard-RT

(Dana-
Farber/Harvard
Cancer Center

IRB, Boston,
MA), Tianjin

(Tianjin Medical
University IRB,
Tianjin, China),

Moffitt (IRB
Moffitt Cancer
Center, Tampa,

FL)

353 352 *** yes yes 635
Age; sex; smoking
status; ethnicity;

clinical stage

EGFR: AUC = 0.75
(0.69–0.81)

Accuracy = 65.0%
KRAS: AUC = 0.75

(0.69–080)
Accuracy = 66.0%

EGFR+ vs. KRAS+: 0.86
(0.80–0.91)

Accuracy = 79.0%

Images

Shiri et al. [97] EGFR;
KRAS

EGFR: Exons
18–21

mutations
KRAS: Exon 2
codons 12 and
13 mutations

PET/CT TCIA 82 68 * yes no 109
MTV, SUVmax,

SUVpeak, SULmax,
SULpeak

EGFR: AUC = 0.82
KRAS: AUC = 0.83

Images, ROI,
code

Song et al. [87] ALK mutation CT

Peking Union
Medical College

Hospital,
Chinese

Academy of
Medical Sciences

and Peking
Union Medical

College,
November 2015
to October 2018

268 67 * yes no 1218

Age; sex; smoking
history; smoking

index; clinical stage;
distal metastasis;

pathological
invasiveness of

tumor; maximum
diameter; mean CT
attenuation; lesion
location; involved

lobe; density;
margin; cavity;

calcification;
pleural retraction

sign; pleural
effusion; pericardial

effusion; local
lymphadenopathy

AUC = 0.88 (0.77–0.94)
Accuracy = 79.0%

Images
(partially),

code
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Table 4. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Sun et al. [88] PD-L1
High PD-L1

expression as
≥ 50%

CT

The First
Affiliated

Hospital of
Soochow

University,
Suzhou City,

China

260 130 * yes yes 200

Age; sex; tumor
location; CEA level;

TNM stage;
smoking status;
histologic type;
histologic grade

AUC = 0.848 -

Tu et al. [78] EGFR Exons 18–21
mutations CT

Changzheng
Hospital, Second
Military Medical

University,
Shanghai, China

243 130 * yes yes 234

Age; sex; smoking
status; CEA level;

clinical stage;
maximum

diameter; density;
tumor location;
interface; shape;

lobulation; pleural
indentation;

spiculation; cusp
angle; spine-like
process; vacuole

sign; cavity sign; air
bronchograms;

vascular
convergence;

pleura thickening;
pleural effusion;

lymphadenopathy

AUC = 0.818
(0.751–0885)

Accuracy = 75.8%
-

Wang et al. [84] EGFR; TP-53 mutation CT

Nanjing Medical
University

Affiliated Cancer
Hospital,

Nanjing, China

41 20 * yes no 718

78 clinical and
pathological

features (age, sex,
smoking status,

histological
subtypes,

pathological stages,
etc.)

EGFR: AUC = 0.697
TP-53: AUC = 0.656 code

Yang et al. [79] EGFR Exons 18–21
mutations CT

The First
Affiliated

Hospital of
Guangzhou

Medical
University,

Guangzhou,
China

306 161 *** yes no 1063

Age; sex; smoking
history; CT pattern;
histopathological

subtype

AUC = 0.779
(0.702–0.856) code
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Table 4. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Yip et al. [100] EGFR;
KRAS

EGFR: Exons
18–24

mutations
KRAS: Exons
2–3 mutations

PET

Dana-Farber
Cancer Institute,

Brigham and
Women’s

Hospital, and
Harvard Medical
School, Boston,
Massachusetts

348 bootstrap yes no 68
MTV, SUVmax,

SUVpeak, SUVmean,
and SUVtot

EGFR: AUC = 0.67
KRAS:-

EGFR+ vs. KRAS+:
AUC = 0.65

-

Yip et al. [101] EGFR;
KRAS mutation PET

Dana-Farber
Cancer Institute,

Brigham and
Women’s

Hospital, and
Harvard Medical
School, Boston,
Massachusetts

348 - yes yes 66 - EGFR: AUC = 0.66
KRAS:- -

Yoon et al. [89] PD-L1
High PD-L1

expression as
≥50%

CT

Severance
Hospital, Yonsei

University
College of

Medicine, Seoul,
South Korea

153 bootstrap yes yes 58

Age; sex; smoking
history; stage;

tumor size; tumor
location; tumor

type; tumor margin;
internal

characteristics of
tumor; external

characteristics of
tumor; lung

metastasis; pleural
effusion; pleural

nodularity;
pericardial effusion;
lymphadenopathy

c-index = 0.646 -

Yoon et al. [98] ALK/ROS1/RET mutation PET/CT

Samsung
Medical Center,
Sungkyunkwan

University
School of

Medicine, Seoul,
South Korea

128 10-CV yes yes 50

Age; sex; smoking
history; stage;

SUVmax; tumor
solidity; tumor size;

tumor location;
lymphangitic

metastasis; pleural
effusion

Sensitivity = 0.73
Specificity = 0.70 -

Zhang et al. [96] EGFR Exons 18–21
mutations PET/CT

The Fourth
Hospital of Hebei

Medical
University,

Hebei, China

175 73 * yes no 92

Age; sex; smoking
history;

pathological stage;
CEA level

AUC = 0.87 (0.79–0.95) -
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Table 4. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Zhang et al. [80] EGFR Exons 18–21
mutations CT

West China
Hospital,

Sichuan, China
140 40 * yes no 485 Age; sex; smoking

status
AUC = 0.8725

Accuracy = 72.5% -

Zhao et al. [82] EGFR Exons 18–21
mutations CT

Huadong
Hospital

Affiliated to
Fudan University,
Shanghai, China;

TCIA

464
nodules

115
nodules

*
37

nodules
**

yes yes 475 DL prediction AUC = 0.76 Images, ROI

Zhao et al. [81] EGFR Exon 19 and 21
mutations CT

Second Xiangya
Hospital, Central
South University,
Changsha, China;

Huadong
Hospital

Affiliated to
Fudan University,
Shanghai, China

322 315 * yes yes 475

Age; sex; smoking
status; tumor size;

tumor location;
histological

subtype; TNM
stage; tumor

solidity; tumor
margin; tumor type;
pleural retraction;

bubble lucency;
vascular change;

bronchiole change;
lobulation;
spiculation;
peripheral

emphysema;
peripheral fibrosis;

pleural effusion

AUC = 0.734 -

Zhou et al. [90] Ki-67
High Ki-67

expression as >
40%

CT

Tianjin Medical
University

Cancer Institute
and Hospital,
Tianjin, China

110 - yes no 105

Age; sex; smoking
history; histological

subtype; TNM
stage

AUC = 0.77 code

* internal validation; ** external validation; *** temporally independent internal validation. Acronyms: anaplastic lymphoma kinase (ALK), epidermal growth factor (EGFR), antigen Ki-67 (Ki-67), kirsten rat
sarcoma viral oncogene homolog (KRAS), programmed cell death ligand 1 (PD-L1), computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), max, mean, peak and
total standardized uptake value (SUVmax, SUVmean, SUVpeak, SUVtot), total lesion glycolysis (TLG), metabolic tumor volume (MTV), max and peak standardized uptake normalized to lean body mass
(SULmax, SULpeak), carcino-embryogenic antigen (CEA), tumor, node and metastasis (TNM), non-small cell lung cancer (NSCLC), The Cancer Imaging Archive (TCIA), deep learning (DL), leave-one-out
cross-validation (LOOCV), 3-, 5- and 10-fold cross-validation (3-, 5- and 10-CV), area under the curve (AUC).
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3.4.2. EGFR

The power of CT radiomics to predict EGFR mutations status strongly varied among
the studies using validation (AUC = 0.69–0.851) [72–76,78–86]. Across CT radiomics
studies, relevant features for EGFR mutation status prediction were associated with tex-
ture heterogeneity, suggesting that mutated tumors were more heterogeneous. Further,
two studies observed an association of CT radiomics with EGFR mutation subtypes,
i.e., differentiation subtype to wildtype (AUC = 0.655–0.727) [76,77] and within subtypes
(AUC = 0.708–0.87) [81,95]. While PET radiomics also showed potential for EGFR mutation
status prediction (AUC = 0.67, internal validation) [100,101], combining CT and PET were
reported similar or better compared to single modal radiomics models [92–96]. Two studies
examined radiomics at different time points other than pre-treatment [70,71]. In contrast
to three-week post-treatment CT radiomics, one delta radiomic feature (i.e., change of
feature value over time) was found predictive for EGFR mutation status (AUC = 0.74,
weakly corrected to delta volume and diameter) [70]. Multiple studies were found using
contrast-enhanced CT (CE CT) [74,84,85], non-CE CT imaging [70,72,73,77–79,81,82] or a
mix of thereof [75,83]. In a recent study, it was shown that a model based on CE CT features
did not significantly performed different to a model based non-CE CT for EGFR mutation
status prediction [85].

3.4.3. KRAS

CT radiomics was weakly predictive for KRAS mutation status in 763 lung adenocarci-
noma patients from four institutions (AUC = 0.63, temporally independent validation) [83].
Authors suggested that KRAS mutant tumors were more homogeneous. PET radiomics was
reported non-predictive for KRAS mutation status (AUC < 0.56, no validation) [100,101].
Radiomics was further shown to better differentiate between EGFR and KRAS mutated
tumors in CT (AUC = 0.80, internal validation) [83] than in PET (AUC = 0.65) [100].

3.4.4. ALK

For ALK mutation status, CT radiomics showed an AUC of 0.80 on a temporally
independent validation cohort [87]. Selected radiomic features inferred that ALK mutated
tumors were associated with denser tumors. One study observed that PET-based radiomics
combined with tumor stage and age was able to differentiate ALK/ROS1/RET fusion-
positive and fusion negative tumors (sensitivity = 0.73, specificity = 0.70) [98]. A study on
110 patients evaluated if MR radiomics from brain metastasis originated from lung cancer
was shown to associate with EGFR, ALK and KRAS mutations and reported excellent
model performances for all three tissue biomarkers (AUC > 0.9, LOOCV) [102].

3.4.5. PD-L1

PD-L1 expression levels were observed to associate with CT radiomic features in
two studies (AUC = 0.661 [89] and AUC = 0.848 [88], internal validations), indicating that
dense and homogeneous tumors (without ground-glass opacity, necrosis, cavitation or
calcification) were more likely PD-L1 positive in lung adenocarcinoma [89]. Radiomics from
PET/CT imaging was found to be similarly strongly predictive as CT but outperformed
PET in PD-L1 expression level prediction for 399 stage I-IV non-small cell lung cancer
(NSCLC) patients (AUC > 0.8, internal validation) [99].

3.4.6. Ki-67

CT radiomic features were found significantly predictive for Ki-67 in two studies (best
performing feature: inverse variance, AUC = 0.77) [90,91].

3.4.7. TP-53

The association between CT radiomic features and TP-53 mutation was studied in [84].
Authors reported a final AUC of 0.604 on an internal validation cohort.
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3.5. Gastrointestinal Cancer
3.5.1. Summary

A total of ten studies addressing the relationship of radiomics and biological tissue
markers in gastrointestinal cancers were identified. The imaging modalities used were CT
(n = 6) [103–107], combined PET/CT (n = 2) [108,109], MRI (n = 2) [110,111] and MRI + PWI
+ DWI (n = 1) [112]. The tumor types analyzed belong to gastric cancers (n = 2) [103,104],
rectal cancers (n = 3) [110–112], pancreatic cancers (n = 2) [105,108], colorectal cancer (CRC)
and colorectal liver metastases (n = 3) [106,107,109]. The most frequent biomarker analyzed
was KRAS mutation (n = 7) [106–112] followed by TP-53 mutation (n = 2) [108,109], Ki-67
(n = 3) [104,105,112] and HER-2 expression status (n = 2) [103,112]. One group studied
BRAF (n = 1) together with KRAS and NRAS as one mutation signature [106]. All except
one study on TP-53 showed a significant correlation between the respective biomarker
and radiomic features (AUC = 0.65–0.88). All studies were set up retrospectively and used
internal data. Two research groups validated their results on external datasets. None of
the studies reported any radiomics quality measure and none of them were registered
prospective studies. A summary of the findings of this section can be found in Table 5.



Cancers 2021, 13, 3015 27 of 45

Table 5. An overview of the radiomic studies included in the gastrointestinal cancer section.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Chen et al. [109] KRAS; TP-53

KRAS: Exon 2
codons 12 and
13 mutation
TP-53: Exons

2–11 mutations

FDG-
PET/CT

China Medical
University
Hospital,

Taichung, Taiwan

74 - yes no 56

SUVmax, SUVpeak,
SUVtot, MTV,

TLGmax, TLGpeak,
and TLGmean

KRAS: AUC = 0.79
Accuracy = 77%

TP-53: AUC = 0.71
Accuracy = 62%

-

Cui et al. [110] KRAS KRAS: Exons
2–4 mutations MRI

Shanxi Province
Cancer Hospital,
Taiyuan, China;

Xinhua Hospital,
Shanghai, China

213 91 *
86 ** yes no 960 -

AUC * = 0.682
(0.569–0.794)

AUC ** = 0.714
(0.602–0.827)

-

Li et al. [103] HER-2

positive
(HER-2/CEP17

≥ 2) vs.
negative

(HER-2/CEP17
< 2)

CT

Guangdong
Provincial
People’s
Hospital,

Guangzhou,
China

94 40 * yes yes 12,410 CEA level AUC = 0.771
(0.607−0.934) -

Liang et al. [105] Ki-67 mutation CT

The First
Affiliated
Hospital,

Hangzhou,
Zhejiang, China;
Second Affiliated

Hospital,
Hangzhou,

Zhejiang, China

86 51 ** yes no 467 Clinical stage Significant correlation
(p < 0.0001) -

Lim et al. [108] KRAS; TP-53 mutation FDG-
PET/CT

Samsung
Medical Center,
Sungkyunkwan

University
School of
Medicine,

Gangnam-gu,
Seoul, South

Korea

48 - no yes 27

SUVmax,
SUVmean, SUVstd,
SUVkurt, SUVskew,
SUVent, MTV, TLG

KRAS: AUC = 0.829
TP-53:-

Code
(partially)

Meng et al. [112] Ki-67, KRAS,
HER-2

KRAS: exon 2
codons 12 and
13 mutation
Ki-67: High

expression at
>40%

HER-2:

MRI, DWI,
PWI

Sixth Affiliated
Hospital of Sun

Yat-sen
University.

Guangzhou,
China

197 148 *** yes yes 2534 -

HER-2: AUC = 0.696
(0.610–0.782)

Accuracy = 0.621
Ki-67: AUC = 0.699

(0.611–0.788)
Accuracy = 0.582

KRAS: AUC = 0.651
(0.539–0.763)

Accuracy = 0.616

-
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Table 5. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Oh et al. [111] KRAS

A59T, G12A,
G12C, G12D,
G12F, G12R,
G12S, G12V,
G13D, G61H,

and Q61
mutation

MRI

Research
Institute and

Hospital,
National Cancer
Center, Goyang,

Korea

60 - no no 44 - AUC = 0.884
Accuracy = 81.7% -

Wu et al. [107] KRAS Exons 2–4
mutations CT

South China
University of
Technology,
Guangzhou,
Guangdong

Province, China

279 119 *** yes yes 2634 2208 DL features c-index = 0.832
(0.762–0.905) -

Yang et al. [106] KRAS;
BRAF

KRAS: Exons
2–4 mutations
BRAF: v600E

mutation

CT

National Cancer
Center/Cancer

Hospital,
Chinese

Academy of
Medical Sciences

and Peking
Union Medical
College, Beijing,

China

61 57 *** yes yes 346 -

AUC = 0.829
(0.718–0.939)

Accuracy = 0.750
(0.623–0.845)

-

Zhang et al. [104] Ki-67
High

expression as
≥ 10%

CT

Renji Hospital,
Huangpu,

Shanghai, China;
Zhongshan

Hospital,
Shanghai, China;

Sir Run Shaw
Hospital,

Hangzhou,
Zhejiang, China

and First
Affiliated

Hospital of
Wenzhou
Medical

University,
Wenzhou, China

148 41 *
150 ** yes yes 833 Tumor size

AUC * = 0.828
(0.681–0.974)

AUC ** = 0.784
(0.701–0.868)

Accuracy * = 68.29%
Accuracy ** = 73.33%

Images/data
on request

* internal validation; ** external validation; *** temporally independent internal validation. Acronyms: v-raf murine sarcoma viral oncogene homolog B1 (BRAF), antigen Ki-67 (Ki-67), kirsten rat sarcoma viral
oncogene homolog (KRAS), tumor protein p53 (TP-53), fluorodeoxyglucose positron emission tomography (FDG-PET), computed tomography (CT), perfusion weighted imaging (PWI), magnetic resonance
imaging (MRI), diffusion weighted imaging (DWI), carcinoembryonic antigen (CEA), metabolic tumor volume (MTV), max, mean, peak, standard deviation, skewness, kurtosis, entropy and total standardized
uptake value (SUVmax, SUVmean, SUVpeak, SUVstd, SUVskew, SUVkurt, SUVent, SUVtot), max, peak and min of total lesion glycolysis (TLGmax, TLGmin, TLGpeak), deep learning (DL), area under the curve
(AUC), chromosome enumeration probe 17 (CEP17).



Cancers 2021, 13, 3015 29 of 45

3.5.2. KRAS

The association of KRAS mutations with radiomic signatures was the most frequently
assessed in gastrointestinal cancer. The strongest relationship was found in CE CT of CRC
patients, where the mutation signature KRAS/BRAF/NRAS was significantly associated
with three GLCM features (energy, maximum probability and sum average), achieving a
final AUC of 0.829 on an internal validation cohort [106].

One group focused on the association of KRAS mutation to FDG-PET radiomics of
pancreatic ductal adenocarcinoma patients [108], concluding that low-intensity textural
features were significantly associated with KRAS gene mutational status (AUC = 0.794–0.82,
training). Authors suggested that KRAS-mutated genes were associated with higher intra-
tumoral heterogeneity levels. The relationship between FDG-PET radiomics and KRAS
mutation was also studied for CRC patients in [109]. KRAS-mutated tumors presented an
increased value at the 25th percentile of maximal SUV (SUVmax) of the metabolic tumor
volume (MTV) as well as for the GLCM-derived contrast (AUC = 0.73–0.79, training).

Another study evaluated the association between KRAS mutation and CT imaging
features, including hand-crafted and deep learning radiomics, of CRC patients [107]. The
combined model achieved the highest performance (c-index = 0.831 (95% CI, 0.762–0.905),
external validation), when compared to radiomics-alone and deep learning radiomics-
alone models.

Two studies evaluated the association between T2w MR radiomics and KRAS muta-
tional status in rectal cancer. In the first one, authors reported a final AUC of 0.884 on the
training cohort by means of a decision tree based on three textural features [111]. In the sec-
ond study, seven features were shown to associate to KRAS mutation status [110]. The best
prediction model was obtained with SVM classifiers (AUC = 0.714 (95% CI, 0.602–0.827),
external validation). Moreover, wavelet features derived from MR, PWI and DWI were
associated with KRAS mutation in rectal cancer patients in [112], achieving a final AUC of
0.651 (95% CI, 0.539–0.763) on a temporally independent validation cohort.

3.5.3. TP-53

One group found that an increased value of short-run low gray-level emphasis derived
from the GLRLM in FDG-PET/CT was predictive for TP-53 mutation in CRC patients
(AUC = 0.71, training). Authors also reported higher heterogeneity and lower PET signal
values in TP-53-mutant cases [109]. On the other hand, one study carried out with FDG-
PET/CT data from pancreatic ductal adenocarcinoma patients did not see a significant
association between genetic alterations in TP-53 status and the radiomic features extracted
from the PET images [108].

3.5.4. HER-2

The association of HER-2 status and CT radiomics in gastric cancer patients was inves-
tigated in [103]. Authors reported a final AUC of 0.771 (95% CI, 0.607–0.934) on an internal
validation cohort when employing a nomogram based on seven wavelet features and
patient carcino-embryogenic antigen (CEA) level. One study extracted radiomic features
from pre-operative MR images of patients suffering from rectal cancer, achieving a final
AUC of 0.696 (95% CI, 0.610–0.782) on a temporally independent validation cohort [112].

3.5.5. Ki-67

Three studies investigated the potential association of Ki-67 index and radiomic
signatures [104,105,112]. A CE CT-based radiomics nomogram including six radiomic
features for the gastrointestinal stromal tumors was significantly associated with Ki-67
(AUC = 0.754, external validation) [104]. Another retrospective, multicenter study in CE CT
focused on pancreatic neuroendocrine tumors showed a significant association between Ki-
67 and an eight-feature-combined radiomics [105]. The third study analyzed a combination
of MR, PWI and DWI radiomics to predict Ki-67 expression, with a final AUC of 0.699 on a
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temporally independent cohort [112]. Different Ki-67 expression cut-off values were used
on each study, ranging from 10 to 40%.

3.5.6. BRAF

As explained in the KRAS biomarker subsection, one study investigated the relation
between CE CT radiomics and the mutation signature KRAS/NRAS/BRAF together, which
reported a final AUC of 0.829 on a temporally independent cohort [106].

3.6. Liver Cancer
3.6.1. Summary

Four studies were found which associated radiomics and tissue biomarkers in liver
cancer patients, using either MR with contrast agents (n = 2) or US (n = 2). The most
common tumor type was hepatocellular carcinoma (HCC, n = 3) [113–115] followed by
cholangiocarcinoma (CCA, n = 1) [116]. Three tissue biomarkers were investigated: Ki-67
(n = 3), PD-L1 (n = 2) and VEGF (n = 1) and all were shown to be significantly correlated
to radiomics (AUC = 0.85–0.97). All studies employed a dataset limited to a single center;
one study separated the dataset into a training and a validation cohort [116]. None of the
studies reported any radiomics quality measure and only one of them was a registered
prospective study [114]. A summary of the findings of this section can be found in Table 6.



Cancers 2021, 13, 3015 31 of 45

Table 6. An overview of the radiomic studies included in the liver cancer section.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Hectors et al.
[113] PD-L1 expression MRI, DWI

Icahn School of
Medicine at
Mount Sinai,

New York, USA

48 - no no 196

Infiltrative pattern;
presence of

multiple lesions;
extra-nodular

growth;
macrovascular

invasion; tumor
necrosis; tumor

hemorrhage; tumor
fat content; mosaic

appearance;
internal arteries;

capsule; T2
hyper-intensity;

ADC
hypo-intensity;

wash-in/wash-out;
hepatobiliary phase

hypo-intensity;
ADCmin;

ADCmean; ER in
EA, LA, PV, LV and

hepatobiliary
phases; tumor size

Significant correlation (p
< 0.029) -

Peng et al. [116] Ki-67; VEGF

Ki-67: High
expression at

≥10%
VEGF:

expression

US

First Affiliated
Hospital of

Guangxi Medical
University,
Nanning,

Guangxi, China

Ki-67:
63

VEGF:
39

Ki-67:
27 *

VEGF:
18 *

yes no 1,076 -

Ki-67: AUC = 0.848
Accuracy = 0.889

VEGF: AUC = 0.864
Accuracy = 0.833

-

Yao et al. [115] Ki-67; PD-L1

Ki-67: High
expression at

≥25%
PD-L1:

expression

US

Zhongshan
Hospital, Fudan

University,
Shanghai, China

47 LOOCV yes no -
2560

dictionary-based
image features

PD-L1: AUC = 0.97
(0.89–0.98)

Accuracy = 92%
Ki-67: AUC = 0.94

(0.87–0.97)
Accuracy = 93%

Images on
request
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Table 6. Cont.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Ye et al. [114] Ki-67
High

expression at
≥15%

MRI
West China

Hospital,
Sichuan, China

89 10-CV yes no 396

Serum level of
alpha-fetoprotein;
hepatitis B surface
antigen; hepatitis C

antibody;
Barcelona-Clinic

Liver Cancer
classification;

cirrhosis;
multifocality;
arterial phase

hyper-
enhancement;

washout, capsule
integrity, internal

arteries, tumor
margin, enhancing

capsule,
hepato-biliary

phase
hypo-intensity

c-index: 0.936
(0.863–0.977) -

* internal validation. Acronyms: antigen Ki-67 (Ki-67), programmed cell death ligand 1 (PD-L1), vascular endothelial growth factor (VEGF), magnetic resonance imaging (MRI), diffusion weighted imaging
(DWI), ultrasound (US), apparent diffusion coefficient (ADC), enhancement ratio (ER), early arterial (EA), late arterial (LA), early venous (EV), late venous (LV), portal vein (PV), area under the curve (AUC),
leave-one-out cross-validation (LOOCV), 10-fold cross-validation (10-CV).
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3.6.2. PD-L1

The best predictive performance overall for liver studies was obtained for PD-L1 in
US images of HCC patients (AUC = 0.97, cross-validation) [115]. The expression of PD-L1
was also predicted from MRI images of HCC, where the best association was found with
the texture feature ADC variance. This may be interpreted as a correspondence between
higher heterogeneity and higher PD-L1 expression levels [113].

3.6.3. Ki-67

The best AUC for Ki-67 expression prediction in HCC was obtained in [115] by means
of a SVM model based on US radiomic features (AUC = 0.94, cross-validation). Slightly
worse performances (AUC = 0.804, internal validation) were obtained with US wavelet
features for CCA patients in [116]. Another group employed texture features from MR
images of HCC patients [114]. Authors combined 13 features from T2W, pre-contrast (PRE),
arterial phase (AP) and portal venous phase (PV) scans into a multiparametric texture
signature which achieve a c-index of 0.878 after cross-validation. The features included
suggested that higher intra-tumor heterogeneity correlates to higher expression of Ki-67.
The latter may reflect the cell proliferation status and therefore tumor aggressiveness.

3.6.4. VEGF

The relationship between VEGF expression and US radiomic features was analyzed
only in CCA patients [116]. Wavelet features were found to be the most relevant feature
type to predict the biomarker expression (AUC = 0.864, internal validation). These were
associated with the heterogeneity of the tumor volume by the authors.

3.7. Other Cancers
3.7.1. Summary

In total, five studies were found which investigated the correlation between radiomics
and molecular markers in other entities not included in the sections above: melanoma
(n = 1) [117], thyroid cancer (n = 1) [118], head and neck cancer (n = 2) [119,120], adrenal
gland carcinoma (n = 1) [121]. All studies showed a significant correlation between the
biomarker and radiomics (AUC = 0.62–0.78). None of the studies used external validation.
None of the studies reported any radiomics quality measure, nor were they registered
prospective studies. A summary of the findings of this section can be found in Table 7.
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Table 7. An overview of the radiomic studies included in the other cancers section.

Study Biomarker Alteration Modality Dataset Origin Training Validation Feature
Reduction

Feature
Robustness

# Radiomic
Features

Additional
Features

Predictive Power
Measure = Mean (95%
Confidence Interval)

Open Source

Ahmed et al.
[121] Ki-67

High
expression at

≥10%
CT

MD Anderson
Cancer Center,

Texas, US
53 - no no 106 - AUC = 0.78 -

Chen et al. [120]
PD-L1;
EGFR;

VEGF; Ki-67

PD-L1: High
expression at
≥5% and ≥1%

EGFR:
expression

VEGF:
expression

Ki-67:
expression

FDG-PET

China Medical
University,

Taichung City,
Taiwan

53 - no no 41

SUVmax, MTV,
TLGmean; smoking

history; tumor
origin; TNM stage

PD-L1: AUC = 0.24 1;
EGFR: no correlation.

VEGF: Correlation (p <
0.05);

Ki-67: Correlation (p <
0.05)

-

Saadani et al.
[117] BRAF v600E

mutation
FDG-

PET/CT

Netherlands
Cancer Institute,
Amsterdam, The

Netherlands

70 10-CV yes no 480

SUVmax;
SUVmean;

SUVpeak; MTV;
TLG; longest

diameter

AUC = 0.62 -

Yoon et al. [118] BRAF v600E
mutation US

Severance
Hospital, Yonsei

University
College of

Medicine, Seoul,
South Korea

387 140 *** yes no 730 Age; tumor size;
sex;

AUC = 0.629
(0.516–0.742) -

Zhu et al. [119] TP-53 mutation CT TCIA/TCGA-
HNSCC 126 5-CV yes yes 187 - AUC = 0.641 Images, ROI

*** temporally independent internal validation; 1 negative correlation. Acronyms: v-raf murine sarcoma viral oncogene homolog B1 (BRAF), epidermal growth factor (EGFR), antigen Ki-67, kirsten rat sarcoma
viral oncogene homolog (KRAS), programmed cell death ligand 1 (PD-L1), tumor protein p53 (TP-53), vascular endothelial growth factor (VEGF), computed tomography (CT), fluorodeoxyglucose positron
emission tomography (FDG-PET), ultrasound (US), max, mean and peak standardized uptake value (SUVmax, SUVmean, SUVpeak), mean total lesion glycolysis (TLGmean), metabolic tumor volume (MTV),
tumor, node and metastasis (TNM), 5- and 10- fold cross-validation (5-,10-CV), area under the curve (AUC).



Cancers 2021, 13, 3015 35 of 45

3.7.2. Details

One study explored the use of FDG-PET/CT radiomics to predict BRAFv600 mutation
status in melanoma patients achieving a final AUC of 0.62 after 10-CV [117]. Another study
investigated the use of US radiomics to predict BRAFv600 mutation of thyroid cancer pa-
tients with a limited predictive performance on a temporally independent validation cohort
(c-statistics = 0.629) [118]. Two studies explored the association of different biomarkers and
imaging features in head and neck squamous cell carcinoma patients. One of them reported
a moderate predictive power of CT radiomics for TP-53 mutation prediction (AUC = 0.641,
5-CV) [119], while the other study reported a limited linkage between PD-L1, VEGF, Ki-67
and EGFR expression and FDG-PET radiomics on their training cohort [120]. The latter also
showed a positive correlation between PD-L1 and Ki-67 expression. The GLCM-derived
feature of correlation was found to be a negative predictor of PD-L1 expression, while it
was positively associated with VEGF expression. One study investigated the efficacy of
CE CT radiomics to predict Ki-67 expression in adrenal gland carcinoma patients [121].
The authors reported final AUCs of 0.7–0.78 on the training cohort after using logistic
regression models based on two shape features, suggesting that high Ki-67 expression is
associated with flatter and more elongated tumors.

3.8. Feature Interpretation

In Tables 8–10, we gathered those radiomic features employed in the best performing
models for each combination of biomarker and tumor site, for MRI, CT and PET, respec-
tively. Detailed tables including feature names and additional modalities (e.g., US or
advanced MRI sequences) are shown in Supplementary Tables S1–S4. For seven studies,
no interpretation was possible due to lack of information.
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Table 8. Interpretation of the best performing models on the training dataset for T2-weighted magnetic resonance imaging (MRI). Acronyms: central nervous system (CNS), gastrointestinal
(GI), epidermal growth factor (EGFR), isocitrate dehydrogenase (IDH), kirsten rat sarcoma viral oncogene homolog (KRAS), tumor protein p53 (TP-53), vascular endothelial growth
factor (VEGF).

MRI EGFR Ki-67 KRAS TP-53 VEGF IDH

CNS
EGFR+ more

heterogeneous, less
spherical [32]

Ki-67 high expression
more heterogeneous [34]

TP-53+ higher intensity
[36]

VEGF+ more
heterogeneous [37]

IDH+ more
homogeneous, more
regularly shaped [21]

GI KRAS+ more
heterogeneous [110]

Liver Ki-67 high expression
more heterogeneous [114]

Table 9. Interpretation of the best performing models on the training dataset for computer tomography (CT). Acronyms: head and neck cancer (HNC), gastrointestinal (GI), anaplastic
lymphoma kinase (ALK), v-raf murine sarcoma viral oncogene homolog B1 (BRAF), epidermal growth factor (EGFR), human epidermal growth factor receptor 2 (HER-2), kirsten rat
sarcoma viral oncogene homolog (KRAS), programmed cell death ligand 1 (PD-L1), tumor protein p53 (TP-53).

CT EGFR Ki-67 KRAS/BRAF TP-53 HER-2 ALK PD-L1

HNC Ki-67 high expression
more heterogeneous [120]

TP-53+ more
heterogeneous [119]

Lung
EGFR+ more

heterogeneous,
smaller [83]

Ki-67 high expression
more homogeneous, more

elongated [90]

KRAS+ more
homogeneous [83]

ALK+ higher density
[87]

PD-L1+ more
homogeneous [89]

GI Ki-67 high expression
more heterogeneous [104]

KRAS/BRAF+ more
heterogeneous [106]

HER-2+ more
heterogeneous [103]
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Table 10. Interpretation of the best performing models on the training dataset for positron emission tomography (PET). Acronyms: head and neck cancer (HNC), central nervous system
(CNS), gastrointestinal (GI), epidermal growth factor (EGFR), isocitrate dehydrogenase (IDH), kirsten rat sarcoma viral oncogene homolog (KRAS), programmed cell death ligand 1
(PD-L1), tumor protein p53 (TP-53), vascular endothelial growth factor (VEGF).

PET EGFR Ki-67 KRAS TP-53 VEGF IDH PD-L1

CNS
IDH+ more

homogeneous, less
spherical [50]

HNC VEGF+ more
heterogeneous [120]

PD-L1+ more
heterogeneous [120]

Lung
EGFR+ more

heterogeneous, more
compact [100]

GI KRAS+ lower
intensity [108]

TP-53+ more
heterogeneous [109]

Adrenal gland
carcinoma

Ki-67 high expression
more elongated and

flatter [121]
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Oftentimes, dysregulation of one specific biomarker led to similar tumor phenotype
across entities and imaging modalities. This was the case for EGFR-mutant tumors, which
exhibited greater textural heterogeneity in CNS MRI, PWI and DWI, as well as in lung CT
and PET. Similarly, alteration of TP-53 status was associated with increased heterogeneity
in CT of HN and PET of colorectal cancer. IDH-mutant tumors were reported to have
greater textural homogeneity in MRI, DWI, PWI, DKI and FDG-PET in CNS. High Ki-67-
expressing tumors were reported to be more homogenous in CT for lung cancer but more
heterogeneous for gynecological tumors and head and neck tumors. KRAS+ was shown to
be more homogeneous for CT in lung, but more heterogeneous for gastrointestinal cancer.

3.9. Results per Biomarker

An overview of the analyzed studies per biomarker can be found in Tables S5–S14 in
the Supplementary Materials.

4. Discussion

In recent decades, extensive genomic studies have leveraged our understanding of
cancer biology and pathophysiology. The identification of key genetic alterations that
drive oncogenesis and their subsequent molecular markers has led to a more accurate
and comprehensive patient-specific treatment planning and adaptation [2]. Furthermore,
the field of radiomics, i.e., the quantitative, high-throughput analysis of medical images,
has emerged as a potential diagnostic, prognostic and predictive tool in clinical decision-
support systems. This is of particular interest in cancer treatment, where medical imaging is
routinely performed with diagnostic and monitoring purposes. Nonetheless, the reliability,
clinical applicability and biological meaning of radiomics models and imaging biomarkers
has to be extensively validated before they can be incorporated into clinical routine [17].
Hence, the primary objective of this review was to identify key radiomic features associated
with specific tumor molecular markers through an electronic search of peer-reviewed
journal publications.

For this purpose, we limited our search to ten cancer biological endpoints commonly
investigated and used in clinical practice, which apply to a broad range of cancer types.
Other, even though valid, biomarkers, such as methylation status or indicators for virus-
born cancers were deliberately excluded as their origin and/or mechanism leading to
malignant transformation of healthy cells is not trivially comparable. Other examples of
biomarkers excluded in this review are the loss of tumor suppressors in cancer such as
breast cancer genes 1 and 2 (BRCA-1, BRCA-2), RNAs, proteins such as prostate-specific
antigen (PSA) or circulating tumor DNA (ct-DNA) [1]. By focusing on this compact set
of biomarkers, we aimed to summarize the reported associations between radiomics and
signature molecules and eventually contribute to the promotion of radiomics as a valid
diagnostic, prognostic and predictive tool in cancer treatment. We are aware that the
selection of biomarkers is not complete but due to the sheer number of biomarkers and
the variability thereof, the search had to be narrowed in order to perform a meaningful
systematic review.

Most of the studies included in this review reported some association between the
selected biomarkers and radiomics, suggesting that mutated and non-mutated tumors have
different growth patterns that are identifiable in high-throughput imaging. The association
of textural, intensity, shape, size and wavelet image features with tumor biomarkers entails
an advance in feature interpretability, as shown in Tables 8–10, which brings radiomics
closer to its application in a clinical setting.

In total, 96 out of 104 studies found a significant relationship between at least one
of the studied biomarkers and one or more radiomic features. However, only 7 studies
validated their models on external cohorts, 11 studies on temporally independent cohorts
and 14 studies did not use any form of validation. Additionally, only 7 out of 104 included
a prospectively collected dataset, which is necessary to confirm the clinical validity and
usefulness of any radiomics signature. Along these lines, we believe greater effort should
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be made to employ larger, multi-institutional cohorts, either by means of new data-sharing
agreements among research groups or through distributed learning. The feasibility of
the latter has already been shown in a number of studies and entails new possibilities for
training reliable radiomics models [122,123]. Furthermore, only 37 studies performed some
type of robustness analysis of the selected features. Different image acquisition parameters,
scanner models, pre-processing and region of interest segmentation techniques among
other factors have been shown to significantly affect feature robustness and results repro-
ducibility, and should be evaluated in greater detail [124–126]. Moreover, we would like
to encourage projects such as the image biomarker standardization initiative (IBSI) [127],
which works towards the homogenization of image feature extraction and analysis.

Another factor that hindered results interpretation and studies comparison was the
great variability in biomarker expression levels employed as cut-offs to stratify patients.
Currently, there exist a lack of standardization of immunohistochemistry techniques for
biomarker staining and scoring systems, leading to moderate intra/inter-laboratory and
intra/inter-observer variabilities [1,128]. This could potentially explain the observed
phenotype disagreement across different entities and modalities for Ki-67, PD-L1 and
KRAS biomarkers, as described in Tables 8–10. However, as previously explained, it
should be noted that these studies were included on the interpretation table based on their
performance on the training set, and, for the vast majority, external validation remains to
be accomplished.

In an attempt to standardize the clinical utility evaluation of radiomics studies, as well
as to increase transparency and minimize risk of bias, two rigorous reporting guidelines, the
TRIPOD [17] and the RQS [4] scores, have been devised. In Tables 2–7, we gathered some of
the most relevant reporting criteria such as the type of validation used, the performance of
feature reduction and robustness analysis, the use of discrimination statistics, the inclusion
of non-radiomic features and the public availability of the code and/or data. However, none
of the studies included in this review followed explicitly TRIPOD or RQS guidelines. We
would like to encourage the use of such guidelines as they provide a common framework to
compare state-of-the-art results in radiomics and bring closer its incorporation into clinical
decision support-systems.

5. Conclusions

In summary, radiomics from different modalities and cancer entities is a promising
tool for tumor biology assessment. Nevertheless, a large majority of studies included in
this review only employed internal validation datasets or bootstrap and cross-validation
techniques to assess model performance. Thus, further multi-center, prospective studies
are required to validate the reported outcomes. Moreover, none of the studies followed
any reporting or quality assurance protocols. Hence, we would like to encourage the
employment of reporting guidelines such as TRIPOD and RQS scores, as well as the use of
IBSI-standardized radiomics software. As a closing remark, we would like to emphasize
the utmost importance of transparency to ensure the reproducibility of radiomics studies.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13123015/s1, List S1: Queries employed in the PubMed search, List S2. PRISMA
Checklist, Table S1: Feature interpretation for ALK, BRAF and EGFR, Table S2: Feature interpretation
for HER-2, IDH and Ki-67, Table S3: Feature interpretation for KRAS, KRAS/BRAF and PD-L1,
Table S4: Feature interpretation for TP-53 and VEGF, Table S5: An overview of the radiomic studies
included for IDH biomarker, Table S6: An overview of the radiomic studies included for EGFR
biomarker, Table S7: An overview of the radiomic studies included for VEGF biomarker, Table S8:
An overview of the radiomic studies included for HER-2 biomarker, Table S9: An overview of the
radiomic studies included for ALK biomarker, Table S10: An overview of the radiomic studies
included for BRAF biomarker, Table S11: An overview of the radiomic studies included for PD-L1
biomarker, Table S12: An overview of the radiomic studies included for TP-53 biomarker, Table S13:
An overview of the radiomic studies included for KRAS biomarker and Table S14: An overview of
the radiomic studies included for Ki-67 biomarker.
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