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The base-mediated photochemical cyclization of 2-azidobenzoic acids with the formation of 2,1-benzisoxazole-3(1H)-ones is re-

ported. The optimization and scope of this cyclization reaction is discussed. It is shown that an essential step of the ring closure of

2-azidobenzoic acids is the formation and photolysis of 2-azidobenzoate anions.

Introduction

Substituted 2,1-benzisoxazoles display diverse biological activi-
ty [1-6] (Figure 1) and are widely used as starting materials for
the synthesis of important heterocyclic pharmacophores, such as
acridines [7,8], quinolines [9-13] and quinazolines [14-16].
Therefore, the search for new methods leading to 2,1-benzisox-

azoles is of great interest.

For the preparative synthesis of 2,1-benzisoxazoles, in addition
to the traditional method based on the reductive heterocycliza-
tion of ortho-substituted nitro compounds [17-21], two other
routes are available: the annulation of nitroso compounds
[22,23] and the thermal [24], catalytic [25-27] or photochemi-
cal cyclization of aryl azides [28-31].

However, the presence of electron-withdrawing substituents in
the 3-, 5- and 7-position of the benzisoxazole dramatically
reduces the thermal stability of these compounds. Indeed, these
compounds are the most labile representatives of several
isomeric oxazoles [32], and they begin to decompose at temper-
atures slightly above 30 °C, which limits the number of
methods for their preparation. Thus the search for new methods
for the synthesis of substituted 2,1-benzisoxazoles under mild

reaction conditions is required.
Previously, in the investigation of the photochemical cycliza-

tion of 2-azidobenzoic acid (1a) using aqueous organic solvent

mixtures (Scheme 1), the formation of the cyclization products
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Figure 1: Selected examples of biologically active, fused 2,1-isoxazole derivatives.
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Scheme 1: Photochemical cyclization of substituted 2-azidobenzoic acids and possible reaction mechanism [34-59].

such as 2,1-benzisoxazole-3(1H)-one (2a) and 2-0x0-3-
carboxy-3H-azepine (3a) has been reported [30]. The structure
of benzisoxazole 2a was determined by IR, 'H and '3C NMR
spectroscopy and by comparison of its mass spectrum with the
corresponding spectrum from the NIST library (NIST: 37717).
In addition, the structure was confirmed by the alternative syn-
thesis of 2a through the heterocyclization of 2-nitrobenzoic acid
[28,29] and X-ray structure analysis [33].

The authors observed that the yields of both 2a and 3a in-
creased with increasing amount of water as nucleophilic sol-

vent in the reaction mixture [30] and obtained a maximum yield

of 20% and 50%, respectively, at a water content of 50%. Under
these conditions, no formation of the primary amine 4 (a prod-
uct of the typical triplet nitrene reaction (Scheme 1, intermedi-
ate D)) was detected. The replacement of the aprotic solvent
dioxane with acetonitrile or THF did not affect the yield of the
cyclization products. The photolysis of 1a (Scheme 1, interme-
diate A) resulted in low yields of 2a because of the competitive
formation of reaction products.

In the past, research has been focused on the formation of

2-substituted 3H-azepines 3 as products of the photolysis or
thermolysis of aromatic azides [34,35]. The proposed mecha-
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nism for their formation was confirmed by identification of the
reaction intermediates using low-temperature and time-resolved
spectroscopy [36-43]. It is currently believed that azepines are
formed through the singlet nitrogen pathway of the reaction
(Scheme 1, path: 1 - A — B — C — 3) [44-49].

These nitrenes form benzazirines [19] (Scheme 1, intermediate
B) that rearrange into cyclic ketenimines — 1,2-didehydro-
azepines (Scheme 1, intermediate C) [50]. According to quan-
tum-chemical calculations, the energy barrier of this rearrange-
ment is approximately 40 kJ mol™! [51], with the limiting step
being the formation of B. Therefore, the direction of this reac-
tion solely depends on the conversion of A and formation of C.

Dyall et al. [52,53] have proposed a pericyclic mechanism for
the formation of heterocyclic compounds in the pyrolysis of
aryl azides with unsaturated ortho-substituents. A possible reac-
tion mechanism for the photochemical formation of 2
(Scheme 1, path: 1 — A — 2) based on the report by Platz et al.
[54] includes the benzofuroxan formation by photolysis of
2-azidonitrobenzene through the intermediate singlet nitrene A
(Scheme 1) without the formation of other intermediates.

The formation of substituted 2,1-benzisoxazoles from aryl
azides was reported for the first time by Smith et al. [24] in the
synthesis of 3-phenyl-2,1-benzisoxazole (3-phenylanthranil) by
thermolysis of 2-azidobenzophenone. In another work [55], the
photochemical formation of 3-amino-6-nitro-2,1-benzisoxazole
starting from 2-azido-4-nitrobenzamide was observed. The
authors subsequently investigated the multiplicity of the
involved nitrene by repeating the reaction in the presence of
isoprene as a triplet nitrene quencher. The addition of isoprene
lead to a significantly increased yield of 3-amino-6-nitro-2,1-
benzisoxazole and an insignificant decrease of the primary
amine yield. Thus it was demonstrated that the formation of
3-amino-6-nitro-2,1-benzisoxazole goes through an intermedi-
ate singlet nitrene.

Possibly, similar to the benzofuroxan and 3-amino-6-nitro-2,1-
benzisoxazole formation, the carboxylate group of A (Lewis
base) donates an electron lone pair to the electron-deficient
singlet nitrene fragment of A (Lewis acid) with formation of the
N-O bond in 2 through a 1,5-electrocyclization reaction
[56,57].

Nonreacted singlet nitrenes A may undergo intersystem
crossing (ISC) into the less reactive triplet state (Scheme 1,
intermediate D). Although a multiplicity change is a spin-
forbidden transition, it can be partially allowed in some cases.
According to another report [39], the major products formed

from triplet nitrenes are primary amines 4 through hydrogen-
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atom abstraction [58], secondary amines, 1,2-arylhydrazides
and azo compounds 5, which are obtained by recombination of
radicals [59]. Moreover, it was shown that yields of primary
amines increased in the photolysis reactions of aryl azides
without participating ortho-substituents in hydrocarbons as the
solvents [39].

In the present research it is demonstrated that using ethanol as
the solvent for the photolysis reaction leads to benzisoxazole 2a
with an increased yield of 35% and the yield can be further im-
proved to 40% by the addition of a base. Thus, the optimization
of the reaction conditions of the base-mediated photochemical
synthesis of substituted 2,1-benzisoxazole-3(1H)-ones 2 has

been performed.

Results and Discussion

For optimizing the reaction conditions for the synthesis of 2a by
photolysis of 1a, the reaction was performed in different sol-
vents in the absence or presence of a base. As solvents, alco-
hols and aqueous organic solvent mixtures were tested and
alkali metal hydroxides, carbonates or acetates were screened as
the base. All reactions were carried out by irradiating the base
suspended in the solution of 1a with a mercury low-pressure
quartz lamp (254 nm) in a quartz reactor with intensive stirring.

It was found that the yields of 2a after photolysis of 1a substan-
tially increased in the presence of a base. No dependency on the
nature of the base could be observed and the yield did not
improve further when more than 1 equivalent of the base was
used (Table 1). Without irradiation, the reaction did not proceed
at all. Replacing EtOH as the solvent with iPrOH did not
change the yield of 2a. A chromatographic separation of the
reaction mixture obtained by photolysis of 1a in alcohols
showed that 2a had formed as the sole product. In this case,
neither the formation of 3a nor the corresponding 2-ethoxy- or
2-isopropoxy-substituted azepines could be detected.

The photolysis in a mixture of 1,4-dioxane/water led to a de-
creased yield of 2a with a simultaneous increase in the yield of
3a. In our opinion, this effect of the solvent or base on the yield
of 2a may be explained by the formation of 2a through a hetero-
cyclization of 2-azidobenzoate anions. Therefore, the role of the
base in the reaction is the in situ generation of the 2-azidoben-

zoate anion and the solvent efficiently supports this formation.

The best yield of 2a was obtained by photolysis of 1a in ethanol
in the presence of sodium acetate (Table 1, entry 14).

With the optimal conditions at hand, we next investigated the

scope of the cyclization using differently substituted 2-azido-

benzoic acids (Table 2). The desired products 2b—f were isolat-
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Table 1: Optimization of conditions for the synthesis of substituted 2,1-benzisoxazole-3(1H)-ones.?

(0]
©[002H 254 nm, 25 °C ©\){ C\QCOzH
/O +
N3 solvent, base H N\ N ]
1a 2a 3a
Entry Base (equiv) Solvent Yield (2a)° Yield (3a)° t, min®
1 - 1,4-dioxane - - 60
2 - EtOH 38% 1% 60
3 K>,CO3 (0.5) EtOH 63% - 60
4 K>CO3 (1) EtOH 75% - 60
5 K>CO3 (1) iPrOH 75% - 60
6 KoCO3 (5) 1,4-dioxane/water 1:1 (v/v) 43% 8% 60
7 K>COs3 (3) EtOH 75% - 60
8 Na,COj3 (0.5) EtOH 65% - 60
9 Na,CO3 (1) EtOH 73% - 60
10 NaHCOj3 (0.5) EtOH 70% - 60
11 NaHCO;3 (1) EtOH 70% - 60
12 KOH (1) EtOH 60% - 60
13 NaOH (1) Water 30% 12% 60
14 NaOAc (1) EtOH 75% - 60
15 NaOAc (1) 1,4-dioxane/water 1:1 (v/v) 63% 20% 60

@Reaction conditions: 1a (0.78 mmol), solvent (15.0 mL); UV light (2 x 15 W Hg low-pressure lamp (254 nm), UV intensity was approximately
7 mW/cm?). PYields were determined by HPLC analysis using an external standard. CIrradiation time: the degree of conversion of 1a was 100%.

Table 2: Substrate scope for the heterocyclization of 2-azidobenzoic
acid.?

0
1
R COH 254 nm, 25 °C R
Jo
N3 EtOH, NaOAc N
R2 R2

1a—f 2a-f
Entry R! R2 Yield (2)° ¢, min®
1 (1a) H H 75% (2a) 60
2 (1b) cl Cl 92% (2b) 60
3 (1c) Br H 68% (2c) 60
4 (1d) Br Br 62% (2d) 60
5 (1e)d I H 51% (2e) 60
6 (1) Tre H 39% (2f) 60

@Reaction conditions: 1 (0.78 mmol), NaOAc (1 equiv), EtOH 96%
(15.0 mL); UV light (2 x 15 W Hg low-pressure lamp (254 nm), UV in-
tensity was approximately 7 mW/cm?). ®Yield of the isolated product.
CIrradiation time: the degree of conversion of 1a—f was 100%. 9For the
optimal conditions for synthesis of 2e see Table 4, entry 10. ®Tr — tri-
phenylmethyl group (trityl group).

ed in moderate to high yields (Table 2). Both electron-with-
drawing groups (Cl, Br, I) and the electron-donating group (tri-
phenylmethyl) were well-tolerated.

The thermal stability of the products of 2 decreases in the
series: 2f > 2a > 2e > 2d > 2¢ > 2b. Halogen-substituted com-
pounds 2b—e decompose at room temperature within about
5-30 min and the products 2a,f are stable for a couple of hours.

In general, azides with electron-withdrawing groups tend to
give higher yields than those substituted with electron-donating
groups (2b—e vs 2f, Table 2, entries 2—5 vs entry 6). However,
the yield of 2 decreased in the series CI — Br — I (2b—e,
Table 2, entries 2—5), which was probably a manifestation of the
internal photochemical heavy-atom effect [60]. The presence of
bromo- or iodo-substituents in the substrates 1c—e increases the
probability of intersystem crossing for the initially formed
singlet nitrenes (Scheme 1, intermediate A) to the triplet state
(Scheme 1, intermediate D), thus resulting in decreased yields
of the cyclization products 2¢c—e. In these cases, the formation of
the triplet nitrene D should lead to increased yields of primary
amines. However, as can be seen from Table 1, the formation of
the latter was not observed when ethanol was used as the sol-
vent. To further test the solvent effect on the outcome of the
reaction, we repeated the photolysis of azides 1a—f under the
optimized conditions but in aqueous dioxane instead of ethanol.
As can be seen in Table 3, the photolysis of 1¢,d in a 1,4-
dioxane/water mixture under these conditions lead to decreased

yields of 2¢,d and to the formation of azepine 3¢ and primary
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Table 3: Scope for photo-induced heterocyclization of 2-azidobenzoic acids in 1,4-dioxane/water mixture in the presence of potassium carbonate.?

R! CO,H 1 R! CO,H
2 254 nm, 25 °C R ~{-CO,H 2
+ +
N3 1,4-dioxane/H,0 N N\ o NH,
R2 K2C03 R2 R2
1a-f 2a—f 4a—f
Entry R? R2 Yield (2)P Yield (3)° Yield (4)° t, min®
1 (1a) H H 25% (2a) 20% (3a) - (4a) 90
2 (1b) Cl Cl 92% (2b) - (3b) — (4b) 60
3 (1c) Br H 34% (2c) 18% (3c) 10% (4c) 180
4 (1d) Br Br 62% (2d) - (3d) 4% (4d) 60
5 (1e) | H 5% (2e) - (3e) — (4e) 120
6 (1) Tr H 40 % (2f) - (3f) — (4f) 60

@Reaction conditions: 1 (0.78 mmol), KoCO3 (1 equiv), 1,4-dioxane/water 1:1 (v/v) (15.0 mL); UV light (2 x 15 W Hg low-pressure lamp (254 nm), UV
intensity was approximately 7 mW/cm?). PYields determined by HPLC analysis using an external standard. CIrradiation time: the degree of conversion

of 1a—f was 100%.

amines 4¢,d with significant yields. An explanation for the de-
creased yields observed for isoxazoles 2¢,d may be the photo-
induced breaking of the C—Br bond that completely changed the
way of the reaction. However, this possibility does not explain
the formation of primary amines 4¢,d.

It should be noted that the photolysis of double ortho-substi-
tuted azides (Table 3, entries 2, 4, RZ # H) did not lead to the
formation of azepines 3. This confirms the suggestions of
previous reports [61,62] about the impossibility of ring expan-
sion of such aryl azides.

Interestingly, under these conditions (Table 3), the yields for
3H-azepine 3a and 3¢ were determined as 20 and 18%, respec-
tively. We wondered if the yields of these compounds could be
improved to allow a preparative synthesis of 3a and 3c¢. For this
reason, the reaction conditions were optimized towards azepines
3a and 3c. According to previously published reports
[30,63,64], the yields of the corresponding 3 H-azepines could
be increased by increasing the amount of the nucleophile
(water) present in the reaction mixture. Thus, we attempted the
preparative synthesis of 3a based on our technique described
earlier [30]. After irradiating a solution of azide 1a in aceto-
nitrile/water (3:7, v/v) for 24 h in a quartz reactor, a complete
conversion of starting compound 1a according to HPLC moni-
toring was observed. Following work-up and preparative
column chromatography azepine 3a could be isolated in
50% yield. For the preparative synthesis of 3¢ the method had
to be slightly modified: In this case the reaction was performed
in 1,4-dioxane/water (1:10, v/v) solution and irradiated for 1.5 h

in a quartz reactor. After this, the conversion of 1¢ (according to

HPLC monitoring) was found to be 100% and azepine 3¢ was
isolated after preparative column chromatography in 50% yield
(see Supporting Information File 1).

As is also shown in Table 3, the high photochemical sensitivity
of both the C—I bond and the azide group present in le, unlike
the others, complicates the synthesis of benzisoxazolone 2e.
The photolysis of 1e under these conditions resulted in the for-
mation of several products in low yields. Therefore, the synthe-
sis towards benzisoxazolone 2e was reoptimized (Table 4). It
was found that increasing the amount and strength of the base
resulted in an increased selectivity and reaction rate. Indeed,
using 10 equiv of sodium hydroxide as the base in the reaction
resulted in a 51% yield of benzisoxazole 2e at complete photol-
ysis of 1e (Table 4, entry 10). Under these conditions, in addi-
tion to compound 2e, the formation of 2a together with some
other unidentified products was observed (albeit in low yields).
A similar observation has been previously reported by Platz et
al. [65].

Based on the results mentioned above and described in the
related reports (Scheme 1), a possible reaction mechanism for
the formation of 2 was proposed (Scheme 2). At first, 1 pro-
duced a salt of 2-azidobenzoic acid 1 (Scheme 2, 1-anion) by
neutralization of a base. Next, the salt was decomposed by irra-
diation and the singlet nitrene A (Scheme 2, intermediate A)
was formed. Finally, the electron pair of the carboxylic group
(Scheme 2, intermediate A) was joined by 1,5-electrocycliza-
tion to the electron-deficient singlet nitrene A with formation of
2-anion (see Scheme 2), which was neutralized by water (path

I). Thus, the first path of cyclization of 1 was realized.
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Table 4: Optimization of conditions for the synthesis of 5-iodo-2,1-benzisoxazole-3(1H)-one (2e).2

O
'\@COZH 254 nm, 25 °C NN
N3 solvent, base l PZ N”O
1e 2e H

Entry Base (equiv) Solvent Yield (2e)° t, min®
1 - 1,4-dioxane/water 1:1 (v/v) 6% 60
2 - EtOH 12% 140
3 NaOAc (1) EtOH 16% 60
4 NaOAc (1) EtOH 10% 160
5 NaOAc (1) 1,4-dioxane/water 1:1 (v/v) 5% 60
6 NaOAc (1.4) EtOH 14% 60
7 NaOAc (1.2) EtOH 13% 90
8 KOH (2.8) EtOH 30% 90
9 KOH (2.8) EtOH 18% 110
10 KOH (10) EtOH 51% 60
11 KOH (10) EtOH 34% 90

@Reaction conditions: 1e (0.78 mmol), solvent (15.0 mL); UV light (2 x15 W Hg low-pressure lamp (254 nm), UV intensity was approximately
7 mW/cm?). bYields determined by HPLC analysis using an external standard. CIrradiation time: the degree of conversion of 1e was 100%.

K>CO3 or KHCO3 or
NaOAc HOAc
NG
A OH
| 0
R~ Z N base
H source
2
H,O
Kol
= —
. |0 path |
RN
2-anion
1

1,5-electrocyclization

H
/| COH 254 nm = COzH
\/\ \
N3 H20 RN O
1 path Il 3
2 Cco,
RN,
1-anion
254 nm

Scheme 2: Proposed reaction mechanism of the base-mediated photochemical cyclization of 2-azidobenzoic acids.

Meanwhile a molecular form of 1 produced azepine 3 (path II)
by irradiation. The detailed mechanism of the formation of 3 is
shown in Scheme 2.

Thus, in the photochemical reaction both ionic and molecular
forms of 1 can be used. To increase the yield of 2, it is neces-
sary to shift the equilibrium towards the ionic form 1 (in situ

salt formation).

Conclusion

In summary, we have developed an effective photochemical
cyclization strategy for the synthesis of functionalized 2,1-
benzisoxazole-3(1H)-ones. The present work offers a method to
access 2,1-benzisoxazole-3(1H)-ones in good yields by using
mild reaction conditions at room temperature. The proposed
photochemical strategy permits the synthesis the high thermo-
labile compounds from the class of 2,1-benzisoxazole-3(1H)-
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ones. Based on the results of the control experiments, it was

found that an important stage of the ring closure is the forma-

tion of 2-azidobenzoate anion photolysis that results in the

heterocyclization product.

Supporting Information

Supporting Information File 1

Experimental procedures, characterization and spectral data
for synthesized compounds.
[http://www.beilstein-journals.org/bjoc/content/
supplementary/1860-5397-12-86-S1.pdf]
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