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Simple Summary: Breast cancer outcomes are variable due to differences in tumor biology, patient
biology, and treatment. The likelihood of developing cancer and other diseases increases with age.
Thus, many patients with breast cancer have multiple co-morbidities requiring medical management,
which increases the probability of polypharmacy and the risk of adverse drug events. Pharmaco-
genetics is the study of how inherited genetic variants influence drug response. Depending on the
genes that a patient inherits, some respond to drugs as expected, some experience debilitating side
effects, and others have minimal to no response. In this paper, we discuss the theoretical clinical
utility of pharmacogenetics for 225 patients with breast cancer relative to anti-cancer drugs and
non-cancer drugs. For this population, 38 drug–gene associations with high levels of evidence for
clinical actionability were identified, supporting the concept of pharmacogenetics integration into
the routine care of future patients with breast cancer.

Abstract: Patients with breast cancer often receive many drugs to manage the cancer, side effects
associated with cancer treatment, and co-morbidities (i.e., polypharmacy). Drug–drug and drug–gene
interactions contribute to the risk of adverse events (AEs), which could lead to non-adherence and
reduced efficacy. Here we investigated several well-characterized inherited (germline) pharmacoge-
netic (PGx) targets in 225 patients with breast cancer. All relevant clinical, pharmaceutical, and PGx
diplotype data were aggregated into a single unifying informatics platform to enable an exploratory
analysis of the cohort and to evaluate pharmacy ordering patterns. Of the drugs recorded, there were
38 for which high levels of evidence for clinical actionability with PGx was available from the US
FDA and/or the Clinical Pharmacogenetics Implementation Consortium (CPIC). These data were
associated with 10 pharmacogenes: DPYD, CYP2C9, CYP2C19, CYP2D6, CYP3A5, CYP4F2, G6PD,
MT-RNR1, SLCO1B1, and VKORC1. All patients were taking at least one of the 38 drugs and had
inherited at least one actionable PGx variant that would have informed prescribing decisions if this
information had been available pre-emptively. The non-cancer drugs with PGx implications that
were common (prescribed to at least one-third of patients) included anti-depressants, anti-infectives,
non-steroidal anti-inflammatory drugs, opioids, and proton pump inhibitors. Based on these results,
we conclude that pre-emptive PGx testing may benefit patients with breast cancer by informing drug
and dose selection to maximize efficacy and minimize AEs.
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1. Introduction

Breast cancer outcomes are variable due to differences in tumor biology [1,2], patient
biology [3,4], and treatment availability [5,6]. In addition to anti-cancer treatment, cancer
patients often receive medications for co-morbidities and supportive care [7], resulting in
polypharmacy and an increased likelihood of adverse events (AEs), therapeutic failure,
non-standard dose requirements, and/or non-adherence [8,9]. Most cancer patients take
five or more prescription and non-prescription drugs at one time [10]. Some combinations
of drugs have potential to interact with one another (drug–drug interactions), which can
contribute to AEs [11]. In addition, inherited (germline) variations in the genes involved in
drug response may independently impact drug response (drug–gene interactions) and/or
may exacerbate drug–drug interactions [12].

“Pharmacogenetics” (PGx) and “pharmacogenomics” refer to germline variants in
genes that are involved in drug response. PGx generally describes single gene–drug associ-
ations, whereas pharmacogenomics considers the impact of many genes, as in the genome.
The use of PGx can inform prescribing decisions through predicting discrete aspects of phar-
macokinetics and/or pharmacodynamics, the two major processes responsible for drug
response and AEs [9,13,14]. Pharmacokinetics describes how the body absorbs, distributes,
metabolizes, and eliminates a drug, whereas pharmacodynamics describes the physiology
responsible for both the desirable and undesirable effects of a drug. A well-known PGx
target related to pharmacokinetics is the cytochrome P450 (CYP) drug-metabolizing en-
zyme family. Each enzyme is associated with either the activation or inactivation of specific
drugs. The most common CYP isozymes associated with drug metabolism are CYP2C9,
CYP2C19, CYP2D6, CYP3A4, and CYP3A5, which are coded from genes with the same
names (CYP2C9, CYP2C19, CYP2D6, CYP3A4, and CYP3A5, respectively). A person that
inherits PGx variants associated with extremes of metabolism may require non-standard
dosing or may be best served by avoiding certain drugs [15].

The Clinical Pharmacogenetics Implementation Consortium (CPIC) has published
levels of evidence for the clinical actionability of PGx drug–gene pairs, the highest of
which are levels A and B (https://cpicpgx.org/genes-drugs/) (accessed on 1 March 2021).
Assignment of level A or B indicates that prescribing action such as alternative therapies
or non-standard dosing is recommended. CPIC Level C and D PGx associations are not
associated with any prescribing changes based on genetics. In addition, the US FDA has
recently published a Table of Pharmacogenetic Associations organized into three tiers of
relevance, with Tier 1 being most clinically actionable (https://www.fda.gov/medical-
devices/precision-medicine/table-pharmacogenetic-associations) (accessed on 1 March
2021). Looking at just the CPIC level A and B associations and the content of the three
FDA tiers, there are 198 drug–gene pairs, of which 50 overlap (Supplemental Table S1). Of
these 198 associations, nearly half (93) include CYP genes. Of these 93 CYP associations,
87 involve CYP2C9, CYP2C19, and/or CYP2D6. One reason for the extensive attention on
these genes is their widespread involvement in drug metabolism, but also their relatively
high prevalence of genetic variation that impacts drug metabolism. CYP gene variants
lead to five standardized categories of predicted metabolic phenotypes, ranging from
no enzyme activity to very high enzyme activity: poor metabolizer (PM), intermediate
metabolizer (IM), normal metabolizer (NM), rapid metabolizer (RM), and ultra-rapid
metabolizer (UM) [16,17]. The 198 drug–gene pairs cited by the CPIC also include genes
that code for other drug-metabolizing enzymes (e.g., DPYD, TPMT, UGT1A1); genes that
code for proteins involved in other aspects of drug response such as drug transporters
(e.g., SLCO1B1); and genes that code for pharmacodynamics effectors, such as receptors
(e.g., SCN1A, RYR1) and immune mediators (e.g., HLA-A, HLA-B).

In this retrospective study, the potential for drug–gene interactions in patients with
breast cancer was investigated in relation to both anti-cancer and non-cancer therapy.
Specifically, the prevalence and significance of germline variants associated with the
198 drug–gene associations relevant to a cohort of 225 patients with breast cancer were
discussed. Although the PGx data were not available to influence patient care decisions in

https://cpicpgx.org/genes-drugs/
https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations
https://www.fda.gov/medical-devices/precision-medicine/table-pharmacogenetic-associations
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real time, we propose that the inclusion of PGx information in the medical management
of patients with cancer, particularly those patients receiving polypharmacy, could have
informed and potentially improved prescribing decisions to reduce drug-related AEs and
to achieve optimal treatment response.

2. Results
2.1. Subjects in Breast Cancer Cohort

This retrospective study of 225 breast cancer patients treated at the Huntsman Com-
prehensive Cancer Center (Salt Lake City, UT, USA) consisted of 53 patients with Stage I,
105 patients with Stage II, 48 patients with Stage III, and 19 patients with Stage IV disease.
This patient cohort predominantly identified as white/Caucasian (205/225, 91%). The
median age of diagnosis was 51. The median follow-up for the cohort was 49 months. One-
hundred-and-sixty-seven patients (74%) had ER-positive breast cancer, and 148 patients
(66%) had received adjuvant endocrine therapy (e.g., tamoxifen or aromatase inhibitors).
Fifty-three patients (24%) had HER2-positive breast cancer, and 48 patients (21%) had
received HER2 monoclonal antibody (e.g., trastuzumab). Two-hundred-and-twenty-one
(98%) patients had received chemotherapy. The clinicopathologic characteristics of the
patients are provided in Supplemental Table S2.

2.2. Pharmacy Trend Analysis

Drug–gene associations with level A or B CPIC evidence for clinical actionability and
drug–gene associations included in one or more of the FDA’s Table of Pharmacogenetic
Associations were compiled (Supplemental Table S1) and then interrogated across the
cohort in LifeOmic’s Precision Health Cloud. Of the 198 drug–gene associations identified
with high levels of evidence, there were 38 drugs prescribed to patients in this study cohort.
There were three anti-cancer drugs that were correlated with two pharmacogenes (Table 1)
and 35 non-cancer drugs that were correlated with nine pharmacogenes (Table 2). Of the
38 drugs, 27 (71%) were associated with CYP2C9, CYP2C19, and/or CYP2D6. The re-
maining pharmacogenes associated with these 38 drugs included other drug-metabolizing
enzymes (CYP3A5, DPYD, G6PD) and additional genes associated with drug response
(CYP4F2, MT-RNR1, SLCO1B1 and VKORC1). The number of patients in the cohort that
were documented to have received each drug is included in Tables 1 and 2. Common
indications for the non-cancer drugs were related to a wide range of medical specialties
such as psychiatry, pain management, cardiology, infectious disease, and gastroenterology.

Table 1. Drug–gene (germline) pairs with relevance to the patients with breast cancer: anti-cancer
therapy.

Drug Drug Class Gene

Number of Patients with Drug Noted in
Clinical Records (Number of Variant

Phenotypes among Those Prescribed the
Drug 1: %)

Capecitabine Anti-metabolite DPYD 16 (0%)
Fluorouracil Anti-metabolite DPYD 12 (0%)

Tamoxifen
Selective estrogen

receptor
modulator

CYP2D6 102 (41 IM, 10 PM, 1 UM: 51%)

1 IM: intermediate metabolizer; PM: poor metabolizer; UM: ultra-rapid metabolizer.
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Table 2. Drug–gene (germline) pairs with relevance to the patients with breast cancer: non-cancer therapy.

Drug Drug Class Gene
Number of Patients with Drug Noted in Clinical
Records (Number of Variant Phenotypes among

Those Prescribed the Drug 1: %)

Amitriptyline Anti-depressant CYP2D6
CYP2C19

6 (3 IM, 1 PM: 67%)
6 (1 IM, 4 RM: 83%)

Amphetamine Stimulant CYP2D6 5 (3 IM: 60%)

Aripiprazole Anti-psychotic CYP2D6 5 (4 IM: 80%)

Aspirin NSAID 2 G6PD 61 (PGx not available)

Carvedilol Anti-hypertensive CYP2D6 15 (5 IM, 2 PM: 47%)

Celecoxib NSAID CYP2C9 116 (39 IM, 4 PM: 37%)

Ciprofloxacin Anti-infective G6PD 42 (PGx not available)

Citalopram Anti-depressant CYP2C19 31 (4 IM, 13 RM, 1 UM: 58%)

Clozapine Anti-psychotic CYP2D6 1 (1 IM: 100%)

Codeine Opioid CYP2D6 26 (8 IM, 3 PM, 1 UM: 46%)

Diazepam Benzodiazepine CYP2C19 33 (3 IM, 10 RM, 3 UM: 50%)

Doxepin Anti-depressant CYP2C19 5 (1 RM: 20%)

Escitalopram Anti-depressant CYP2C19 31 (2 IM, 13 RM, 1 UM: 52%)

Esomeprazole Acid-lowering CYP2C19 7 (2 IM, 1 RM: 43%)

Glipizide Anti-diabetes G6PD 5 (PGx not available)

Hydrocodone Opioid CYP2D6 127 (47 IM, 11 PM, 2 UM: 48%)

Ibuprofen NSAID CYP2C9 144 (44 IM, 5 PM: 34%)

Meloxicam NSAID CYP2C9 29 (10 IM, 1 PM: 38%)

Metoclopramide Anti-nausea CYP2D6 19 (8 IM, 1 PM: 47%)

Metoprolol Anti-hypertensive CYP2D6 21 (9 IM, 2 PM: 52%)

Nitrofurantoin Anti-infective G6PD 30 (PGx not available)

Omeprazole Acid-lowering CYP2C19 83 (14 IM, 1 PM, 23 RM, 2 UM: 48%)

Pantoprazole Acid-lowering CYP2C19 14 (4 IM, 3 RM, 1 PM: 57%)

Paroxetine Anti-depressant CYP2D6 7 (5 IM: 71%)

Phenazopyridine Local anesthetic G6PD 12 (PGx not available)

Propranolol Anti-hypertensive CYP2D6 10 (5 IM, 1 UM: 60%)

Sertraline Anti-depressant CYP2C19 24 (2 IM, 7 RM, 1 UM: 42%)

Simvastatin Statin SLCO1B1 10 (7 DF, 1 NF: 80%)

Sulfamethoxazole/TrimethoprimAnti-infective G6PD 63 (PGx not available)

Tacrolimus Immunosuppressant CYP3A5 2 (0%)

Tobramycin Anti-infective MT-RNR1 12 (PGx not available)

Tramadol Opioid CYP2D6 99 (30 IM, 9 PM, 2 UM: 41%)

Venlafaxine Anti-depressant CYP2D6 38 (11 IM, 1 PM, 1 UM: 34%)

Voriconazole Anti-infective CYP2C19 2 (1 RM: 50%)

Warfarin Anti-coagulant
CYP2C9
VKORC1
CYP4F2

8 (1 IM, 13%)
8 (4 HET, 1 MUT: 63%)

8 (3 HET: 38%)
1 IM: intermediate metabolizer; PM: poor metabolizer; RM: rapid metabolizer; UM: ultra-rapid metabolizer; DF: decreased function; NF: no
function; HET: heterozygote for variant allele; MUT: homozygous for variant allele; PGx: pharmacogenetics. “PGx not available” indicates
that testing was not performed; however, the frequency of variants is expected to be ~0.2%). 2 NSAID: non-steroidal anti-inflammatory
drug.
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2.3. PGx Genotyping Panel and CYP2D6 Copy Number Variation Analysis

Of the 225 samples tested, nearly all samples performed well analytically using both
the genotyping and CYP2D6 copy number assays for 8 of the 10 pharmacogenes included
in Tables 1 and 2. The performed PGx testing was not designed to interrogate G6PD
or MT-RNR1. Data were summarized for the PGx results when all acceptance criteria
for the analytical data were met, and phenotypes were predicted based on consensus
nomenclature. Reasons for unacceptable results included poor quality and/or quantity of
DNA, inadequate amplification, or inconclusive data. Actionable variants were detected in
at least one of the eight pharmacogenes tested in this study for all patients. The patients
that were noted to be using each drug were further evaluated to identify the percentage of
patients with abnormal phenotype predictions, such as altered metabolism or non-standard
response regarding anti-cancer drugs (Table 1) and non-cancer drugs (Table 2).

For the anti-cancer drugs, no PGx variants were identified in DYPD, which is relevant
to 5-fluorouracil and capecitabine (CPIC Level A, FDA Tier 1), but CYP2D6 variants
associated with clinically relevant phenotypes were predicted for approximately half of
those patients (51%) prescribed tamoxifen (CPIC Level A, FDA Tier 3).

Non-cancer drug classes that were prescribed to at least one-third of patients (56/225)
included anti-depressants, anti-infectives, non-steroidal anti-inflammatory drugs (NSAIDs),
opioids, and proton pump inhibitors (Table 2). The most commonly prescribed drugs
included NSAIDs (ibuprofen (CPIC Level A, n = 144) and celecoxib (CPIC Level A, FDA
Tier 1, n = 116)), opioids (hydrocodone (CPIC Level B, n = 127) and tramadol (CPIC
Level A, FDA Tier 1, n = 99)), and the proton pump inhibitor omeprazole (CPIC Level
A, FDA Tier 3, n = 83). Variant PGx phenotypes were common for CYP2C9 (NSAIDs),
CYP2C19 (omeprazole) and CYP2D6 (opioids). Using omeprazole as an example, the PGx
data predicted that 48% of patients prescribed omeprazole would exhibit non-standard
metabolism. Because omeprazole is inactivated by CYP2C19, reduced metabolism is
associated with adverse events, whereas rapid metabolism is associated with poor efficacy.
Of the 83 patients prescribed omeprazole, there were 23 RMs and 2 UMs that might have
benefited from increased dosing of omeprazole. Likewise, there were 14 IMs and 1 PM
that might have benefited from decreased dosing of omeprazole. No changes to clinical
practice could be made for this cohort based on PGx associations because the data for the
study were all collected retrospectively.

The overall prevalence of CYP2C9, CYP2C19, and CYP2D6 phenotypes is shown
in Table 3. These data demonstrate a relatively high frequency of abnormal metabolic
phenotypes among this patient cohort, consistent with published allele frequencies for
Caucasians. As such, patients requiring polypharmacy could theoretically benefit from
pre-emptive PGx testing. Variants in the genes that code for glucose 6-phosphate dehy-
drogenase (G6PD) and for mitochondrial 12S rRNA (MT-RNR1) are rare in Caucasian
populations such as this cohort, although they could potentially be clinically important in
other populations [18–20].

Table 3. Number of breast cancer patients (%) predicted to exhibit variant metabolic phenotypes for
common pharmacogenes involved in drug metabolism.

Gene
Poor

Metabolizer
(PM)

Intermediate
Metabolizer

(IM)

Normal
Metabolizer

(NM)

Rapid
Metabolizer

(RM)

Ultra-Rapid
Metabolizer

(UM)

CYP2C9
(n = 219) 7 (3%) 72 (33%) 140 (64%) None None

CYP2C19
(n = 218) 4 (2%) 41 (19%) 104 (47%) 58 (26%) 11 (5%)

CYP2D6
(n = 220) 20 (9%) 81 (37%) 115 (52%) None 4 (2%)
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3. Discussion

The purpose of this study was to demonstrate the potential relevance of pre-emptive
PGx testing in a cohort of 225 patients with breast cancer. Polypharmacy is common
amongst this cohort and many patients have PGx associations with high levels of evidence
for actionability. Three patient case examples were selected for discussion, with PGx
associations indicated in parenthesis after the introduction of each drug.

3.1. Case 1: Drug–Gene Interactions

The patient was a 65-year-old postmenopausal white woman diagnosed with stage IIB
invasive ductal/lobular breast cancer (Supplemental Figure S1). Immunohistochemistry
biomarkers were ER+/PR+/HER2–. The patient received a mastectomy and axilla lymph
node dissection, radiation therapy, and adjuvant docetaxel (no CPIC or FDA associations)
and cyclophosphamide (NQO1, SOD2, GSTP1—CPIC Level D), followed by adjuvant
tamoxifen (CYP2D6—CPIC Level A, FDA Tier 3). This patient had co-administration of
several high-level evidence PGx medications for non-cancer therapy, including ondansetron
(CYP2D6—CPIC Level A) for nausea, omeprazole (CYP2C19—CPIC Level A, FDA Tier 3)
for gastric reflux/ulcers, simvastatin (SLCO1B1—CPIC Level A, FDA Tier 2) for managing
high cholesterol, and hydrocodone (CYP2D6—CPIC Level B) for pain management. She
was also on medications associated with lower-level evidence PGx, including the opioid
oxycodone (OPRM1, COMT—CPIC Level C, also relevant to hydrocodone) and the anti-
depressant fluoxetine (CYP2D6, GRIK4—CPIC Level C).

Focusing on the high-level PGx evidence, this patient was predicted to be a poor
metabolizer (PM) of CYP2D6 based on inheriting two non-functional alleles (CYP2D6
*4/*5). Furthermore, she was a rapid metabolizer (RM) for CYP2C19, having inherited
one increased function allele (CYP2C19 *17). No variants were detected in SLCO1B1. The
lower-level genes (CPIC Levels C and D) were not evaluated.

This patient was on four medications that required CYP2D6 for metabolism (tamoxifen,
ondansetron, hydrocodone, and fluoxetine). Because tamoxifen and hydrocodone are
activated by metabolism, a PM may require higher than standard dosing of those two drugs.
Because ondansetron and fluoxetine are inactivated by metabolism, a PM may require lower
than standard dosing. Regarding tamoxifen specifically, initial studies showed a direct
correlation between CYP2D6 activity, conversion of tamoxifen to its active metabolites
endoxifen and 4-hydroxytamoxifen, and outcome [3,21,22]. However, a recent prospective
trial of early-stage breast cancer patients receiving tamoxifen found no association between
CYP2D6 genotype and outcome [23]. Current guidelines to oncologists from the National
Comprehensive Cancer Network (NCCN) do not recommend CYP2D6 testing prior to
prescribing tamoxifen, although CPIC evidence predicts a lack of efficacy of tamoxifen
in patients with poor CYP2D6 metabolism [24,25]. Furthermore, the NCCN cautions
that selective serotonin re-uptake inhibitor (SSRI) anti-depressants such as fluoxetine
and paroxetine can lower tamoxifen efficacy. The CPIC did not find sufficient evidence
for CYP2D6-guided fluoxetine recommendations. There remains a need for properly
designed trials associating the CYP2D6 phenotype to outcome, as long-term survival in ER+
breast cancer is confounded by many factors such as the tumor subtype [1], menopausal
status [26], use of aromatase inhibitors [5], and chemotherapy [27]. Since this patient
was post-menopausal and was a CYP2D6 PM, an aromatase inhibitor would be preferred
over tamoxifen.

Omeprazole is inactivated by CYP2C19. As this patient was predicted to be a CYP2C19
RM she may have experienced inadequate acid suppression by omeprazole [28,29]. Her
medication could have been optimized by either increasing the dose of omeprazole or
switching to a proton pump inhibitor that was not metabolized by CYP2C19 [29]. Clinical
records were not sufficiently detailed to evaluate the success of these medications or the
specific dosing requirements for this patient retrospectively.
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3.2. Case 2: Drug–Drug Interactions/Phenoconversion

The patient was a 54-year-old perimenopausal white woman diagnosed with stage IIA
invasive ductal breast cancer. Immunohistochemistry showed that the tumor biomarkers
were ER+/PR–/HER2–. The patient received neoadjuvant chemotherapy with doxorubicin
(SLC28A3—CPIC Level B/C; HAS3, NQO1, CBR3—CPIC Level D), cyclophosphamide
(GSTP1, NQO1, SOD—CPIC Level D), and paclitaxel (no CPIC or FDA associations), fol-
lowed by mastectomy and axilla lymph node dissection. She was prescribed capecitabine
(DPYD—CPIC Level A, FDA Tier 1) after radiation therapy and then given adjuvant
tamoxifen (CYP2D6—CPIC Level A, FDA Tier 3). High-level PGx evidence is known for ta-
moxifen, as previously discussed, and capecitabine. Germline variants in DPYD are known
to predict fluoropyrimidine-associated toxicity from capecitabine or 5-fluorouracil [30], but
DPYD testing prior to starting these drugs is not standard of care. The patient was also
on non-cancer medications including ondansetron (CYP2D6—CPIC Level A) for nausea,
hydrocodone (CYP2D6—CPIC Level B), tramadol (CYP2D6—CPIC Level A, FDA Tier 1),
and ibuprofen (CYP2C9—CPIC Level A) for pain, and paroxetine (CYP2D6—CPIC Level
A, FDA Tier 3) for depression [31]. She was concurrently prescribed medications associ-
ated with lower-level PGx evidence including metoprolol (CYP2D6—FDA Tier 3) for high
blood pressure.

Focusing on the high-level PGx evidence, this patient was predicted to be a CYP2D6
intermediate metabolizer (IM) with one non-functional allele (CYP2D6 *4). No vari-
ants were detected in CYP2C9 or DPYD. Although she was predicted to have moderate
CYP2D6 activity, the use of multiple CYP2D6 substrates could be detrimental based on
competition for enzyme activity, potentially leading to decreased activation of tamox-
ifen and the opioids, as well as decreased inactivation of ondansetron, paroxetine, and
metoprolol [32,33]. Metoprolol plasma concentrations can vary significantly depending on
CYP2D6 activity and are associated with bradycardia in PMs [34,35]. Clinical notes for this
patient documented that metoprolol was eventually discontinued. Avoiding metoprolol
and using a different beta-blocker in this patient could have been beneficial. However,
more evidence is needed to support proactive switching of metoprolol or switching to a
different anti-depressant based on predicted CYP2D6 phenotype alone.

3.3. Case 3: Non-Actionable but Potentially Relevant PGx Interactions

Patient was a 61-year-old post-menopausal white woman presenting with locally
advanced (stage IIIA), triple negative (ER–, PR–, HER2–), invasive ductal breast cancer. She
received neo-adjuvant chemotherapy with epirubicin (CBR3, GSTP1, HAS3, NQO1—CPIC
Level D), cyclophosphamide (GSTP1, NQO1, SOD—CPIC Level D), and paclitaxel (no
CPIC or FDA associations) followed by mastectomy and radiation therapy. She relapsed
approximately 18 months after her initial diagnosis and received additional radiation
therapy, as well as adjuvant carboplatin (MTHFR—CPIC Level C) and capecitabine (DPYD—
CPIC Level A, FDA Tier 1). Non-cancer therapy consisted of ondansetron (CYP2D6—CPIC
Level A) for nausea, as well as morphine (OPRM1, COMT—CPIC level C) and tramadol
(CYP2D6—CPIC Level A, FDA Tier 1; OPRM1, COMT—CPIC level C) for pain management.
She was also prescribed medical marijuana (no CPIC or FDA associations).

Focusing on the high-level evidence PGx, this patient was a CYP2D6 intermediate
metabolizer (IM) with one non-functional allele (CYP2D6 *4). No variants were detected in
DPYD. Similar to case 2, the use of multiple CYP2D6 substrates could decrease enzyme
activity, potentially leading to decreased activation of the opioids, as well as decreased in-
activation of ondansetron. This patient had a poor overall outcome that could be primarily
attributed to her stage of disease and triple-negative biomarker status. Nevertheless, her
quality of life may have been improved by optimizing her non-cancer therapy. Of note, the
use of recreational (i.e., self-prescribed) and medical marijuana is becoming more common
for oncology patients and presents the potential for largely uncharacterized drug–drug
and drug–gene associations. Examples of potential PGx interactions with cannabinoids
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include genes that code for receptors (CNR1, CNR2, TRPV1, GPR55), transporters (ABCB1,
ABCG2, SLC6A4), and drug-metabolizing enzymes (CYP3A4, CYP2C9, CYP2C19) [36].

3.4. Major Points

Pre-emptive germline PGx testing is not routinely performed in clinical practice in the
US in part because of limited support for interpretation and implementation. Drug–drug
and drug–gene interactions are very complicated and likely require support for clinical
decisions that integrates clinical, demographic, and PGx data. In addition, the FDA does
not mandate PGx testing for most drugs. It is clear that the population of patients with
breast cancer studied here was exposed to multiple medications, and the existing PGx
evidence could have helped guide prescribing decisions. A lack of pre-emptive germline
PGx testing may also undermine the evaluation of drug–drug interaction risk because
normal/reference phenotypes are assumed. PGx would improve the prediction of drug–
drug interaction accuracy and effectiveness during active breast cancer treatment and
beyond. Identification of an extreme phenotype could help inform prescribing decisions
for biological relatives as well.

Some limitations of our study are as follows: (1) Not all potentially relevant pharma-
cogenes and variant alleles were included as part of the PGx testing performed; (2) The
comprehensive accuracy of pharmacy information in this cohort (e.g., exact timing and
dosages of all drugs per patient) was uncertain; and (3) The timing of drug administration
(prescription and non-prescription), which requires intensive pharmacy oversight and
management, was not evaluated. Prospective implementation goals and content should be
designed for future studies, recognizing that drug–gene associations beyond and poten-
tially different from the 38 drug–gene associations described here may have relevant PGx
that could benefit other patient populations.

4. Materials and Methods
4.1. Subjects

This was a retrospective study of 225 patients with breast cancer treated at the
Huntsman Comprehensive Cancer Center (Salt Lake City, UT, USA). A consecutive series
of individuals diagnosed with invasive breast cancer (primarily ductal histology) from
2016–2018 was ascertained through Research Informatics Shared Resources databases at the
Huntsman Cancer Institute. Patients provided informed consent at the time of diagnosis
using IRB-approved protocols (Total Cancer Care—IRB#89989 and Molecular Classifica-
tions of Cancer—IRB#10924), which allowed for the collection of biological specimens and
clinical data. PGx testing was performed with archived whole blood. Detailed pharmacy
and clinical data were obtained for each patient.

4.2. Genetic Analyses and Phenotype Assignment

DNA was extracted from peripheral blood samples using the chemagen M-PVA mag-
netic Bead Technology and Chemagic MSM I instrument (PerkinElmer Inc.,
Walthan, MA, USA), and normalized to 50 ng/µL. Samples were evaluated with a targeted
OpenArray genotyping panel using TaqMan Real-Time PCR chemistry and commercially
available assays on the QuantStudioTM 12K Flex OpenArray® instrument (Thermo Fisher
Scientific, Waltham, MA, USA). Data were analyzed using the TaqMan Genotyper software
(version 1.3) to assign zygosity for 120 variants in 36 pharmacogenes (see Supplemental
Table S3). Results for duplicate testing of each sample were further evaluated for agreement
using Microsoft Excel. DNA samples diluted to 5 ng/µL were also evaluated for CYP2D6
copy number using two assays designed to interrogate CYP2D6 exon 9 (Hs00010001_cn)
and intron 6 (Hs04502391_cn) on the QuantStudioTM 12K Flex OpenArray® instrument
(Thermo Fisher Scientific, Waltham, MA, USA). Samples were tested in quadruplicate and
data were analyzed using the CopyCaller software (version 2.1), with the copy number
being assigned [37]. The *1 allele was assigned when none of the targeted variants were
detected, for those genes with consensus nomenclature based on “star” alleles. Otherwise



Cancers 2021, 13, 1219 9 of 11

alleles were based on the nucleotide detected, compared to the reference nucleotide for the
rs number targeted by the assay. All diplotypes and predicted phenotypes were determined
based on consensus nomenclature [17,38].

4.3. Data Analysis

Patients were consented under IRB-approved protocols at the University of Utah to
allow researchers to associate the patient’s genetic data with their clinical information.
Prescribed drugs and additional clinical information for each patient were extracted from
the Huntsman Cancer Center’s Research Informatics Shared Resource (RISR). De-identified
samples were provided by the Huntsman Cancer Institute to ARUP Laboratories for
analyzing the samples for research (i.e., not for clinical purposes). All PGx data were
analyzed using Microsoft Excel and LifeOmic’s (Indianapolis, IN, USA) Precision Health
Cloud (PHC). In the PHC, pharmacy and clinical data were aggregated with PGx results as
standardized FHIR (http://hl7.org/fhir/) (accessed on 10 January 2021) resource types:
Medications, Conditions, Procedures, and Observations. Detailed pharmacy data included
medication name, dosage, frequency, and duration. Medications were categorized into
drug classes. Within the PHC’s graphical User Interface, visualizations were configured to
show longitudinal representation of each patient’s clinical events over time (Supplemental
Figure S1). This clinical timeline view includes medication duration, reason for medication
discontinuation, age of diagnosis, date of procedures, and a graphical representation of
Karnofsky Performance Status scores over time. In addition to this graphical timeline, all
data are also represented in tables. This unified, structured database provides a summary
of all indexed data at the patient level, and in aggregate, to support complex querying
across data types and patients with the ability to define cohorts and visualize data sets to
support this study. No clinical decision support or translational guidance based on PGx
data was provided within the PHC product.

5. Conclusions

This study illustrates the potential utility of pre-emptive PGx testing in patients with
breast cancer. Such information could be used to guide patient therapy and help clinicians
make more informed drug treatment decisions to improve patient outcomes and avoid
adverse drug events.
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cancer patient referenced in Case Study 1.
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