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Choline and docosahexaenoic acid during the first 1000 days
and children’s health and development in low- and middle-
income countries

Megan G. Bragg @, Elizabeth L. Prado, and Christine P. Stewart

Choline and DHA are nutrients that, when provided during the first 1000 days from
conception to age 2 years, may have beneficial effects on child neurodevelopment
as well as related health factors, including birth outcomes and child growth, mor-
bidity, and inflammation. Because these nutrients are found mainly in animal-
source foods, they may be lacking in the diets of pregnant and lactating women
and young children in low- and middle-income countries, potentially putting chil-
dren at risk for suboptimal development and health. Prior reviews of these nutrients
have mainly focused on studies from high-income countries. Here, a narrative re-
view is presented of studies describing the pre- and postnatal roles of choline, doco-
sahexaenoic acid, and a combination of the 2 nutrients on child neurodevelopment,
birth outcomes, growth, morbidity, and inflammation in low- and middle-income
countries. More studies are needed to understand the specific, long-term effects of
perinatal choline and docosahexaenoic acid intake in various contexts.

INTRODUCTION morbidity, and inflammation, which are common in

LMICs and linked to impaired neurodevelopment.*

The period from conception through the first 2 years af-
ter birth (termed the “first 1000 days”) is a time of rapid
neurodevelopment when developmental trajectories are
malleable to contextual exposures, with outcomes nega-
tively affected by risk factors and positively affected by
interventions." Nearly 250 million children younger
than 5 years in low- and middle-income countries
(LMICs) are at risk for not reaching their developmen-
tal potential , which can have adverse effects on future
schooling, productivity, and health.> Although many
environmental conditions influence neurodevelopment,
nutrition is a major component.” Nutrition also affects
factors such as preterm birth, childhood stunting,

Choline and docosahexaenoic acid (DHA) are 2
nutrients that may influence child neurodevelopment,
as well as birth outcomes, growth, morbidity, and
inflammation.

Both choline and DHA can be endogenously pro-
duced from precursors; however, it is unlikely that en-
dogenous production is sufficient to meet needs, so
recommended intake levels have been established for
pregnant and lactating women and young children
(Table 1).>° Except for DHA requirements for women,
these recommendations are based on adequate intake
levels and may over- or underestimate needs. Choline
recommendations, in particular, are based on few
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Table 1 Recommended intake levels for choline and docosahexaenoic acid in pregnant or lactating women and young

children

Choline (mg/d)° DHAP
Pregnant women 450 200 mg/d
Lactating women 550 200 mg/d
Infants aged 0-6 mo 125 0.10%-0.18% of total energy
Infants aged 7-12 mo 150 10-12 mg/kg
Children aged 1-2y 200 10-12 mg/kg

Abbreviation: DHA,docosahexaenoic acid.

aAdequate intake levels set by the United States Institute of Medicine.”

bAvgera e nutrient requirement levels (for women) and adequate int_ake‘levgls (for infants and children) set by the Food and
Agriculture Organization of the United Nations, World Health Organization.

studies and do not consider neurodevelopmental out-
comes. Whereas the World Health Organization devel-
oped the DHA guidelines with the Food and
Agriculture Organization of the United Nations, there
are no global guidelines for choline intake.

The main food sources of choline and DHA are of
animal origin, such as eggs and fish. Because animal
source foods may be expensive,” intake of choline and
DHA may be limited in many LMICs. Processed foods
may also provide choline as lecithin; as processed food
consumption increases in LMICs, this may become a
significant source. Breast milk is a rich source of choline
and DHA for young children, although concentrations
of both nutrients vary on the basis of maternal intake.>’
Foods contain different forms of choline (free choline,
phosphocholine, glycerophosphocholine, phosphatidyl-
choline, and sphingomyelin); each form should be in-
cluded in estimates of total choline intake.'’

A lack of representative food composition estimates
in national food databases limits assessment of dietary
intake; however, it seems intake often falls below rec-
ommended levels in LMICs. For example, in a review
that reported choline intake in 15 countries, intake
among women was lowest in Mexico (263 mg/d) and
highest in Sweden (374 mg/d).'” Another study in The
Gambia reported even lower intakes of choline
(155.2mg/d) among 62 nonpregnant women of repro-
ductive age.'" Intake of DHA below recommendations
is also common in LMICs. According to food balance
sheets from 175 countries, per capita availability of
DHA among low-income countries was 96 mg/day
compared with 184-473 mg/day across high-income
countries.'” Using similar data plus breastfeeding rates,
the median DHA intake among children aged 6-
36 months in LMICs was estimated to be 48.7 mg/day,
well below recommendations.'” These nutritional inad-
equacies may put children at risk for suboptimal devel-
opment and may be exacerbated by other common
health factors in LMICS. These include inadequate in-
take of other nutrients, such as iron, zinc, and vitamin
Bi,, required for endogenous production of DHA and
choline,*'* as well as conditions like gestational diabe-
tes mellitus and an altered composition of the gut
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microbiota, which may affect DHA and choline avail-
ability, respectively.'>'°

The relationship between poor intake and out-
comes is clouded by limitations in assessing choline and
DHA status. Plasma choline is poorly correlated with
intake across a range of intake levels,'*'” and may be af-
fected by plasma volume expansion in pregnancy.
Lipid-soluble forms of choline (such as phosphatidyl-
choline) are influenced by fat metabolism and transport
in lipoproteins. For DHA, red blood cell (RBC) concen-
tration is a better marker of habitual exposure than is
plasma concentration, although sample collection and
storage are more difficult.'®

Few reviews have examined choline and DHA to-
gether. Choline and DHA are present in many of the
same food sources and are hypothesized to have similar
effects on neurodevelopment, especially memory and
learning. Their metabolism is also linked—phosphati-
dylcholine molecules can incorporate DHA, as we de-
scribe later in this article—and there is evidence that
these nutrients work synergistically to promote neuro-
development.'” Several reviews have focused on either
choline or DHA, presenting evidence from predomi-
nantly high-income countries.”*">* This review presents
the evidence relating choline, DHA, and a combination
of the 2 nutrients during the first 1000 days of life to
children’s neurodevelopment, birth outcomes, growth,
morbidity, and inflammation in the context of LMICs.

METHODS

Literature searches were performed in PubMed using
the terms: choline, DHA, docosahexaenoic acid, fish,
egg; pregnancy, lactation, complementary feeding, for-
mula, infant; child development, neurodevelopment,
cognition, memory, vision, visual; child growth, height,
weight, head circumference; preterm, birth; morbidity;
diarrhea; enteropathy; inflammation; as well as a list of
LMICs based on World Bank income categories in
2019-2020. Abstracts and titles were screened for inclu-
sion. Reference lists were scanned for eligible studies.
Selected papers included observational studies or
randomized controlled trials (RCTs) in LMICs.
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Relevant animal studies were included in discussions of
mechanisms; however, only human trials were included
in discussions of the evidence in LMICs. All types of
interventions were eligible, including supplements,
foods, or dietary advice to consume foods rich in
choline and/or DHA, and studies could include co-
interventions, such as arachidonic acid (ARA) or eico-
sapentaenoic acid (EPA). Studies published in English
by August 11, 2020, were eligible.

The outcomes assessed were neurodevelopment
(behavioral and physiological measures), physical
growth (height, weight, head circumference, measures
of adiposity), birth outcomes (preterm birth/gestational
age, birth length, birth weight), morbidity (illnesses
such as diarrhea, environmental enteropathy), and bio-
chemical markers of inflammation. Visual development
was included with neurodevelopmental outcomes,
when available. Morbidity and inflammation data are
presented together because of the limited number of
studies identified. Outcomes could be measured at any
age; however, the initial exposure assessment must have
been during pregnancy or the first 2 postnatal years.
Articles were organized by the nutrient of interest (cho-
line, DHA, or both) and the timing of exposure (prena-
tal, postnatal, or across both periods).

Choline

Proposed mechanisms Choline is an essential micronu-
trient that is important for early neurodevelopment. In
rodent studies, clear improvements were observed in
lifelong memory when choline was supplemented dur-
ing specific pre- and postnatal periods,”* " in part by
altering rates of mitosis and apoptosis of neural progen-
itor cells in the hippocampus and the cerebral cor-
tex.””?® These effects are epigenetically mediated
through conversion of choline to the methyl donor be-
taine.”” Betaine donates a methyl group to homocyste-
ine to form methionine and eventually S-adenosyl
methionine. These epigenetic changes may affect neuro-
development in indirect ways, as well. For example,
high maternal intake of choline decreases placental ex-
pression of cortisol-stimulating genes, with potential
effects on learning and memory.>® Choline may also af-
fect development in its role as a precursor of phosphati-
dylcholine and acetylcholine. Phosphatidylcholine is a
major component of cell membranes and a precursor of
sphingomyelin, required for myelination of neurons,
and the cell-signaling molecule diacylglycerol.
Acetylcholine is a neurotransmitter involved in the
encoding of new memories in the hippocampus; it is
also a neuromodulator that influences neurogenesis and
synapse formation.>'
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Compared with neurodevelopment, there is less
mechanistic evidence for choline’s role in birth out-
comes, child growth, morbidity, and inflammation. In
rodent models, prenatal choline supplementation mod-
ulates nutrient transport across the placenta, increasing
choline availability and altering glucose and amino acid
metabolism.”* As a methyl donor, choline may reduce
homocysteine levels, which are associated with adverse
pregnancy outcomes,” and increase vitamin By, avail-
ability in pregnant women.” Perinatal choline may also
influence bone growth and body size. Rodent knockout
models without the choline kinase enzyme (which con-
verts choline to phosphocholine) have altered bone for-
mation,”*?® and phosphatidylcholine is required for the
production of new cell membranes. Related to morbid-
ity and inflammation, choline supplementation in
rodents reduced markers of inflammation after lipo-
polysaccharide administration during pregnancy.’’
Different forms of prenatal choline (eg, free choline or
phosphatidylcholine) also may affect development of
the offspring immune system.”® Choline’s roles outside
of neurodevelopment are active areas of research.

Choline during pregnancy

Designs of reviewed studies. Two RCTs in LMICs have
been conducted to study prenatal choline supplementa-
tion in human populations. In South Africa, heavy alco-
hol consumers were randomly assigned to choline (2 g/
d) or placebo from mid-pregnancy until delivery
(n=69).> Although baseline plasma choline concentra-
tion was not reported, mean choline intake at baseline
was below guidelines for pregnant women (~ 370 mg/d
in both groups). In a trial in Ukraine, researchers also ex-
amined the effect of choline among women who con-
sumed alcohol during pregnancy (n=163); however,
this trial enrolled abstaining pregnant women, as well (n
= 204).*>*! Women were randomly assigned to a daily
multiple micronutrient supplement (MMS) with 750 mg
of choline, MMS alone, or standard of care (ie, no provi-
sion of supplements) from the first prenatal visit until de-
livery. The subgroups that received choline were small (n
= 19 alcohol consumers and n = 18 alcohol abstainers).
Baseline plasma choline levels were similar across groups
(~15pmol/L). The primary outcome of both trials was
neurodevelopment during the first year of life. One ob-
servational study in China reported associations of ma-
ternal plasma choline with birth outcomes.*> We found
no studies in LMICs that reported on prenatal choline
and infant morbidity or inflammation.

Neurodevelopment. In the South African trial, infants in

the choline group had improved eye-blink condition-
ing, an early marker of learning and memory, than did
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control infants at 6.5months; however, this was only
significant after removing 4 infants in the choline group
whose mothers were considered to have poor adher-
ence. The choline group also had significantly higher
mean novelty preference scores on the Fagan Test of
Infant Intelligence compared with control children at
12 months (64.5% vs 59.1%; P < 0.05), demonstrating
improved visual recognition memory. There were no
effects on information processing speed at 6.5 or
12 months.”® In the Ukrainian trial, addition of choline
to MMS did not significantly affect Bayley Scales of
Infant  Development (BSID) II  Psychomotor
Development Index or Mental Development Index
scores at 4-11 months.*' However, infants in the cho-
line group demonstrated improved encoding and mem-
ory of visual stimuli, as measured by larger and faster
changes in heart rate during habituation and dishabitu-
ation tasks at 4-11 months.*’

Together, the findings from these 2 studies suggest
neurodevelopmental benefits in the first year from pre-
natal supplementation of choline doses from 750 mg-
2g/d, although this may be primarily generalizable to
women who consume alcohol during pregnancy. More
studies are required with abstaining women in LMICs
and with prolonged follow-up to assess the long-term
effects of prenatal choline supplementation. Detecting
effects of choline may depend on the neurodevelop-
mental assessment methods used. Assessments of atten-
tion and memory based on eye-blink, eye movements,
and heart rate may be more sensitive than assessments
based on acquisition of developmental milestones, such
as the BSID.

Pregnancy outcomes. In the South African trial, there
was no difference between groups in mean gestational
age (choline, 38.8 weeks vs control, 38.9 weeks) or inci-
dence of low birth weight (LBW) (25.0% vs 32.3%), al-
though mean birth length was nonsignificantly lower in
the choline group (47.2cm [SD, 3.3] vs 48.9cm [SD,
3.7]; P < 0.1).* In Ukraine, birth outcomes were com-
pared by maternal supplementation (MMS vs standard
of care; MMS with choline vs MMS alone) and alcohol
consumption. Children whose mothers received the
MMS with or without choline had significantly higher
birth weight compared with the standard-of-care con-
trol group, a pattern that was evident among those born
to women who consumed alcohol during pregnancy
and those born to women who abstained. However,
when contrasting the group who received MMS plus
choline with MMS alone, birth weight was significantly
lower (—126 g among mothers who consumed alcohol,
and —171 g among abstaining mothers; P=0.048).*’ In
an observational study of 115 pregnant women in

Nutrition Reviews® Vol. 80(4):656-676

China, maternal plasma choline was not associated with
birth outcomes, although the choline metabolite betaine
was inversely associated with birth weight.**

The scant information available suggests additional
prenatal choline may be related to smaller birth size;
however, this reflects the findings of only 2 small trials
that enrolled women who consumed alcohol during
pregnancy, neither of which were designed to investi-
gate birth outcomes. Future studies should explore the
link between prenatal choline supplementation and
birth size in LMICs.

Child growth. In the South African trial, the control
group decreased in weight, length, and head circumfer-
ence z scores over the first year; in contrast, the choline
group experienced catch-up growth in weight percentile
and head circumference percentile from birth to
12 months.” No studies reported on growth after pre-
natal choline supplementation among women who did
not consume alcohol.

Choline from birth to 2 years

Designs of reviewed studies. No trials of early postnatal
(0-2years) choline supplementation in LMICs were
identified. Three observational studies reported on the
association of choline and growth within this life stage
in Malawi,” Brazil,* and Bangladesh.*” No studies
reported on early postnatal choline supplementation
and child neurodevelopment, morbidity, or inflamma-
tion in LMICs.

Child growth. In a cross-sectional study of 325 Malawian
children aged 12-59 months, researchers observed a dif-
ference of 0.41 cm in height per 1 SD difference in serum
choline (P < 0.0001), with a larger magnitude in boys
(0.60 cm) than in girls (0.19 cm).® Ratios of betaine to
choline and trimethylamine N-oxide to choline, repre-
senting choline conversion to metabolites, were also in-
vestigated; both ratios were negatively associated with
children’s height-for-age z scores (HAZ).

In Brazil, urinary metabolites were measured
among 326 children age 6-24 months with weight-for-
age z scores (WAZ) of less than —2 or greater than —1.
Children with a WAZ less than —2 had lower concen-
trations of urinary choline metabolites, signifying
changes in choline metabolism among underweight
children.** In a metabolomics study of 130 Bangladeshi
children, sphingomyelins and phosphatidylcholine spe-
cies were positively associated with change in HAZ
from 9 months to 4 years.*> Overall, observational stud-
ies in LMICs provide evidence that serum or urinary
markers of choline concentration are positively associ-
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ated with child growth, although stronger study designs
must test this connection.

Choline during the first 1000 days To our knowledge, no
trials or observational studies in LMICs have reported
on the association between choline intake or plasma
choline concentration spanning pre- and postnatal peri-
ods and child neurodevelopment, growth, morbidity, or
inflammation.

Limitations and future directions More information is
needed regarding the role of perinatal choline in LMICs
on all child health outcomes. Both of the reviewed
RCTs enrolled alcohol consumers, and neither assessed
dose-response relationships or stratified by baseline
choline intake, limiting the ability to refine choline in-
take recommendations. Given that choline’s influence
on neurodevelopment is hypothesized to extend from
pregnancy through complementary feeding, potentially
up to year 4, studies of choline supplementation
across this period are needed. Studies should also exam-
ine the effects of prenatal choline on birth size, because
some studies suggest smaller length or weight after pre-
natal supplementation.

Docosahexaenoic acid

Proposed mechanisms DHA is a long-chain polyunsatu-
rated fatty acid (LC-PUFA) highly concentrated in
brain and retinal tissues, where it influences neural and
visual development. In animal models, perinatal supple-
mentation with DHA improved performance on cogni-
tive tests,”> and prenatal deficiency was associated with
poorer  cognitive performance.*®  Comprehensive
reviews of DHA’s mechanisms may be found else-
where.?* Briefly, increased DHA levels promote neural
development, including formation of hippocampal syn-
apses.”” Phospholipid-bound DHA in retinal mem-
branes influences visual signaling pathways by
interacting with rhodopsin.** DHA is also a ligand for
cell surface receptors such as GPR120, influencing anti-
inflammatory cell-signaling pathways,* and transcrip-
tion factors, influencing gene expression in the
brain.’>”! DHA is a precursor for a myriad of anti-
inflammatory metabolites, including resolvins and neu-
roprotectins®”; in producing these metabolites, DHA
blocks metabolism of ARA to pro-inflammatory eicosa-
noids, including prostaglandins and leukotrienes.
Because these metabolites have important physiological
functions, balance of DHA and ARA during early life
seems necessary for optimal development.®

DHA is well known for its anti-inflammatory
actions, including creation of anti-inflammatory eicosa-
noids, decreased production of inflammatory cytokines,
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and altered cell signaling.”* These changes affect devel-
opment of immune function in infants, as well.”
Prenatal DHA supplementation is associated with a
more mature infant immune system (characterized by
improved oral tolerance and a more balanced T-helper
cell 1 and T-helper cell 2 response) in humans.”®

LC-PUFAs including DHA are associated with lon-
ger gestation and larger birth weight,”” perhaps due to
altered production of eicosanoids involved in parturi-
tion.”® DHA may also promote prenatal growth via
changes in gene expression. Changes in methylation of
genes related to fetal growth and development (IGF2/
H129) were reported after prenatal DHA supplementa-
tion, only among preterm infants or overweight moth-
ers.” It is unclear if these changes in methylation could
affect postnatal growth.

DHA during pregnancy

Designs of reviewed studies. Seven trials examined the
effects of prenatal DHA supplementation in LMICs.
Neurodevelopment and pregnancy outcomes were the
primary focus of the trials identified. In Mexico, the
Prenatal DHA (Omega-3 Fatty Acid) Supplements on
Infant Growth and Development (POSGRAD) trial ran-
domly assigned 1094 women to 400 mg/d algal DHA vs
placebo during the second half of pregnancy.®® The
authors of this study reported a range of outcomes, and
the study was unique in supplementing DHA alone,
without other LC-PUFAs. In Bangladesh, 400 women
were randomly assigned to consuming fish oil daily
(containing 1.2g DHA, the largest dose among
reviewed trials) vs soy oil capsules daily throughout the
third trimester, and neurodevelopmental, growth, and
birth outcomes were reported.’ Five RCTs reported
only pregnancy outcomes, including a trial in China,®*
3 trials in Iran,”*"® and 1 in Egypt.°® Of note, the trial
by Ostadrahimi et al®® is included in this discussion of
pregnancy outcomes because participating pregnant
women were provided prenatal supplementation; how-
ever, supplementation continued after birth, and further
discussion of this trial is included later in the section on
pre- and postnatal DHA. This was also the only trial to
report DHA status at baseline.

Seven observational studies were identified, includ-
ing 2 in Mexico (1 reporting only neurodevelopmental
outcomes®” and 1 reporting pregnancy outcomes, child
growth, and inflammation®®) and 5 in India, which only
reported birth outcomes.**~">

development. In
Bangladesh, there was no improvement in infant BSID-
IT scores at 10 months after maternal supplementation
with a large dose of fish 0il.°" Similarly, the POSGRAD

Neurodevelopment and  visual
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study in Mexico reported no group differences in brain-
stem auditory-evoked potentials at 1-3 months, visual-
evoked potentials at 3-6 months,”* BSID-II scores at
18 months,” or McCarthy Scales of Children’s Abilities
scores at 5 years.”® However, compared with control
children, prenatal DHA supplementation was associated
with improved sustained attention at 5 years as mea-
sured by the percentage of children scoring < 40 on the
omissions subtest of the Conners’ Kiddie Continuous
Performance Test (14.4% vs 25.7%; P < 0.0001).”° No
association was found between DHA intake during the
third trimester and brainstem auditory-evoked poten-
tials at 1-3months in an observational study of 76
Mexican women.®’

The scant evidence suggests little effect of prenatal
DHA on neurodevelopment or visual processing in
LMICs. Studies with prolonged follow-up are needed to
determine if the delayed benefit to attention reported in
the POSGRAD trial is consistent across other studies.

Pregnancy outcomes. Of the 7 RCTs in which the effects
of prenatal DHA supplementation on birth outcomes
were examined, 3 trials reported significant effects
(Table 2°%°'-°%%%-73) 'In Iran, healthy pregnant women
receiving fish oil had fewer LBW infants compared with
a control group (0% vs 6.7%; P= 0.02)%%; however, simi-
lar studies among Iranian women with gestational dia-
betes reported null effects.’**> In the Mexican
POSGRAD study, there were no differences in birth
outcomes between groups except after stratification by
gravidity. Among primigravid mothers, prenatal DHA
supplementation was associated with heavier babies
with larger head circumference and lower risk of LBW
and intrauterine growth restriction.” In Egypt, women
with asymmetrical intrauterine growth restriction preg-
nancy, as measured via ultrasound, were given aspirin
with or without omega-3 fatty acids for 6 weeks during
the third trimester. The omega-3 group had greater esti-
mated fetal weight gain during the intervention and
larger birth weight at delivery, compared with those
who received aspirin alone.®®

Of the 6 observational reports, 5 were from pro-
spective studies in India that followed women through
pregnancy and delivery. Two reports noted positive
associations between maternal plasma or RBC DHA
levels and birth size.®>”° Two others reported lower pla-
cental DHA in preterm and LBW babies compared with
term and normal weight babies,”’* although in 1 re-
port, researchers found higher cord plasma levels of
DHA among LBW newborns.”” Interestingly, an obser-
vational study in Mexico found negative associations
between second trimester dietary intake of DHA, EPA,
and ARA with birth weight and length.® The authors
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suggest this may have been due to concomitant intake
of toxins like mercury or substitution of fish in place of
other animal source foods, rather than a negative effect
of DHA itself.*®

Opverall, evidence suggests a positive effect of prena-
tal DHA on birth outcomes, especially birth weight, in
LMICs. Several trials had relatively small sample sizes
(n =4 studies with n < 150 participants), perhaps limit-
ing the ability to detect differences in preterm birth or
gestational age, although the 2 largest trials (n > 1000
participants)®>®* also reported null effects on these out-
comes. More research is needed to understand the con-
text in which DHA, with or without other nutrients in
fish oil, may affect birth outcomes. Effects may vary on
the basis of maternal characteristics such as gravidity
and pregnancy risk; these characteristics should be
recorded in future studies.

Child growth. Growth outcomes in LMICs were
reported in 3 studies. In Bangladesh, mean weight-for-
height z scores (WHZ), WAZ, and HAZ at age 10
months were moderately low (—0.6 to —1.3) and not dif-
ferent between intervention and control groups.®’
Among primigravid mothers in the POSGRAD study,
children in the DHA group were 0.7 cm longer than con-
trol children at age 18months (95%CI, 0.1-1.3;
P=0.02).”” This effect was lost over time, with no differ-
ences in child growth between DHA and control groups
at 60 months.”® In an observational study in Mexico, ma-
ternal intake of DHA, EPA, and ARA during the second
trimester was negatively associated with child height and
body mass index (BMI) z score at ages 8-14 years.”® In
each of these studies, the relationship of DHA with post-
natal growth closely mirrored the relationship found
with birth size. Possibly, these results simply reflect al-
tered prenatal growth. Additional studies in LMICs may
help uncover relationships between DHA and postnatal
growth. Considering the opposing effects on linear
growth between the 2 Mexican studies, more informa-
tion is needed on DHA’s effects specific to height.

Morbidity and inflammation. In the POSGRAD trial,
Mexican infants whose mothers were supplemented
with DHA had fewer cold symptoms at 1 and 3 months
than did control infants (respectively: 37.6% vs 44.6%, P
< 0.05; and 37.8% vs 44.1%, P < 0.05).”° At 3 months,
the DHA group spent 14% less time sick than did the
control group.”” Children in the DHA group also had
fewer respiratory symptoms through 18 months of age,
but only among children whose mothers were atopic.*’
In the observational study in Mexico, there was no
association between maternal DHA intake and child-
ren’s C-reactive protein level or other markers of
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metabolic risk at 8-14years.® More studies in varied
contexts are needed to better understand this
relationship.

DHA from birth to 2 years

Designs of reviewed studies. Eight trials provided DHA
during the early postnatal period (0-2 years) in LMICs.
Generally, trials provided DHA either directly to breast-
feeding infants or via inclusion in infant formula or total
parenteral nutrition (TPN). Currently, DHA is recom-
mended for inclusion in infant formulas®'; however, in-
clusion is not required and may not occur in some
LMICs.** Many trials focused on neurodevelopment or
visual development (Table 3*>**°°), including 3 from
Turkey,***”*® and 1 each from Taiwan,*® The Gambia,*
Ethiopia,83 and Egypt.85 Of these trials, 2 provided fish
oil direcﬂy,“’89 2 provided fish oil via TPN,3*%” and 3
supplemented infant formula with DHA alone® or DHA
with ARA.*** Additionally, a trial in Malawi reported
on gut permeability and growth after supplementation
with a micronutrient powder and fish oil.”” Half of the
trials®>*>*%7 reported DHA status at baseline.

Ten observational studies described DHA in
plasma, RBCs, lipid emulsion or breast milk, and neuro-
development or growth outcomes across a range of
LMICs.

Neurodevelopment and visual development. Of 7 studies
in which visual development was measured, only 2
reported a significant relationship between DHA and vi-
sual development (Table 3). In a trial in Turkey, research-
ers reported that addition of fish oil to TPN emulsions
reduced risk for retinopathy of prematurity among very-
low-birth-weight preterm infants.** However, null
results were reported in 3 similar studies in Turkey and
Iran of preterm infants receiving TPN.*”°"% In
Argentina, malnourished infants who consumed stan-
dard formula had poorer retinal response to light stimuli
compared with those who consumed LC-PUFA-supple-
mented formula or breast milk’>; however, the study was
small (n=28), observational, and researchers did not
correct for potentially confounding factors, such as so-
cioeconomic status or maternal education. The 1 study
involving healthy, term children in Cuba found null asso-
ciations between plasma, RBC, or breast milk DHA con-
centrations and visual development.”?

Of 8 studies reporting neurodevelopmental out-
comes, 3 RCTs and 2 observational studies reported sig-
nificant results (Table3). Among RCTs, the 3 that
supplemented infant formula with DHA, with or with-
out other fatty acids, reported significant improvements
in neurodevelopment.®>*>* In both RCTs which

664

directly supplemented breastfeeding infants or lactating
women, null results were reported.®>*’

An observational study in Indonesia found that al-
though genotype of the FADS gene cluster, involved in
endogenous production of LC-PUFAs, was not related
to the BSID-II Mental Development Index at ages 12—
17 months, the plasma DHA-to-EPA ratio was posi-
tively associated with this score.”” In Tanzania, RBC
DHA was positively associated with movement patterns
at 10-20 weeks of age.”* However, there was no associa-
tion between RBC DHA in infancy and neurodevelop-
ment at 5 years in children in Nepal.”?

Overall, there is little evidence that DHA supple-
mentation improves visual or neural development for
healthy, breastfeeding children in LMICs. However,
benefits to visual development were seen among mal-
nourished or hospitalized infants, and there is support-
ive evidence for including DHA in infant formula.
There may be a relationship between plasma or RBC
DHA and neurodevelopment, limited to specific popu-
lations or developmental domains.

Child growth. Seven studies in LMICs included meas-
ures of child growth. Among trials, changes in body
composition and adiposity were commonly noted. In
The Gambia, infants who received fish oil had larger
mid-upper arm circumference for their age and triceps
skinfold thickness for age compared with control
infants.* In Ethiopia, fish oil provision to breastfeeding
infants, but not to lactating women, was associated with
increased monthly WHZ gains compared with control
infants.”® In a Malawian trial, children aged 12-
35months who received micronutrient powder with
fish oil gained more weight over 24 weeks than did con-
trol children (1.3kg vs 1.1kg; P=0.01).”” There was no
difference in linear growth, and no other anthropomet-
rics were reported. In Taiwan, in a trial of preterm
infants, researchers found no differences in child height,
weight, or head circumference with DHA-supple-
mented vs traditional formula; no measures of body
composition were reported.®®

Authors of 3 observational studies have reported a
relationship between DHA in serum or breast milk and
child height and weight; none included other anthropo-
metric indices. In Malawi, serum DHA and ARA con-
centrations were positively associated with HAZ among
400 Malawian children aged 12-59 months.”” In a small
sample in China (n=41), breast milk DHA was posi-
tively related to postnatal length gain at 1 month
(r=0.83) and 3 months (r=0.76; P<0.01 for both)
and weight gain at 3 months (r=0.46; P < 0.05)."% In
the Congo and Burkina Faso, children’s monthly weight
gain from birth to 5 months was examined in

Nutrition Reviews® Vol. 80(4):656-676
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association with breast milk fatty acid content. Monthly
weight gain decreased as the ratio of omega-6 fatty acids
to omega-3 fatty acids increased until a cutoff of 15:1, at
which point weight gain remained at a steady low.""
Although not specific to DHA, it suggests that a sub-
stantial intake of omega 3 fatty acids is needed among
lactating women with high intake of omega-6 rich oils
to optimize child weight gain.

Although authors of observational studies in
LMICs have noted links between DHA and child length
and weight, in RCTs, effects on body composition and
adiposity are more commonly reported. Few trials in-
cluded supplementation of preterm infants or lactating
women. Studies should investigate these populations
and include a variety of anthropometric measures.

Morbidity and inflammation. Five studies reported on
morbidity or inflammation related to postnatal DHA in
LMICs. In Ethiopia, prevalence of inflammation (based
on elevated C-reactive protein levels) and morbidity
was not different between groups after supplementing
lactating women or infants with fish oil vs a control; the
authors suggested this finding may have been due to the
low prevalence of inflammation and morbidity in this
study compared with others.”® In Malawi, all partici-
pants had high ratios (> 0.1) of lactulose to mannitol at
baseline, reflecting increased gut permeability, and
there was no difference among children who received
micronutrient powder with or without fish oil for
24 weeks compared with the control group.”” Similarly,
in The Gambia, the average ratio of lactulose to manni-
tol was 0.22, and nearly half of children had elevated C-
reactive protein levels. Children who received fish oil
had no differences in lactulose-to-mannitol ratio, in-
flammatory markers, or morbidity, compared with con-
trol children.*

In Turkey, there were no changes in pro- or anti-
inflammatory cytokine levels among preterm children
randomly assigned to receive fish oil vs standard lipids
in TPN. However, there was a lower prevalence of bron-
chopulmonary dysplasia in the fish oil group, and total
antioxidant capacity was higher after 7days, but not
14 days, of treatment.®” In a similar study in Turkey,
provision of fish oil did not reduce morbidity or mor-
tality rate, and total antioxidant capacity was higher in
the fish oil group than in the control group, but this dif-
ference disappeared after treatment ended.”® Overall,
there is little support for an effect of postnatal DHA on
inflammation, gut permeability, or morbidity in LMICs.

DHA across the first 1000 days To our knowledge, only
1 study has described pre- and postnatal DHA provi-
sion in an LMIC. In Iran, 150 women were randomly
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assigned to receive fish oil or liquid-paraffin placebo
from 20weeks gestation to 30days postpartum.'®>
Pregnancy outcomes are reported in Table3.
Developmentally, there were no differences across the 5
domains of the Ages and Stages Questionnaire at 4 or 6
months, except higher communication scores in the
fish oil group at 4 months.'’> No differences in infant
length, weight, or head circumference were noted be-
tween groups from birth to 6 months.'’> Morbidity and
inflammation data were not reported.

Limitations and future directions The literature from
LMICs suggests positive effects of prenatal DHA sup-
plementation on birth weight and morbidity, with a po-
tential delayed benefit to attention at age 5 years.
Additionally, studies in LMICs support the addition of
DHA to infant formula for improved neurodevelop-
ment. Across life stages, conclusions have been limited
by variations in dose, timing, vehicle, context, and co-
interventions. The effects of DHA may vary with base-
line DHA status; however, few trials reported this infor-
mation. Many trials also lacked endline measures of
status, relying on maternal report or pill counts for ad-
herence data. Future trials should explore pre- and post-
natal supplementation, including to preterm infants or
lactating women.

Choline and DHA

Proposed mechanisms Beyond the individual effects of
choline and DHA, the 2 may work together to improve
neurodevelopment.'” Among malnourished pigs, addi-
tion of dietary DHA, methyl donor nutrients including
choline, or both attenuated losses in fetal brain weight
compared with controls.'” Combined choline and
DHA administration decreases brain inflammation'®*
and oxidative stress'®” in mouse models. In fact, these
nutrients may work synergistically: offspring of dams
supplemented with choline and DHA had more hippo-
campal neurons than those given either nutrient
alone.'%

This synergy reflects the interconnected nature of
choline and DHA metabolism. Phosphatidylcholine
incorporates DHA via the phosphatidylethanolamine
N-methyltransferase pathway and is the main carrier of
DHA in plasma, including among preterm infants.'"”
Lysophosphatidylcholine-DHA is the main form of
DHA transported into the brain and eye, via the
Mfsd2a transporter.'%® Maintenance of
phosphatidylcholine-DHA levels is important for neural
progenitor cell proliferation.'” Additionally, choline
and DHA affect each other’s transport and metabolism.
Prenatal choline supplementation increases placental
transcript abundance of DHA transporters in mice.’
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Likewise, DHA increases choline uptake in retinal
cells'"'® and stimulates production of acetylcholine in
cultured cholinergic cells.""’ When choline and DHA
are provided together, circulating levels of each nutrient
increase more than when provided separately.''>'"”
Although this synergy has been linked to improved
neurodevelopment, its relationship with birth out-
comes, growth, morbidity, and inflammation is unclear.

Choline and DHA during pregnancy No studies specific
to prenatal choline and DHA were identified in LMICs.
Several studies of fish or egg intake were identified and
included in this review, because fish and eggs are sour-
ces of choline and DHA. Although typically studied for
its omega-3 fatty acids, fish also contains choline. (Fish
oil, on the other hand, does not.) Eggs also provide
these nutrients, although the DHA content varies. Both
provide other food components as well, including neu-
roprotective factors like iodine or iron, and toxins like
mercury. To understand the unique effects of choline
and DHA, studies specific to these nutrients are needed.

Several observational studies have reported a link be-
tween maternal fish or egg consumption and birth out-
comes in LMICs. Prospective cohort studies in
Iran,"'*'" Turkey,''® and India''” linked increased fish
intake during pregnancy to decreased odds of LBW, al-
though in 1 study in India, the opposite relationship was
reported.''® Risk for preterm birth was also inversely re-
lated to fish consumption in Iran''*'"> and Pakistan.'"’
Maternal consumption of eggs was positively associated
with birth weight in Iran and India."'>''®* We found no
studies that reported on neurodevelopment, child
growth, morbidity, or inflammation.

Choline and DHA from birth to 2 years

Designs of reviewed studies. Although no studies in
LMICs have examined postnatal choline and DHA di-
rectly, 9 studies investigated foods containing choline
and DHA along with other nutrients. In 3 RCTs, sup-
plements fortified with choline, DHA, and other
nutrients were compared with traditional supplemental
foods and nonsupplement controls in Guinea-Bissau,
South Africa, and Cambodia.'**'** In 2 RCTs,
researchers examined the provision of 1 egg/day during
the early complementary feeding period (6-15 months)
vs a nonintervention control in Ecuador (The Lulun
Project) and Malawi (The Mazira Project).'*>'** One
study in China compared the effects of nutrition educa-
tion, including recommendations to provide daily egg
yolks as an infant’s first food vs a nonintervention con-
trol on children’s growth.'”> Only 1 trial presented
baseline measures of choline and DHA status, in a sepa-
rate article.'”® An observational study in Haiti examined
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neurodevelopment,'?” and 2 in India and Zambia stud-
ied growth.'*®!*

Neurodevelopment. In Guinea-Bissau, children younger
than 4 years had improved working memory and better
cerebral blood flow with consumption of a supplement
containing DHA, choline, and other nutrients, com-
pared with a traditional meal, but there was no difference
compared with a common fortified food (Corn Soy
Blend++)."*° No other domains of development were
measured. In the South African trial, a fortified, small-
quantity, lipid-based nutrient supplement (SQ-LNS-
plus) was associated with improved locomotor develop-
ment, as measured by the Kilifi Developmental
Inventory at 12 months, compared with a noninterven-
tion control.'*! The standard SQ-LNS was not different
from nonintervention control, suggesting the additional
nutrients were responsible for these findings. In the
Mazira Project in Malawi, daily egg consumption did
not affect children’s memory, attention, language, or
personal social scores, but there were fewer children
with delayed fine-motor development compared with
control children (prevalence ratio, 0.59; 95%CI, 0.38-
0.91)."*° Children’s egg intake was also associated with
motor, but not language, development in an observa-
tional study of 583 infants in Haiti; other developmental
domains were not measured.'*’

Together, the limited evidence from LMICs sug-
gests a benefit to neurodevelopment, especially motor
development, from postnatal intake of choline- and
DHA-containing foods. No studies provided these
nutrients to lactating women; this may be an area for
future research.

Child growth. Eight studies reported on child growth in
LMICs (Table 4'207126:128129.131y "1y Gujnea-Bissau, the
fortified supplement was associated with decreased
WAZ, BMI for age, fat tissue accretion, and increased
lean tissue accretion compared with the corn-soy blend
among children younger than 4 years."”’ In Cambodia,
consumption of a novel ready-to-use supplemental food
with choline, DHA, and other nutrients was associated
with increased mid-upper arm circumference compared
with that of nonintervention control children, but there
were no differences in HAZ, WAZ, or weight-for-length
z score.'**

Researchers have noted an effect on linear growth
in several trials. In South Africa, HAZ was higher in the
SQ-LNS-plus group than in the control group at ages
8 and 10 months, but not 12 months; the standard SQ-
LNS group was not different from the control group.'*!
Large increases in HAZ (effect size: 0.61; 95%CI, 0.45-
0.77) and WAZ (0.61; 95%CI, 0.37-0.77), as well as
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increases in WHZ and BMI for age, were noted after
egg provision in Ecuador.'”> However, these effects
were absent 2 years later, suggesting a longer interven-
tion may be needed to sustain benefits.">* In Malawi,
despite a similar study design, no effects on HAZ,
WAZ, or WHZ were reported after egg provision, al-
though head circumference for age was larger in the in-
tervention group.'** This difference in response may be
due to the high rates of fish consumption in Malawi'**;
perhaps eggs improve growth only in the absence of
choline- and DHA-containing foods in the usual diet.
Baseline stunting rates were also lower in the Malawi
study (14%) compared with the study in Ecuador
(38%).'2>?* In China, 12-month-old children in town-
ships where eggs were recommended for child feeding
had larger WAZ and HAZ but not WHZ, compared
with children in control townships.'*> However, these
townships were not randomly selected and received
additional messages about other health practices, such
as breastfeeding. In India and Zambia,
nonconsumption of eggs and fish by children aged 6-
23months was associated with increased risk of
stunting.'”®'**  Overall, these studies suggested a
beneficial effect of foods containing choline and DHA
on child growth in LMICs, albeit perhaps limited to
certain contexts.

Morbidity and inflammation. In South Africa, the SQ-
LNS-plus group had decreased longitudinal prevalence
of fever, coughing, and wheezing, and increased longi-
tudinal prevalence of diarrhea, vomiting, and rashes
and sores compared with the control group. These
effects were not specific to choline and DHA, because
the standard SQ-LNS group had similar results.'*' In
the Lulun Project in Ecuador, prevalence of diarrhea in
the past 7 days was higher in the egg group than in the
control group; however, the data were from parental
reports, which the authors speculate may have been bi-
ased.'” The Mazira Project has not yet reported child
morbidity outcomes. No trial has reported on
inflammation.

Choline and DHA across the first 1000 days No trials in
LMICs have reported on pre- and postnatal relation-
ships between choline, DHA, and child neurodevelop-
ment, growth, morbidity, or inflammation.

Limitations and future directions The literature on peri-
natal choline and DHA in LMICs is sparse, and no
studies assessed the effects of choline and DHA inde-
pendently of other nutrients. When possible, the spe-
cific effects of these nutrients, independent of other
dietary factors, should be assessed. Postnatal choline
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and DHA doses were generally below recommenda-
tions; however, improvements to neurodevelopment
and growth were evident even at these levels. Given
these promising findings, more trials in diverse contexts
should be prioritized.

DISCUSSION

Overall, limited data suggest improvements in child de-
velopment, birth outcomes, growth, morbidity, and in-
flammation related to perinatal provision of choline,
DHA, and a combination of the 2 nutrients in LMICs.
There is evidence to suggest that supplementation with
these nutrients may be beneficial for pregnant and lac-
tating women and young children. However, more re-
search is needed to address the following questions.

What are the specific long-term effects of choline and
DHA during early life in LMICs?

Additional studies are required to understand the
effects of varying doses of choline and/or DHA on child
health in LMICs. Trials should use high-quality physio-
logical measures of child development, such as eye-
movement response time and heart rate, and accurate
biomarkers. Measures such as eye tracking are feasible
in LMICs'*? but may require more funding and train-
ing than assessments based on acquisition of develop-
mental milestones. Accurate biomarkers of intake and
status will be required across all settings for better mea-
surement of exposure and understanding of biological
effects. Controlled feeding trials with varying dosages in
multiple arms, although challenging, would provide
high-quality evidence and are lacking in LMICs. Studies
with prolonged follow-up are needed to understand the
long-term impacts on health and productivity.

In what settings would choline and DHA
supplementation be beneficial?

Although intake of choline and DHA is thought to be
low in many LMICs, this is not the case in all settings.
Coastal populations may have substantial intake of fish,
regardless of income.'” A useful example of this concept
is a comparison between the Mazira and the Lulun
Projects. Both trials provided eggs to young children in
LMICs, but the results on child growth were strikingly
different between populations.'*>'** The investigators
suggested several possible reasons for this contrast, in-
cluding differences in background fish intake (high in-
take near Lake Malawi; low intake in highland
Ecuador)."®* Indeed, in Malawi, breast milk DHA con-
centrations among women living near the lake are
higher than the global average.'** Especially in areas
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with adequate intake of animal source foods, choline
and DHA may not be limiting nutrients for children’s
growth and development. There is a need for more in-
formation on population choline and DHA status as
well as usual dietary intake. Incorporation of choline
and DHA into national nutrition monitoring systems
and food composition databases is needed to inform fu-
ture interventions. Databases should include the 5
chemical forms of choline, which may have variable
effects on children’s health,’® as well as betaine, a sepa-
rate dietary component that may have a choline-sparing
effect and is worthy of more research.

How might choline and DHA fit into local, sustainable,
and affordable diets?

Considering the perinatal benefits of choline and DHA,
efforts to increase maternal and infant intake of these
nutrients are needed in LMICs. Breast milk is a good
source of these nutrients and should be recommended
as the only food for infants up to age 6 months; how-
ever, the concentrations in breast milk vary by maternal
diet,*® and complementary food sources of these
nutrients are needed after 6 months. The main food
sources of these nutrients are often relatively expensive,
and there are concerns about sustainability and envi-
ronmental issues related to their production.
Alternative food products, such as biofortified foods,
may be needed to meet global maternal and infant
needs affordably and sustainably.

Where food sources are unavailable or inappropri-
ate, supplementation is an option. Choline is required
and DHA is recommended for inclusion in infant for-
mula,”" and choline is recommended in prenatal sup-
plements,'”*>  but  products meeting  these
recommendations may not be available or affordable in
LMICs. Choline is supplemented as choline salts, such
as choline bitartrate, or phosphatidylcholine. DHA is
often supplemented as either fish oil or algal oil. Krill
oil contains DHA linked to phospholipids including
phosphatidylcholine and has similar bioavailability to
fish oil; however, it is expensive and has similar sustain-
ability constraints.'*°

CONCLUSION

More research is needed on the role of choline and
DHA during the first 1000 days on child outcomes in
LMICs. Dose-response trials are necessary to refine nu-
trient intake requirements, and measures of population
status should be incorporated into national nutrition
programs. This would enable better monitoring of
global dietary adequacy as well as improved formulation
of fortified or supplementary foods. At this time,

Nutrition Reviews® Vol. 80(4):656-676

adequate intake of foods rich in choline and DHA
should be recommended for pregnant and lactating
women and their young children, including breast milk
for infants.
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