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Abstract

Background: Copy number variants (CNVs) are known to play an important role in the development and progression of
several diseases. However, detection of CNVs with whole-exome sequencing (WES) experiments is challenging. Usually,
additional experiments have to be performed. Findings: We developed a novel algorithm for somatic CNV calling in
matched WES data called “CopyDetective”. Different from other approaches, CNV calling with CopyDetective consists of a
2-step procedure: first, quality analysis is performed, determining individual detection thresholds for every sample. Second,
actual CNV calling on the basis of the previously determined thresholds is performed. Our algorithm evaluates the change
in variant allele frequency of polymorphisms and reports the fraction of affected cells for every CNV. Analyzing 4 WES data
sets (n = 100) we observed superior performance of CopyDetective compared with ExomeCNV, VarScan2, ControlFREEC,
ExomeDepth, and CNV-seq. Conclusions: Individual detection thresholds reveal that not every WES data set is equally apt
for CNV calling. Initial quality analyses, determining individual detection thresholds—as realized by CopyDetective—can
and should be performed prior to actual variant
calling.
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Background

In recent years, next-generation sequencing (NGS) has found its
way to clinical routine [1]. With the sequencing costs still getting
cheaper—currently working on the “$100 genome” [2]—whole-
exome sequencing (WES) and whole-genome sequencing (WGS)
are performed for an increasing number of patients to improve
their diagnosis, prognosis, and therapy by the help of personal-
ized medicine [3,4].

Despite continuously decreasing costs for experiments, it is
desirable to keep the number of necessary genetic experiments
to a minimum—not least because of limited tumor material [5,6].
Thus, it would be most practical if there were valid algorithms
to determine single-nucleotide variants (SNVs), short insertions
and deletions (indels), structural variants (SVs), and copy num-
ber variants (CNVs) by just a single NGS experiment.

Although there still remain challenges to be addressed, rel-
atively short mutations, such as SNVs and indels, can already
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be determined reliably [7, 8]. In contrast to this, large mutations
such as CNVs still impose a major challenge [9].

Numerous algorithms, all following different approaches, ex-
ist for calling CNVs in WES data. While some concentrate on
normalizing coverage, e.g., VarScan [10], others analyze single-
nucleotide polymorphisms (SNPs) and coverage information
similar to SNP arrays, e.g., ExomeCNV [11]. Some algorithms re-
quire matched control samples, while others do not require any
controls. However, all of these algorithms usually are hindered
by low precision and low recall [9], which raises the question of
whether NGS data from WES experiments are after all suitable
to determine valid CNV calls. Or—to make this question more
specific—whether every data set is equally apt to determine ev-
ery kind of CNV, independent of the number of base pairs or
fraction of cells affected by the mutation. Especially in the field
of cancer research this is highly relevant, specifically regarding
cancer cell fractions and clonal evolution.

Considering SNV and indel calling in NGS data, it is obvious
that every data set’s characteristics define its individual detec-
tion thresholds. An essential characteristic is coverage. If data
are sequenced with only 10× coverage, they are not apt to de-
tect mutations at allelic frequencies of 5% because only 0.5 reads
are expected to carry the mutation. When calling CNVs in NGS
data, it is only consistent to assume that comparable detection
thresholds exist.

We present a novel algorithm, performing detection
threshold–aware CNV calling in WES data: CopyDetective [12].
Prior to determining the actual CNVs, CopyDetective addresses
the data quality of every sample. We consider (i) coverage of
the case sample, (ii) coverage of the matching control sample,
(iii) CNV length, and (iv) CNV value with respect to the fraction
of affected cells. For every sample, individual detection thresh-
olds are determined. These thresholds define the minimum
cell fraction (CF) and the minimum CNV length that is still
detectable at a given sensitivity.

Subsequently, CopyDetective analyzes data according to
these thresholds. Comparing a case sample to its matching con-
trol sample, coverage and SNP information are evaluated to
identify regions of significant difference. CopyDetective reports
merged and filtered CNVs along with additional information on
the calls, e.g., quality values and information on the estimated
CF.

Analyzing 4 real WES data sets (n = 100) the performance of
our novel approach is evaluated and compared with that of 5 es-
tablished approaches for CNV calling in WES data: ExomeCNV
[11], VarScan2 [10], ExomeDepth [13], Control-FREEC [14], and
CNV-seq [15].

Methods
Data sets analyzed

We analyze 4 data sets, covering real data from n = 100 samples.
An overview of the different data sets and the available samples
can be found in Table 1.

The first set covers 47 samples from 11 patients with
myelodysplastic syndromes (MDS; sequencing data published at
the NCBI SRA PRJNA355124). Data from all patients have been se-
quenced 2–8 times. CNV-calling results based on CytoScan HD
Array (Affymetrix), containing information on deletions, dupli-
cations, and loss of heterozygosity (LOH), have been published.
Additionally, information on clonal evolution of all patients has
been published by da Silva-Coelho et al. [16]. Thus, CNV value
can be considered with respect to CF. For example, a simple du-

plication leads to CNV value = 3. However, if the mutation is
present in only 60% of the cells, the CNV value over all cells
would be 2.6.

The second set covers 15 samples from 10 patients with
Burkitt lymphoma (BL; sequencing data published at the NCBI
Sequence Read Archive PRJNA561490). Data from 5 of 10 patients
have been sequenced twice—at the point of primary and relapse.
The remaining 5 patients did not experience relapse and only 1
tumor sample (primary) is available. CNV-calling results (dele-
tions, duplications, and LOH) are based on SNP arrays (Infinium
OmniExpressExome-8v1.3kit; using Illumina GenomeStudio 2.0
[GenomeStudio, RRID:SCR 010973] and cnvPartition v3.2.0 [CN-
VPartition, RRID:SCR 010925], minimum 100 probes for 1 call, for
analysis) [17]. Additionally, clonal evolution was reconstructed
for all patients. Again, CNV value with respect to CF can be con-
sidered.

The third set covers 20 samples from 15 patients with T-
lymphoblastic lymphoma (T-LBL; sequencing data published at
the EMBL-EBI European Nucleotide Archive PRJEB36436). Data
from 5 of 15 patients have been sequenced twice—at the point
of primary and relapse. Because the remaining 10 patients did
not experience relapse, only 1 tumor sample (primary) is avail-
able. CNV-calling results (deletions, duplications, and LOH) are
based on SNP arrays (InfiniumOmni2-5Exome-8; using Illumina
GenomeStudio 2.0 [GenomeStudio, RRID:SCR 010973] and cn-
vPartition v3.2.0 [CNVPartition, RRID:SCR 010925], minimum 100
probes for 1 call [18]; data published at Array Express E-MTAB-
8763; [19]).

The fourth data set covers 18 samples from patients with
nodal marginal zone lymphoma (NMZL; sequencing data pub-
lished at the NCBI SRA PRJNA285732 [20]). CNV data have been
deposited in Gene Expression Omnibus (accession No. GSE68078;
CytoScan HD Array; Affymetrix). Analysis of the CNV data was
performed using Rawcopy [21]. Raw calls with a missing allelic
imbalance or an imbalance <0.2 were removed. The remain-
ing calls were merged if they were located close to each other
(<20 Mb) and characterized by a similar logR-ratio (2logR < 0.2).
The resulting CNV calls were classified as deletions if CNV value
≤1.9 and as duplications if the CNV value ≥2.1. The remaining
calls were classified as LOH.

For all samples, detailed information on data quality can be
found in Supplementary Tables S1–S4.

CopyDetective

CopyDetective is a novel algorithm for calling somatic CNVs in
matched WES samples, automatically determining and evaluat-
ing individual detection thresholds for every sample. The anal-
ysis with CopyDetective can be separated into 4 major steps: (i)
quality analysis, (ii) CNV calling, (iii) merging, and optional (iv)
filtration. An overview of the analysis is provided in Fig. 1.

Quality analysis
Different from other CNV-calling algorithms, an initial analy-
sis of data quality is automatically performed by CopyDetective
to determine individual detection thresholds for every sample.
These thresholds include the minimum CFs for deletions and
duplications, CFDel and CFDup, and the minimum CNV lengths,
WDel and WDup. An overview of CopyDetective’s quality analy-
sis, which is performed for both deletions and duplications, is
provided in Fig. 2.

Quality analysis itself is split into 3 steps: first, CFs are con-
sidered (see Fig. 2A). Our analysis is based on the actual cov-
erage of all heterozygous polymorphisms detected in a match-
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Table 1: Overview of the samples analyzed with CopyDetective

Data set Disease Samples
Mean coverage (×) Coverage ≥1× (%) Coverage ≥10× (%) Heterozygous

SNPs
Germline Tumor Germline Tumor Germline Tumor

1 MDS 47 114.90 119.71 99.28 99.07 97.29 97.04 10,543
2 BL

Primary 10 44.21 277.28 97.73 98.41 89.66 97.38 11,884
Relapse 5 44.00 298.79 97.70 98.41 89.44 97.75 11,665

3 T-LBL
Primary 15 60.25 190.46 94.62 98.41 84.23 96.70 9,659
Relapse 5 57.60 290.15 90.98 98.52 75.41 97.97 7,893

4 NMZL 18 41.63 41.24 99.08 99.10 78.61 80.71 9,341

Figure 1: Overview of the analysis performed by CopyDetective. The analysis can be separated into 4 major steps: (i) Quality analysis: the detection thresholds for
CNV calling are estimated. (ii) CNV calling: significant regions with and without CNV are determined. (iii) Merging of overlapping and adjacent regions with CNV. (iv)
Optional filtration.

ing case-control pair. Analyses show that coverage distribution
can be approximated by a log-normal distribution (see exem-
plary coverage distribution of patient MDS 01 germline in Sup-
plementary Fig. S1). We evaluate all CFs in a user-defined range
(default: 5–100% with steps of 5%; smaller step sizes are possible)
for deletions and duplications separately. The user can choose
between a simulation approach (default) and an exact approach.
For the simulation approach, an artificial case-control pair is
considered. To keep run-time low, we do not simulate the actual
reads. Instead, just the coverage and variant allele frequency
(VAF) of heterozygous polymorphisms are simulated (default: 1–
100 SNPs). In the control sample, the expected value for VAF is
50%. In the case sample, VAF is dependent on CF: if CF = 100%,
the expected value for VAF is 0% for deletions and 33% for du-
plications (100% and 67% are equally valid expected values; for
reasons of simplicity we always work with expected VAFs <50%
because CopyDetective automatically transforms all VAFs to CFs
and performs all calculations on CF level only).

For the exact approach, all called heterozygous polymor-
phisms in the control sample are considered. Coverage for both
the control and the case sample are given and do not have to
be simulated. VAF for the control sample can either be based on
the available data or be simulated. VAF for the case sample is
always simulated on the basis of CF, just like in the case of the
simulation approach.

To identify CNVs, we apply a weighted t-test. It is investi-
gated whether a significant difference between case and control,
evaluating the CFs of an increasing number of simulated poly-
morphisms, can be observed. By repeating this analysis (default:
500 times; or for all SNPs following the exact approach), we can

estimate the lowest number of polymorphisms (min SNP) that
have to be evaluated to reach user-defined sensitivity (default:
sens ≥ 0.95).

In the second quality analysis step, we establish a connec-
tion between min SNP and window size W (see Fig. 2B). Poly-
morphisms are not evenly distributed across the genome. In-
stead, some regions show a much higher polymorphism den-
sity than others. Additionally, CopyDetective evaluates WES and
not WGS data. Thus, to evaluate, e.g., 3 polymorphisms, it can
be sufficient to analyze a very short region, or it might be nec-
essary to consider a much larger one. We base our analysis
on all SNPs detected in the control sample. For all relevant
numbers of heterozygous SNPs, i.e., all values of min SNP, we
determine the positions and lengths of the corresponding re-
gions. For example, region chr1:906,272–1,007,432 covers 2 het-
erozygous SNPs. Subsequently, the distribution of the region
lengths is determined and the 95th percentile (P95%) is calcu-
lated. If, for example, the 95th percentile for 2 polymorphisms
is 2,322,545 bp, we can expect that 95% of all genetic regions of
2,322,545 bp contain ≥2 polymorphisms. The 95th percentile is
referred to as window size W within the framework of detection
thresholds.

In the third step, the connection between CF and W via
min SNP is summed up and the actual detection thresholds are
determined (see Fig. 2C). CopyDetective allows the user to force
CNV calling with the minimum possible CF or the minimum pos-
sible window size. However, by default, we are aiming at opti-
mizing both parameters: we normalize window size (Wnorm) and
minimize the distance between CF and Wnorm (for details see
Supplementary Fig. S2). The cell fraction CF and window size
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Figure 2: Overview of the quality analysis performed by CopyDetective. (A) A connection between CF and min SNP is established to reach user-defined sensitivity.
Following the simulation approach (default: 500×; alternative: exact approach), heterozygous SNPs are simulated. An increasing number of SNPs is evaluated, applying
a weighted t-test. If a significant result is observed in ≥95% of the cases, min SNP has been found. (B) For every relevant number of SNPs, the location of regions with
min SNP polymorphisms is determined. Based on the locations, the distribution of the region lengths is determined and P95%, i.e., W is calculated. (C) A connection

between CF and W has been established. The optimal detection thresholds (by default: optimal trade-off between low CF and small window W) are determined. CF:
cell fraction; min SNP: minimum number of SNPs; Cov: coverage; VAF: variant allele frequency; P95%: 95% percentile; W: window size; Wnorm: normalized window size.

W at minimum distance represent the detection thresholds for
subsequent CNV calling.

Note that the quality analysis depicted in Fig. 2 is performed
for both deletions and duplications. Thus, 4 detection thresholds
are determined: CFDel, WDel, CFDup, and WDup.

CNV calling
Once the thresholds CFDel, WDel, CFDup, and WDup have been es-
timated, as described in the quality analysis step, actual CNV
calling is performed. CNV calling with CopyDetective is based on
the analysis of VAFs, comparing heterozygous polymorphisms
in matching case-control samples. Coverage is considered by de-
termining 99% confidence intervals (CI0.99) for the VAFs.

It can be assumed that a heterozygous polymorphism is
present at VAF = 50% in control samples and—if not affected by
CNV—also in case samples. Deviations from this expected fre-

quency may be observed, resulting from low coverage. However,
the CI0.99 should cover the true VAF of 50% in 99 of 100 cases.
Therefore, we only evaluate polymorphisms that fulfill this cri-
terion.

In case samples, deviations from the expected VAF of 50%
can, once again, result from either low coverage or presence of
a CNV. Thus, a polymorphism with VAF = 67% can indicate a
1-fold duplication present in 100% of the cells. However, the ob-
served VAF can also be explained by a 1-fold deletion present in
50% of the cells. If the CI0.99 of a polymorphism’s VAF covers ei-
ther 33% or 67%, we assume that it can be explained by either a
duplication or a deletion. If this is not the case, we only consider
deletions. Copy numbers <1 and >3 are currently not taken into
account.

CopyDetective identifies regions of significant difference
comparing 1 case sample to its matching control. To improve di-
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rect interpretability of the results, we decided to work with CFs
instead of VAFs. Thus, prior to actual testing, the observed VAFs
are transferred to CF level, considering deletions and duplica-
tions. Similarly, the CI0.99 are determined for the CFs. Note that
the CFs for all heterozygous polymorphisms in the control sam-
ples are expected to be zero but, in reality, show certain variation
(for details on the relation between CF and VAF see Supplemen-
tary Figs S3 and S4).

The actual test we perform to identify regions of significant
difference is a weighted t-test (2-sample, 1-tailed, α-adjusted ac-
cording to Bonferroni correction: α = 0.05/4 = 0.0125). For dele-
tions, a sliding window of size WDel with all its covered SNPs is
analyzed:

Del : H0 : CFDelD ≤ CFDelC H1 : CFDelD > CFDelC (1)

No del: H0 : CFDelD ≥ CFDelC H1 : CFDelD < CFDelC (2)

CFDelD is defined as the fraction of cells containing a deletion
in the case sample (“D” for disease). CFDelC is defined as the frac-
tion of cells containing a deletion in the control sample (“C” for
control). If a true deletion is present in the tumor sample, we
expect CFDelD to be significantly larger compared with CFDelC.

We expect that CFDelC = 0. However, in reality, this is usu-
ally not the case. If significantly more cells with a deletion are
detected in the control sample compared with the case sample
(CFDelD < CFDelC), this result indicates that no deletion is likely to
be present in the case sample.

Similar to the analysis of deletions, duplications are consid-
ered by evaluating a sliding window of size WDup with all its cov-
ered SNPs:

Dup: H0 : CFDupD ≤ CFDupC H1 : CFDupD > CFDupC (3)

No dup: H0 : CFDupD ≥ CFDupC H1 : CFDupD < CFDupC (4)

Instead of an ordinary t-test, we decided to apply a weighted
t-test to account for the influence of coverage on the estimated
cell fractions: if an evaluated polymorphism is characterized by
low coverage—in either 1 or both, case and control—an observed
difference between CFDelD and CFDelC (or between CFDupD and
CFDupC) might not result from an actual deletion but just oc-
cur at random. Thus, a decreased weight should be assigned
to the low-coverage sample(s). In contrast, if an evaluated poly-
morphism is characterized by high coverage, any observed dif-
ference between CFDelD and CFDelC is likely to result from an ac-
tual deletion. Thus, an increased weight should be assigned. We
define the weights for deletions (case: wDelD; control: wDelC) and
duplications (case: wDupD; control: wDupC) as follows:

Del: wDelD = CovDelD wDelC = CovDelC, (5)

Dup: wDupD = CovDupD wDupC = CovDupC. (6)

To determine a list of raw CNV calls for every sample, we ex-
clude non-significant regions as well as significant regions con-
taining no CNV. Furthermore, regions with an estimated CF be-
low the thresholds CFDel and CFDup (−5% to account for variation
of the estimate) are excluded.

It should be noted that the basis of our approach—the list of
polymorphisms—is generated using VarDict [22] (for details on
variant calling see Additional File 1, Section 1.3.2).

Merging
Raw CNV calls that are reported as being overlapping or located
in close vicinity are likely corresponding to 1 event. Thus, merg-

ing of the raw calls is performed. The merging scheme is visual-
ized in Fig. 3.

Two CNV calls are merged if the same variant is reported
(deletion or duplication), CF is similar (≤3 standard deviations
[sd]), and the calls are overlapping. If two CNV calls are not over-
lapping but no significant “no CNV” region is located in between
and the regions are close (<20 Mb), they are likewise merged.

Note that for estimating the CFs of the merged regions, all
significant SNPs are re-evaluated. This can, in some rare cases,
lead to a merged region with an overall estimated CF below the
actual detection thresholds. However, these regions always con-
tain ≥2 raw CNV calls with CFs above the detection thresholds.

Filtration (optional)
Optionally, the merged results can be filtered on the basis of the
CNV call quality. Depending on the data being analyzed, it can
be useful to consider the merged calls directly. However, we rec-
ommend filtration of low-quality calls.

Comparison to common approaches

Over recent years, several review articles have been published,
considering tools available for CNV calling in NGS data [9,23,24].
To evaluate performance of our novel CNV-calling algorithm,
we compare it with 5 common CNV-calling tools for WES
data: ExomeCNV (ExomeCNV, RRID:SCR 010815) [11], VarScan2
(VARSCAN, RRID:SCR 006849) [10], ExomeDepth (ExomeDepth,
RRID:SCR 002663) [13], Control-FREEC (Control-FREEC, RRID:SC
R 010822) [14], and CNV-seq (CNV-seq, RRID:SCR 013357) [15].

ExomeCNV uses read depth and B-allele frequencies (BAF)
from matched WES data to detect deletions, duplications, and
LOH. It is frequently used for benchmarking [23]. We analyze the
CNV calls reported in <Sample>.cnv.txt. The copy number re-
ported in column copy.number is evaluated.

VarScan2 analyzes normalized read depth in matched WES
samples to detect deletions and duplications. For every region,
num.mark and seg.mean are reported. We exclude all variants
with num.mark <10. If seg.mean ≥0.25, the variant is consid-
ered a duplication. If seg.mean ≤−0.25, the variant is consid-
ered a deletion. All variants with −0.25 < seg.mean < 0.25 are
discarded.

Control-FREEC analyzes copy number and BAF profiles.
Matched control samples are evaluated to distinguish germline
variants from somatic ones. Information on subclonal gains and
losses is reported and additionally evaluated if biological truth
contains information on clonal composition of the samples. In
addition to the standard Control-FREEC pipeline, we applied the
additional script “assess significance.R” [25]. CNV calls with a re-
ported P value >0.05 are excluded. We consider both Wilcoxon-
RankSumPvalue (WR) and KolmogorovSmirnovPvalue (KS). The
copynumber, considering deletions, duplications, and LOH, re-
ported in column “copy number” is evaluated.

ExomeDepth applies a β-binomial model to a set of exons.
Normally, the tool requires multiple samples as input. The idea
is that each exome is automatically compared to the exome fea-
turing best correlation. However, because for all samples in our
data sets matched controls are available, we assume that the
matching control is always the best exome to be used for com-
parison. The copy number, considering deletions and duplica-
tions, reported in column “type” is evaluated.

Additionally, we consider CNV-seq. The tool has not been
specifically designed for WES data. However, the general ap-
proach is similar to our novel approach CopyDetective: a slid-
ing window is evaluated. The window size is defined by data
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Figure 3: Decision tree for the merging process. Two CNV calls are merged according to the displayed merging scheme. Defining close regions as being separated by
<20 Mb allows for merging of 2 regions separated by a centromere, which is ≤7.4 Mb, and for detecting monosomy or trisomy of the smallest chromosomes by only 2
significant regions. sd: standard deviations.

quality, i.e., in this case coverage. Copy number ratios, as well
as confidence values, are determined. However, different from
CopyDetective, CNV calling with CNV-seq is solely based on
coverage and not on BAFs. To process the raw output, we ex-
clude all calls with missing values in columns “log2” and/or
“cnv.size.” Regions belonging to the same CNV (identifier in col-
umn “cnv”) are merged. All merged calls with cnv.p.value >0.05
are excluded. The remaining calls are categorized as deletions
if cnv.log2 <−0.25 and as duplications if cnv.log2 >0.25. All the
other calls are categorized as LOH.

Details on the precise commands for executing CNV calling
with the common approaches are provided in Additional File 1,
Section 1.4. It should be noted that we tried to apply several ad-
ditional tools on our data, e.g., THetA2 (THetA, RRID:SCR 001860)
[26] or iCNV [27]. Information on all tools that we tested, and the
reasons why they were excluded from further consideration, can
be found in Additional File 1, Section 1.5.

Results

We apply CopyDetective (simulation approach) on 4 sets of
real data. Performance is compared to 5 established tools for
CNV calling in WES data: ExomeCNV, VarScan2, ExomeDepth,
Control-FREEC (WR and KS), and CNV-seq. Two samples from
Data Set 2 (BL 03: P3 and R3) were excluded from analysis. De-
tailed analyses have shown that almost all validated CNVs ap-
pear to have been already present in the control sample, being
either contamination or germline calls (for details see Supple-
mentary Fig. S5). The results for the remaining 98 samples are
summed up in Table 2. It should be noted that LOH was excluded
from Data Set 4 because we do not have any information on the
frequency of affected cells for these calls. All called CNVs of the
type “LOH” were removed from the output of ExomeCNV, Con-
trolFREEC, and CNV-seq. CNV calls reported by CopyDetective
that were overlapping regions of validated LOH were equally re-
moved. An analysis of Data Set 4 including LOH can be found in
Additional File 1, Section 2.2.

A CNV call is considered true positive if it shows any overlap
with ≥1 validated CNV. If a CNV call is overlapping a true vari-
ant but features the “wrong” CNV type (e.g., a deletion is called,
while the true CNV is a duplication), it is reported in parenthe-
ses, as true-positive call with false type. We evaluate sensitiv-
ity (sens), the positive predictive value (PPV), and the F1 score
only considering the true-positive calls with correct CNV type
(for details on how these statistics are calculated see Additional

File 1, Section 1.6). For every variant-calling tool the number of
detectable CNVs is defined. For VarScan and ExomeDepth the
number of detectable CNVs is decreased because these 2 tools
are not able to detect LOH. For CopyDetective the number of de-
tectable CNVs is decreased on the basis of each sample’s indi-
vidual detection threshold for CNV length and CF (see Supple-
mentary Tables S6–S9 for precise detection thresholds). Exem-
plary variant-calling results for 1 sample are visualized in Sup-
plementary Fig. S7. A detailed overview of all missed and de-
tected CNVs for each tool is provided in Supplementary Tables
S10–S13. Detailed variant-calling results for CopyDetective are
provided in Additional File 2. Results for CopyDetective using
the exact approach can be found in Supplementary Fig. S8 and
Table S14.

It can be observed that a majority of common variant-calling
tools are characterized by low PPV. For ExomeCNV, ControlFREEC
(both configurations, WR and KS), and CNV-seq PPV ranges be-
tween <0.01 and 0.09 for all data sets. Only in the cases of
VarScan and ExomeDepth—both tools that are unable to de-
tect LOH—can higher PPVs partly be observed. However, per-
formance is highly data dependent (Set 1: PPVVarScan2 = 0.01,
PPVExomeDepth = 0.02; Set 4: PPVVarScan2 = 0.36, PPVExomeDepth =
0.71). Considering our novel approach CopyDetective without fil-
tration (configuration “raw”), PPV ranges between 0.04 and 0.26.
Over all data sets, performance is comparable to the best com-
mon approach ExomeDepth (PPV 0.11 vs 0.12). If we apply fil-
tration with our default threshold, values between 0.12 and 0.86
can be observed (over all data sets: 0.33).

Regarding sensitivity, huge differences among all approaches
can be observed. While ControlFREEC and CNV-seq are charac-
terized by low sensitivity (maximum: 0.45), much higher values
can be observed for ExomeCNV (up to 0.89; on average 0.61).
However, owing to low PPV, the overall performance considering
the F1 score is, over all data sets, relatively poor. Similar to PPV,
ExomeDepth features highly data-dependent performance with
respect to sensitivity (ranging between 0.27 and 0.68). In contrast
to this, CopyDetective is characterized by stable sensitivity. For
both the raw and the filtered results, sensitivity ranges between
0.92 and 1.00. On average, sens = 0.96, which slightly exceeds our
user-defined sensitivity of 0.95 when determining the detection
thresholds.

Table 2 shows that the performance of CopyDetective is,
with respect to PPV, data dependent, also including the influ-
ence of filtration. Supplementary Fig. S9 shows the relation be-
tween sensitivity and PPV in the context of an increasing quality
threshold. A different development can be observed for the dif-

https://scicrunch.org/resolver/RRID:SCR_001860
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Table 2: Performance of CopyDetective (raw, i.e., without optional final filtration, and filter, i.e., with default filtration threshold of 10.76) in
comparison to 5 established approaches: ExomeCNV, VarScan2, ExomeDepth, Control-FREEC (WR and KS), and CNV-seq.

Tool and
configuration Data set TP calls (+ false type) FP calls

CNVs
Sens PPV F1Found Missed Detectable

ExomeCNV 1 1,378 (+2,204) 215,865 49 6 55 0.89 0.01 0.01
2 280 (+508) 13,213 32 15 47 0.68 0.02 0.04
3 1,017 (+1,904) 66,686 40 8 48 0.83 0.02 0.03
4 94 (+1) 2,064 24 64 88 0.27 0.04 0.08

VarScan2 1 119 (+126) 11,736 27 22 49 0.55 0.01 0.02
2 106 (+185) 2,758 26 11 37 0.70 0.04 0.07
3 65 (+16) 374 21 14 35 0.60 0.15 0.24
4 30 (+0) 54 23 65 88 0.26 0.36 0.30

ExomeDepth 1 163 (+50) 8,074 13 36 49 0.27 0.02 0.04
2 275 (+162) 2,042 25 12 37 0.68 0.12 0.20
3 175 (+33) 2,047 20 15 35 0.57 0.08 0.14
4 909 (+0) 375 32 56 88 0.36 0.71 0.48

ControlFREEC
WR 1 7 (+6) 1,568 5 50 55 0.09 <0.01 0.01

2 6 (+3) 278 3 44 47 0.06 0.02 0.03
3 7 (+9) 654 6 42 48 0.13 0.01 0.02
4 5 (+2) 231 5 83 88 0.06 0.02 0.03

KS 1 24 (+38) 7,261 12 43 55 0.22 <0.01 0.01
2 16 (+11) 1,124 10 38 48 0.21 0.01 0.03
3 16 (+11) 1,124 10 38 48 0.21 0.01 0.03
4 32 (+4) 224 17 71 88 0.19 0.09 0.13

CNV-seq 1 25,690 (+27,757) 1,723,974 21 34 55 0.38 0.01 0.03
2 3,016 (+1,885) 94,461 21 26 47 0.45 0.03 0.06
3 6,628 (+4,518) 316,311 19 29 48 0.40 0.02 0.04
4 786 (+1,125) 28,863 15 73 88 0.17 0.03 0.05

CopyDetective
Raw 1 33 (+22) 729 18 1 19 0.95 0.04 0.08

2 63∗ (+43) 176 34 3 37 0.92 0.26 0.41
3 67 (+21) 212 40 1 41 0.98 0.24 0.39
4 23 (+23) 399 19 0 19 1.00 0.05 0.10

Filter 10.76 1 25 (+15) 180 18 1 19 0.95 0.12 0.22
2 50 (+31) 63 34 3 37 0.92 0.44 0.60
3 60 (+18) 10 40 1 41 0.98 0.86 0.90
4 22 (+16) 63 19 0 19 1.00 0.26 0.41

The table reports true-positive (TP) calls (in parentheses: reporting the number of additional true-positive calls if CNV type is not evaluated), false-positive (FP) calls,
found, missed, and detectable CNVs, sensitivity (sens; only evaluating true-positive calls with correct CNV type), positive predictive value (PPV; only evaluating TP calls
with correct CNV type), and the F1 score. ∗ Sixty-four detected CNVs are overlapping true CNVs. However, as 1 called CNV is clearly shorter than the validated one and
characterized by a remarkably low quality value, we assume that this overlap is occurring by just coincidence. Therefore, it is counted as “missed.”

ferent data sets. Optimization of the F1 score would result in dif-
ferent optimal thresholds for each set (1: 56.05; 2: 16.22; 3: 18.52;
4: 36.36). Thus, the optimal quality threshold over all data sets
is difficult to define. However, differences between the data sets
are less prominent when the true calls’ quality values are con-
sidered (see Fig. 4).

For all data sets it can be observed that true CNV calls are
characterized by higher quality values compared with false-
positive calls. Combining all data sets, no true-positive call with
a quality value <10.76 can be observed (see Supplementary Ta-
ble S15). Three of 4 data sets share a similar threshold (2: 11.19;
3: 11.48; 4: 10.76). Therefore, we decided to select 10.76 as our
default threshold for quality filtration applied in Step 4 of our
algorithm.

Discussion

CopyDetective is a novel tool for calling somatic CNVs in
matched WES data. It has been developed for but is not limited
to the analysis of cancer samples. Different from any other ap-
proach, CopyDetective performs initial quality analysis of every
sample to estimate the individual detection thresholds, cover-
ing the minimum CNV length and the minimum cell fraction.
These detection thresholds allow subsequent CNV calling with
user-defined sensitivity (default: 0.95).

Considering the performance of our new approach, we ob-
serve high sensitivity regarding high- as well as low-coverage
data. Over all data sets, CopyDetective outperforms all the other

tools we considered, even without optional filtration of low-
quality calls. Application of the quality filter results in further
improvement of performance, especially with respect to PPV.
Data indicate that a threshold of 10.76 can be used safely to
exclude false-positive calls. Detailed additional analyses show
that the coordinates of the CNVs, determined by CopyDetec-
tive, match the coordinates based on validation experiments
(see Supplementary Figs S10 and S11 and Additional File 2). Fur-
thermore, CFs estimated by CopyDetective match the cell frac-
tions determined by other methods (e.g., fluorescence in situ hy-
bridization; see Supplementary Fig. S12 and Additional File 2).
However, it should be noted that the assumed true coordinates
and cell fractions may differ from the actual true values. A pre-
cise determination of a CNV’s coordinates is usually not possi-
ble but can just be estimated. Furthermore, cell fractions that
are based on clonal evolution analysis (Sets 1 and 2) may be bi-
ased by clustering. A CNV may be present in more or fewer cells
compared to the other mutations in its cluster.

Yet, the fact that CopyDetective is able to estimate CFs is an
important characteristic, especially with respect to clonal evolu-
tion. While allele frequencies of pathogenic mutations can eas-
ily be analyzed to determine the subclonal composition of a tu-
mor, this should also be done when analyzing CNVs. However,
most tools report only a copy number variant and its CNV value
but not the fraction of cells affected by the mutation. To our
knowledge, only 2 additional tools are able to estimate tumor
purity in NGS data: CNAnorm [28] and THetA2 [26] (in addition,
there are ASCAT [29] and ABSOLUTE [30]; however, these tools
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Figure 4: Quality values for true-positive and false-positive CNV calls reported by CopyDetective (evaluating the true CNV call with the highest quality value in case

>1 CNV call overlaps a validated CNV). Ranges indicate the possible values of the quality threshold for each data set. Dashed gray line indicates the default filtration
threshold of 10.76, excluding no true-positive calls.

were designed for SNP array data). While superior performance
of THetA2 has been reported by Oesper et al. [26], the tool failed
on our data (see Additional File 1, Section 1.5).

It may seem astonishing that CNVs reported by CopyDetec-
tive match the validated CNVs, spread all over the genome, with
respect to coordinates and CFs so well while just analyzing WES
data. However, the main advantage of our approach lies in the
analysis of a sliding window and the subsequent merging of win-
dows located in close vicinity. This approach allows us to explore
between 99.5% and 99.8% of the human genome (see Supple-
mentary Fig. S6).

However, CopyDetective certainly has some limitations. We
need a specific scenario—matching control samples—to eval-
uate changes in VAF for every polymorphism. CopyDetective’s
performance is dependent on the accuracy of polymorphism
calling in the control sample. However, analyses of robustness
have shown that CopyDetective is especially tolerant towards
false-negative polymorphism calls (see Supplementary Figs S13
and S14 and Tables S16 and S17). Our approach is currently able
to call only simple deletions or duplications. Depending on the
cells affected by a CNV, ambiguous results are possible because,
e.g., a deletion present in 50% of the cells can also be explained
by a duplication present in 100% of the cells. LOH is always re-
ported as a deletion by CopyDetective. However, a coverage indi-
cator is reported. Analyses show that a true deletion is charac-
terized by a negative coverage indicator (sens = 0.88), while LOH
is characterized by a coverage indicator overlapping zero (sens
= 0.87) (see Supplementary Fig. S15).

Currently, gonosomes are not evaluated by CopyDetective.
CNVs on the Y chromosome cannot be detected because all poly-
morphisms are hemizygous (same is true for small CNVs just
covering homozygous polymorphisms). However, our approach
is expected to work for women’s X chromosomes.

Depending on the quality of the input data provided, Copy-
Detective may not detect and report any small CNVs like fo-
cal CNVs, which are known to play an important role in can-
cer [31]. However, CopyDetective’s detection thresholds serve to
ensure sufficient sensitivity of the CNV-calling results. By re-
porting the minimum CNV length and the minimum cell frac-
tion, it becomes easy to decide whether the analyzed WES
data are sufficient to detect the CNVs of interest or whether
additional experiments have to be performed. When manu-

ally changing CopyDetective’s automatically determined detec-
tion thresholds to higher or lower values, we observe a de-
cline in performance (see Supplementary Table S18). Higher,
stricter thresholds decrease the number of detectable CNVs,
no longer tapping the full potential of the data. On the con-
trary, lower thresholds lead to a major increase in false-positive
calls.

Conclusions

CopyDetective unites an established idea—evaluating the
change in VAF of polymorphisms to detect CNVs—with a com-
pletely new aspect—determining individual detection thresh-
olds for every sample. Thereby, CopyDetective shines a new light
on CNV calling in WES data: individual detection thresholds re-
veal that not every data set is equally apt for CNV calling. The
general idea of our algorithm—applying a 2-step procedure—
can be combined with any other CNV-calling approach. Ini-
tial quality analyses, determining individual detection thresh-
olds, can and should be performed prior to actual variant
calling.

Availability of Source Code and Requirements

Project name: CopyDetective [12]
Project home page: https://github.com/sandmanns/CopyDetec
tive
Operating system: Platform independent
Programming language: R
Other requirements: None
License: AGPL-3.0
bio.tools ID: biotools:copydetective
RRID:SCR 018909

Availability of Supporting Data and Materials

Sequencing data are available at the NCBI SRA (PRJNA355124,
PRJNA561490, and PRJNA285732), the EMBL-EBI European Nu-
cleotide Archive (PRJEB36436), Array Express (E-MTAB-8763), and
the Gene Expression Omnibus (GSE68078). All supporting data
and materials are available in the GigaScience GigaDB database
[32].

https://github.com/sandmanns/CopyDetective
https://scicrunch.org/resolver/RRID:SCR_018909
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Additional Files

Supplementary Figure S1. Exemplary coverage distribution.
Supplementary Figure S2. Exemplary relation between window
size and cell fraction.
Supplementary Figure S3. General idea of CopyDetective.
Supplementary Figure S4. Expected change in VAF of polymor-
phisms in the presence of CNVs.
Supplementary Figure S5. Beta allele frequency.
Supplementary Figure S6. Relation bewteen the distance be-
tween two polymorphisms and the corresponding percentile.
Supplementary Figure S7. Exemplary variant calling output.
Supplementary Figure S8. Relation between detection thresh-
olds (simulation vs exact approach).
Supplementary Figure S9. Relation between sensitivity and PPV.
Supplementary Figure S10. Overlap of CNVs reported by Copy-
Detective with validated CNVs.
Supplementary Figure S11. Relative deviation of the true start
and end position from the called ones.
Supplementary Figure S12. Relation between estimated CF and
true CF.
Supplementary Figure S13. Relation between detection thresh-
olds (FN polymorphisms).
Supplementary Figure S14. Relation between detection thresh-
olds (FP polymorphisms).
Supplementary Figure S15. Coverage indicator for true CNVs.
Supplementary Table S1. Sequencing data characteristics of data
set 1.
Supplementary Table S2. Sequencing data characteristics of data
set 2.
Supplementary Table S3. Sequencing data characteristics of data
set 3.
Supplementary Table S4. Sequencing data characteristics of data
set 4.
Supplementary Table S5. CNV calling results in data set 4, in-
cluding LOH.
Supplementary Table S6. Detection thresholds of data set 1.
Supplementary Table S7. Detection thresholds of data set 2.
Supplementary Table S8. Detection thresholds of data set 3.
Supplementary Table S9. Detection thresholds of data set 4.
Supplementary Table S10. Detailed CNV calling results for data
set 1.
Supplementary Table S11. Detailed CNV calling results for data
set 2.
Supplementary Table S12. Detailed CNV calling results for data
set 3.
Supplementary Table S13. Detailed CNV calling results for data
set 4.
Supplementary Table S14. Performance of CopyDetective using
the exact approach.
Supplementary Table S15. Lowest and highest quality values for
TP vs FP CNV calls.
Supplementary Table S16. Performance of CopyDetective simu-
lating FN polymorphisms.
Supplementary Table S17. Performance of CopyDetective simu-
lating FP polymorphisms.
Supplementary Table S18. Performance of CopyDetective chang-
ing detection thresholds.
Supplementary Data S1. CNV calling output from CopyDetective,
including raw and filtered calls for Data Sets 1–4.
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