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The recent developments at microdiffraction X-ray beamlines are making

microcrystals of macromolecules appealing subjects for routine structural

analysis. Microcrystal diffraction data collected at synchrotron microdiffraction

beamlines may be radiation damaged with incomplete data per microcrystal and

with unit-cell variations. A multi-stage data assembly method has previously

been designed for microcrystal synchrotron crystallography. Here the strategy

has been implemented as a Python program for microcrystal data assembly

(PyMDA). PyMDA optimizes microcrystal data quality including weak

anomalous signals through iterative crystal and frame rejections. Beyond

microcrystals, PyMDA may be applicable for assembling data sets from larger

crystals for improved data quality.

1. Introduction

Biomolecular X-ray crystallography has enabled the under-

standing of biological complexity at the atomic and molecular

level. The optimization of crystals to suitable sizes is a

bottleneck in biomolecular crystallography. Thus, for many

difficult-to-optimize samples such as membrane proteins and

eukaryotic proteins, using their microcrystals for structural

analysis is appealing. With the recent developments at

synchrotron microdiffraction beamlines (Flot et al., 2010;

Evans et al., 2011; Diederichs & Wang, 2017; Yamamoto et al.,

2017) and X-ray free-electron lasers (XFELs) (Schlichting,

2015; Spence, 2017), microcrystals produce high-resolution

diffraction patterns. Compared with XFELs which produce

only one diffraction pattern for every microcrystal, synchro-

tron microdiffraction beamlines are optimized for collection

of a small wedge of rotation data from each microcrystal, thus

greatly improving data quality from microcrystals (Smith et al.,

2012; Fuchs et al., 2016; Yamamoto et al., 2017). With the

implementation of new data collection methods, microcrystal

data acquisition at synchrotrons is now routine and maturing

(Gati et al., 2014; Coquelle et al., 2015; Zander et al., 2015;

Diederichs & Wang, 2017; Owen et al., 2017; Sanishvili &

Fischetti, 2017; Gao et al., 2018; Huang et al., 2018; Basu et al.,

2019; Cianci et al., 2019; Dauter, 2019; Guo et al., 2019).

Because of radiation damage, the lifetime of a microcrystal

does not allow for the collection of complete rotation data

even under cryogenic conditions (Holton & Frankel, 2010;

Zeldin et al., 2013; Garman & Weik, 2017; Warren et al., 2019).

In general, only a few degrees of rotation data may be

collected from a single microcrystal of a few micrometres. The

problem of how to assemble data from radiation-damaged and

incomplete data sets is not a trivial one. This becomes more

complicated when attempting to extract weak anomalous
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signals for de novo structure determination (Liu et al., 2012;

Dauter, 2019). In addition, microcrystals are affected by

environmental changes and their unit cells may have large

variations. To rationally treat unit-cell variations, radiation

damage and incomplete data in microcrystals, we and others

have developed data assembly workflows (Guo et al., 2018,

2019; Yamashita et al., 2018; Basu et al., 2019; Cianci et al.,

2019). With our workflow, we were able to assemble anom-

alous diffraction data from about 1200 native microcrystals

and used the data for a successful single-wavelength anom-

alous diffraction analysis (Guo et al., 2019).

Here we describe the implementation of our microcrystal

data assembly workflow in a Python program called PyMDA.

PyMDA allows for processing individual microcrystal data

sets as progressive wedges to address radiation damage and

allows for robust extraction of diffraction signals including

weak anomalous signals through the implementation of unit-

cell-based classification and an iterative outlier rejection

strategy. PyMDA may be used routinely to process micro-

crystal data sets to produce one or more assembled data sets

for structural analysis.

2. Implementation

2.1. Overall workflow

The overall workflow of our microcrystal data assembly

contains three main steps and is outlined schematically in

Fig. 1. The first step is to process each of M single-crystal data

sets independently using DIALS (Waterman et al., 2016;

Winter et al., 2018) and scale them using CCP4 programs

POINTLESS and AIMLESS (Winn et al., 2011; Evans &

Murshudov, 2013) as q progressive wedges [Fig. 1(a)]. Wedge q

includes all the preceding wedges 1 to q � 1. The CC1/2 values

reported in AIMLESS are used for selection of those wedges.

Among these q wedges, only the one that has the maximum

CC1/2 is selected to form one of the M single-crystal data sets.

The second step is to classify these M single-crystal data sets

into N classes using their unit-cell parameters [Fig. 1(b)]. Step

3 is to assemble data sets for each of the N classes [Fig. 1(c)].

Those classes with merged data completeness greater than

90% are subject to iterative crystal and frame rejection. The

quality of the assembled data is evaluated using data quality

indicators: CC1/2 for high-resolution (diffraction limit) data

and DelAnom for anomalous signals. Both CC1/2 and

DelAnom are reported in AIMLESS. The assembled data sets

may then be used directly for structure analysis including de

novo phase determination.

2.2. Python implementation

PyMDA is implemented in Python 2.7 and requires the

libraries of NumPy, SciPy and Matplotlib. In addition,

PyMDA utilizes three external programs, DIALS, POINT-

LESS and AIMLESS, for single-crystal data processing and

subsequent assembly. The program DIALS is used for

indexing and integration; POINTLESS is used for data

combination and re-indexing if necessary; and AIMLESS is

used for scaling and merging including iterative crystal and

frame rejections. The latest versions of DIALS, POINTLESS

and AIMLESS should be used.

PyMDA takes input hdf5 format data collected from

modern pixel array detectors such as the EIGER 16M and 9M

(Casanas et al., 2016). The outputs for PyMDA are a series of

assembled data sets that have been converted to structure-

factor amplitudes with an added column for Rfree flags.

PyMDA uses the usual CCP4 programs CTRUNCATE,

MTZ2VARIOUS and FREERFLAG to convert intensities

and to add Rfree flags.

2.3. Single-crystal data processing

Because of radiation damage, each of the single-crystal data

sets is typically processed as accumulative wedges using

DIALS. PyMDA has a command-line option --run_dials

to facilitate the use of DIALS for processing individual data

sets. PyMDA runs DIALS tools successively from data import

to data export. These tools are dials.import, dials.find_spots,

dials.index, dials.refine, dials.integrate and dials.export

(Waterman et al., 2016). The required input parameter for

--run_dials is the directory path (--hdf5_path) that
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Figure 1
Multi-step data assembly workflow. (a) Progressive processing of single-
crystal data sets as accumulative wedges. (b) Classification based on unit-
cell variations. (c) Data assembly for each cluster that qualified
(completeness > 90%). The data assembly procedure optimizes data
quality by iterative crystal and frame rejections. PyMDA produces N
optimized data sets, each corresponding to a different set of unit-cell
parameters.



contains the master hdf5 data files. Optional parameters for

--run_dials are space group (--spg), unit-cell dimen-

sions (--unit_cell), resolution (--reso), the number of

wedges (--wedges) and the number of processes to be used

(--thread). PyMDA processes many data sets auto-

matically. However, for unknown samples, it is recommended

to process a few data sets first to identify the space group and

unit-cell parameters. If accurate detector parameters are

known, it might be worth fixing the detector (--fix_

detector). By default, PyMDA uses a single process, but

using multiple processes is possible and preferable.

There are two resolution cutoffs used in processing single-

crystal data sets. One (--reso) is the resolution at which the

data will be processed, and the other one (--reso_cchalf)

is for generating CC1/2 statistics using AIMLESS. The crystal is

damaged, which results in a loss of intensity, particularly at

high resolution. To have more frames selected for data

assembly, we suggest using a statistics resolution lower than

the data processing resolution (--reso) (Guo et al., 2018). By

default, the value of --reso_cchalf is the value of --reso

plus 1.

For challenging single-crystal data sets where the diffraction

is weak, we provide an optional optimization step (--opt) to

optimize three spot-finding parameters, sigma_b, sigma_s and

minimum spot size, used by dials.find_spots. With this opti-

mization mode, PyMDA will run a grid search for these

parameters for a maximum I/�(I). In general, we only opti-

mize these parameters for a selected data set; however, if

desired, the optimization can be performed for all data sets. Be

aware that this mode will take much longer. With known spot-

finding parameters, PyMDA can use them directly through

parameters --sigb, --sigs and --minspot.

Each single-crystal data set is processed under a different

directory with the same name as the prefix of its respective

hdf5 data file. After single-crystal data processing, a series of

data sets in mtz format and AIMLESS log files are produced.

These mtz files are then used for data assembly; and

AIMLESS log files are used to extract CC1/2 values and unit-

cell parameters. Below is an example of processing hdf5

format data:

/path-to-pymda/pymda --run_dials --hdf5_path

/root-path-containing-hdf5-data/ --wedges 10

--spg p2221 --thread 4

2.4. Classification by unit-cell variations

The data sets selected with the highest CC1/2 values are used

for classification based on unit-cell variations. With the

extracted M sets of unit-cell parameters, classification is

performed (Liu et al., 2012, 2013; Foadi et al., 2013) with the

desired number of classes. Unit-cell classification can be

performed through a combination of keywords --run_mda

and --ucr=N, where N is the number of desired classes.

PyMDA writes out a PDF file to store the dendrogram plot

that may be visualized and used as a reference to rerun the

classification with a different number of classes. After unit-cell

classification, PyMDA splits the M data sets into N classes.

Below is an example of running classification for ten classes

based on unit-cell variations:

/path-to-pymda/pymda --run_mda --dataprefix

prefix_of_hdf5 --ucr 10

Two further classification options are provided. Option

--single is to maximize the number of crystals in a single

class. This option is useful to keep more crystals together for

optimizing anomalous signals. The option --ward is to

maximize the separation of classes and this option is useful to

obtain more assembled data sets.

2.5. Crystal rejection

Each of the N classes with data completeness higher than

90% may be used for crystal rejection with an option

--rjxtal. By default, PyMDA produces N assembled data

sets without crystal rejection. The goal of the crystal rejection

step is to exclude single-crystal data sets that are not compa-

tible with the merged one within each of the N classes. To

perform crystal rejection, PyMDA uses the per-frame

smoothed Rmerge (SmRmerge) values extracted from

AIMLESS. Prior to each iteration of crystal rejection,

PyMDA computes the average of SmRmerge values

hSmRmergei for each crystal, sorts per-crystal hSmRmergei

and then rejects the specified number of crystals (defined by

--xtal_step) with the highest hSmRmergei values. The

iteration continues until the number of crystals is equal to or

less than the number defined by --xtal_step. Below is an

example of running crystal rejection with a rejection of ten

crystals for each iteration:

/path-to-pymda/pymda --run_mda --dataprefix

prefix_of_hdf5 --ucr 10 --rjxtal --xtal_step 10

2.6. Diffraction frame rejection

Following each iteration of crystal rejection, PyMDA can

perform the rejection of those frames (--rjframe) that

suffer too severely from radiation damage. Because of natural

variations among microcrystals, there is no uniform rejection

criterion suitable for all microcrystals. Therefore, PyMDA

adopts a user-defined grid-search procedure for frame rejec-

tion (Guo et al., 2018). Frame rejection is optional and may be

performed after each iteration of crystal rejection for each of

the N classes that qualified (e.g. with their data completeness

higher than 90%).

By defining the sequence of decay values, frame rejection is

performed under different radiation-damage conditions to

optimize the overall data quality. For each single-crystal

data set, PyMDA identifies the frame number with the

lowest SmRmerge and stores it as min(SmRmerge). The

frame rejection cutoff is then defined as rjframe =

[min(SmRmerge) � (1 + decay)], where decay is defined as

each of the values in a sequence through an option --decay.

The default sequence is ‘5.0 3.0 2.0 1.0’. With the default
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sequence, PyMDA rejects frames that have rjframe values 6, 4,

3 and 2 times min(SmRmerge). Four data sets are then

produced, each corresponding to a different decay value.

Below is an example of running frame rejection after each

iteration of crystal rejection:

/path-to-pymda/pymda --run_mda --dataprefix

prefix_of_hdf5 --ucr 10 --rjxtal --xtal_steps

10 --rjframe --decay “3.0 2.0 1.0”

After crystal and frame rejection, PyMDA outputs multiple

data sets and the associated AIMLESS log files, each derived

from using different numbers of crystals and frames. It is

suggested these data sets are sorted on the basis of different

statistics reported in their AIMLESS log files. For a high-

resolution structure analysis that does not require anomalous

signals, the data set with maximum CC1/2 is suitable. For de

novo structure determination that uses anomalous signals, the

data set with maximum DelAnom may be used.

3. Discussion

3.1. Microcrystal data collection and processing

PyMDA assembles partial microcrystal diffraction data sets

that are collected as small rotation wedges into complete

crystallographic data sets. There is no special requirement for

how many frames are examined by PyMDA. In developing

PyMDA, we anticipate ten to 100 frames per microcrystal with

a rotation angle of 0.1 to 0.3� per frame (1–30� of data per

microcrystal). By processing single-crystal data sets as accu-

mulative wedges, radiation-damaged frames should not

compromise the overall data quality. Seriously damaged

frames are rejected at the single-crystal data processing stage.

One can use --reso_cchalf to fine tune the control of how

many frames are to be rejected from data assembly. A smaller

value of --reso_cchalf (higher resolution) results in more

rejected frames.

The development of the current version of PyMDA was

based on the use of hdf5 format data created by EIGER

detectors. PyMDA uses the master hdf5 names to create

directories to execute parallel processing. It is a requirement

that all hdf5 master files are under the same root directory and

have the same prefix. This is the case for data collected at

NSLS-II AMX and FMX beamlines and other macro-

molecular crystallography beamlines using EIGER detectors.

Nevertheless, these master hdf5 files can be in different

locations as long as they are under the same root directory

defined by --hdf5-path.

3.2. Resolution cutoff

PyMDA provides two resolution cutoffs for single-crystal

data processing and assembly. --reso is used for indexing

and integration and final assembly. --reso_cchalf is used

for calculation of CC1/2 values of single-crystal data wedges. In

the single-crystal data processing stage (--run_dials), it is

suggested one uses the highest resolution by visual inspection

of diffraction images during or after data collection. In the

assembly stage (--run_mda), different resolution cutoffs

may be used. For example, if a high-resolution data set is

desirable, that resolution may be used for data assembly. All

crystal and frame rejections will then be optimized against that

resolution. Below is an example of running frame rejection

after each iteration of crystal rejection at a resolution of 2.5 Å:

/path-to-pymda/pymda --run_mda --dataprefix

prefix_of_hdf5 --ucr 10 --rjxtal --xtal_step 10

--reso 2.5

If anomalous signals are to be optimized, we suggest using a

lower resolution to enhance anomalous signals by increasing

data redundancy. Because --run_dials and --run_mda

can be performed successively, using two different resolutions

through --reso can be done by running PyMDA twice: once

at the highest resolution and once at a lower resolution (for

optimized anomalous signals). Both data sets may then be

used for structure refinement and phasing. For example, if the

high-resolution data set is at 2.5 Å, below is an example of

running PyMDA to optimize anomalous signals at a lower

resolution of 3.5 Å:

/path-to-pymda/pymda --run_mda --dataprefix

prefix_of_hdf5 --ucr 10 --rjxtal --xtal_step 10

--reso 3.5

3.3. Program limitations

The current version of PyMDA has limitations. Firstly,

PyMDA can only process rotation data with the hdf5 data

format. Support for cbf format will be provided in a future

version. Secondly, the unit-cell classification is not fully

automated. We suggest checking the output dendrogram plot

to define the number of classes. Because of structural changes,

manipulation or poor evaluation, microcrystals might have a

wide spread of unit-cell parameters. One may need to manu-

ally remove certain single-crystal data sets that have unrea-

listic unit cells (e.g. by deleting their directories) before the

fully automated data assembly can be run robustly. This can be

done by checking the file check.txt. This file contains the

directory names, the unit-cell parameters and their corre-

sponding CC1/2 values for each of the single-crystal data sets. It

would be useful to manually delete these extreme data sets

with quite different unit-cell dimensions. These individual data

sets may also be identified by running unit-cell classification

with the --single option.

4. Concluding remarks

Microdiffraction data sets from microcrystals are difficult to

process due to radiation damage, incompleteness and large

unit-cell variations. Here we have implemented a Python

program PyMDA for microcrystal data assembly. PyMDA

assembles optimized data suitable for high-resolution struc-

ture analysis and de novo structure determination. PyMDA

computer programs
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can not only assemble diffraction data from microcrystals, but

also assemble data sets from larger crystals to improve data

quality. PyMDA is available from https://github.com/qun-liu/

pymda.
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