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Fluorescence molecular tomography (FMT) is an imaging technique that can localize and quantify fluorescent markers to resolve
biological processes at molecular and cellular levels. Owing to a limited number of measurements and a large number of unknowns
as well as the diffusive transport of photons in biological tissues, the inverse problem in FMT is usually highly ill-posed. In this
work, a sparsity-constrained preconditioned Kaczmarz (SCP-Kaczmarz) method is proposed to reconstruct the fluorescent target
for FMT. The SCP-Kaczmarz method uses the preconditioning strategy to minimize the correlation between the rows of the forward
matrix and constrains the Kaczmarz iteration results to be sparse. Numerical simulation and phantom and in vivo experiments were
performed to test the efficiency of the proposed method. The results demonstrate that both the convergence and accuracy of the

proposed method are improved compared with the classical memory-efficient low-cost Kaczmarz method.

1. Introduction

Fluorescence molecular tomography (FMT) is an imaging
modality that can localize and quantify fluorescent markers
to resolve biological processes at molecular and cellular
levels. Being minimally invasive, relatively inexpensive, and
portable, FMT has been successfully applied in small animal
research and preclinical diagnostics such as cancer diagnosis,
drug discovery, and gene expression visualization [1-4].

Due to alarge number of unknowns and a limited number
of measurements as well as the diffusive transport of photons
in biological tissues, FMT reconstruction is an ill-posed
inverse problem [5-7]. To improve the FMT imaging quality,
both the noncontact FMT technique [8, 9] and the strategy
of multiple excitations can be used to obtain more measure-
ments. Structural a priori information provided by CT or
MRI can also be incorporated into FMT imaging [3, 10-12].
Moreover, reconstruction algorithms can resort to regulariza-
tion strategies and find meaningful and numerically stable
solutions. In [13, 14], the Tikhonov regularization, namely,
I, norm regularization, is employed for solving the inverse
problem. In [15-17], the sparsity regularization is utilized in
the form of /; norm penalty function for FMT reconstruction.
Joint /; and TV regularization for FMT reconstruction is

presented in [18]. In [19], a hybrid regularization method
incorporating [, and I, norm penalty is proposed to recover
the 3D fluorophore distribution. In these techniques, optimal
selection of the regularization parameter is needed to avoid
over- or underregularization. Being a memory-efficient low-
cost numerical solver that avoids bulky matrix computations
in large-scale problems, Kaczmarz algorithm, also known as
algebraic reconstruction technique (ART), iteratively updates
the solution using only one equation at a time and has
been applied in optical tomographic reconstruction [20-22].
During reconstruction, the Kaczmarz method may use the
measurements in the order that they are collected, which
is known as the sequential access order. To speed up the
convergence rate of the Kaczmarz method and give better
results in the first iteration relative to the sequential access
scheme, different access orders have been proposed [23-
25]. The idea of these different access orders is to minimize
the correlation between measurements that are successively
accessed by the iterative projection inversion method. In
[20], the influence of the data access order is investigated
when Kaczmarz method is used to perform diffuse optical
tomography. The study shows that the convergence speed
can be significantly improved by selecting proper projection
access order.
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In FMT, the forward matrix maps the fluorescent targets
to the surface measurements. Generally, the rows of the for-
ward matrix are correlated because of the correlations among
source-detector maps from the same projection and the inter-
relations of different projections [26, 27]. In this work, we
present a strategy which computes a preconditioning matrix
to minimize the coherence of the preconditioned forward
matrix. Then the Kaczmarz method which uses the sequential
access order is adopted to solve the preconditioned FMT
reconstruction problem. After preconditioning, the projec-
tions are close to perpendicularity and the convergence rate
of the Kaczmarz method can be speeded up. As most optical
fluorophores are designed to accumulate in relatively small,
specific regions in tissues, such as tumors, and hence the
fluorophore distributes sparsely in the imaging domain, we
propose sparsity-constrained reconstruction method to per-
form FMT and the method is named as sparsity-constrained
preconditioned Kaczmarz (SCP-Kaczmarz) method. Differ-
ent from the existed I; norm regularization methods, this
proposed SCP-Kaczmarz method adopts a thresholding step
to the Kaczmarz results to satisfy a user-defined sparsity
value.

The remaining of this paper is organized as follows.
We first describe the mathematical forward model for FMT
imaging, then the SCP-Kaczmarz method is presented for
FMT reconstruction, then the numerical simulation and
physical phantom and in vivo experiments are performed to
evaluate the proposed method, and finally the discussion and
conclusion are given.

2. Methods

2.1. Forward Model for FMT Imaging. When a CW point laser
is used as excitation light, the diffusion of excitation and
emission lights through biological tissues can be described
by two coupled diffusion equations with the Robin-type
boundary condition, and the coupled diffusion equations can
be presented as follows [28]:

V- (Dy () VO, (1) = fhoy (1) @, (r) = OB (r — 1),
V- (D, (r)V®,, (r)) — pgm (r) @,, (r) )

= _q)x (T) r”’laf (7’) >

where r € Q, Q being the domain under consideration.
The subscripts x and m denote excitation light and emission
light, respectively. D, ,, = 1/3(tyy g + (1 = G phsysm) is the
diffusion coeflicient with y, . as the scattering coeflicient,
g is the anisotropy parameter, and u,, ,,, is the absorption
coefficient. @, denotes the photon density. The fluorescent
yield s is the unknown parameter to be reconstructed,
which is denoted as x hereafter. By using the finite element
method (FEM), the linear relationship between the boundary
measurements ¢,, and the desired unknown fluorophore
distribution x can be obtained from (1) and is described by

b = Ax, )

where A is the forward matrix, the sizes of ¢,,,, A, and x are
M x 1, M x N, and N x 1, respectively. M is the number
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of surface measurements and N is the number of unknowns
needed to be determined inside the imaging domain. Usually
M < N, and this means that the number of measurements is
smaller than that of the unknowns.

2.2. Sparsity-Constrained Preconditioned Kaczmarz Method.
It is known to us that the convergence of the Kaczmarz
method is affected by the data access order. If the measure-
ments are prearranged in a scheme that the projections are
close to perpendicularity, the convergence of the Kaczmarz
method will be speeded up. In this paper, rather than
changing the sequential data access order, we design a pre-
conditioner to minimize the correlation between the rows of
the forward matrix of FMT and hence to make the Kaczmarz
method converge quickly. Denote the preconditioning matrix
as W and the preconditioned forward matrix as B, then we
get B = WA, and W can be obtained by solving the following
optimization problem:

min  |BBT — 1,
(3)

= min
w

[waA™WT -1,
where I, is the M x M identity matrix and | - ||z is the
Frobenius norm.

Considering the singular value decomposition of A which
is described by A = USV', where Uis M x M unitary matrix,
S is M x N diagonal nonnegative matrix and Vis an N x N

unitary matrix. Letting W = (sS") 12U, we can get

BB' = WAA'W'
T\ /2 .7 TyeTyeT T\"1/2 @
=(ss') "utusvivs'uu(ss) =1,
Equation (4) means that the rows of the preconditioned
forward matrix are orthogonal to one another. If the pre-
conditioner W is badly conditioned, we can use the diagonal
loading strategy to mitigate the ill condition and W is
calculated by W = (SST + AI)_I/Z, where A <« 1 is a constant
[27].

Figure 1 provides a geometric insight into the iterative
progress of the Kaczmarz and the preconditioned Kaczmarz
algorithms. Figure 1(a) presents a geometrical interpretation
of Kaczmarz applied to a 2D problem. Here, each line
represents a hyperplane in the solution space corresponding
to one of the equations, and the solution is the intersection
of the dashed lines. The progress of Kaczmarz is represented
by dark blue dots and arrow lines. As depicted in Figure 1(a),
the points with dots iteratively progress toward the solution
(intersection of the two dashed lines) by orthogonal suc-
cessive projections onto the two lines [22]. In Figure 1(b),
the blue diamond and arrow demonstrate the convergence
of preconditioned Kaczmarz algorithm toward the solution.
Because the forward matrix has been preconditioned, the
two green dashed lines which demonstrate the hyperplanes
corresponding to the two equations are perpendicular. In
theory, only one iteration is needed for the algorithm to
converge to the solution. However, because of the ill condition
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FIGURE 1: Geometric interpretations of the Kaczmarz algorithm and the preconditioned Kaczmarz algorithm applied to a 2D problem. (a)
The red dashed lines represent the two equations in the 2D solution space; the blue dots and arrows show the convergence of the Kaczmarz
algorithm to the solution. (b) The green dashed lines represent the two preconditioned equations in the 2D solution space; the blue diamond
and arrow show the convergence of the preconditioned Kaczmarz algorithm to the solution.

of the forward matrix in FMT imaging and the presence of
noise, the two lines are not completely perpendicular.

Multiplying (2) by W on both sides, we can obtain the
distribution of the fluorescent targets by solving

Bx = W¢,,. €)

We use the classical Kaczmarz technique to solve (5) and the
unknown x is updated by

ﬁ”:%””+$&@ﬂ1%£iz,i:LL“qM;(@
B;B]
where B, is the ith row of B.

Considering that the fluorescent target is sparsely dis-
tributed, we add a thresholding step to (6) to make the
sparsity of the Kaczmarz result remain as close as possible to
a preset value. The thresholding procedure is depicted by

(k) sp (k) (k)
L0 x,” if x,” = B max (x )
=

0 otherwise, (7)
n=12,...,N,

where x;k) is the nth element of x* and  is between 0 and
1 and can be obtained by solving the minimization problem
[29]

B = arg min 'sparsity (x(k) (/3)) - 1//| : (8)

The thresholding step also guarantees the nonnegativity of the
solution. The minimization problem of (8) can be solved by
using linear searching strategy. And the sparsity of x in (8) is
defined as [30]

VN = (lIxlly / Ix1l,)

9
VN -1 ©)

sparsity (x) =

where N is the size of vector x and | x|, and x|, denote
I, and I, norm of x, respectively. The curve in Figure 2(a)
depicts the variation of sparsity value with the number of
nonzero elements in x (assume that x has 300 elements and
the nonzeros in x are constant, e.g., 1), from which we can see
that the sparsity value ranges from 0 for nonsparse results to 1
for extremely sparse results. Figure 2(b) shows x with sparsity
value of 1, 0.87, and 0.73, respectively.

So far, the implementation of the proposed SCP-
Kaczmarz method can be summarized as follows:

(1) Initialize x*, where k = 0, and preset the wanted
sparsity value y.

(2) Perform singular value decomposition to A and com-
pute the preconditioning matrix W.

(3) Compute the preconditioned measurements y =
W¢,, and the preconditioned forward matrix B =
WA.

(4) Update x® from x*7 by solving y = Bx using the
classical Kaczmarz method.

(5) Keep the large elements of x® and set the other
elements to zero to make the sparsity of the result
equal to the wanted sparsity value .

(6) Increase the iteration index k by 1 and set x® to be
the initial value; repeat steps (4) to (5) until the stop
criterion is achieved (e.g., when k = K, or x® -
DY < ).

ter

A parameter, named as the wanted sparsity value y, should be
predetermined for the proposed SCP-Kaczmarz method. As
we do not know the true distribution of the fluorescent target
in practice, the ratio of the volume of the fluorescent target
to that of the imaging domain can be first estimated, and
then the corresponding sparsity is calculated as the wanted
y according to (9) under the assumption that the fluorescent
target is uniformly distributed.
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FIGURE 2: (a) The variation of sparsity value with the number of nonzero elements in x. (b) x with sparsity value of 1, 0.87, and 0.73.
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FIGURE 3: (a) The digital atlas torso used in the numerical simulation. (b) The plane of the 5-point excitation sources at z = 16.5 mm.

2.3. Experiments and Results. To demonstrate the perfor-
mance of the proposed method, numerical simulation and
phantom and in vivo experiments were conducted. In these
experiments, cases with single fluorescent target and multiple
fluorescent targets were considered. All the reconstructions
were implemented on a personal computer with an 8 GB
memory and an Intel-Core i7 CPU. The relative deviation,
Dice coeflicient, and sparsity value were calculated to eval-
uate the SCP-Kaczmarz algorithm. The relative deviation is
defined by § = ||x, —x,ll,/lIx,ll,, where x, is the reconstructed
target and x, is the actual target. The Dice coefficient is
defined by D = 2|x, - xt||2/||xr||§||xt||§, where - is Hadamard
product and the sparsity is defined by (9). In addition, the
computational time and memory consumption of both the
methods were also recorded.

2.4. Numerical Simulation Experiments. In the numerical
simulation, a 3D digital mouse atlas of CT and cryosection

data was utilized to provide anatomical information [31].
Cases with single, two, and three fluorescent targets inside the
mouse atlas were studied, respectively.

2.4.1. Reconstruction of Single Fluorescent Target. In this
section, one fluorescent target inside the digital mouse atlas
was reconstructed and two imaging models were investigated.
The first model is reconstruction of small fluorescent target
while the second one is reconstruction of big fluorescent
target. The small target model is usually used to mimic small
tissue with fluorescent probe, such as the early tumor; the
big target model can be used to recover the biodistribution
of fluorescent probe in organs, which is important in drug
pharmacokinetics study [32].

The small target model is shown in Figure 3(a), where a
spherical fluorescent target (marked in red color) with radius
of L.5mm was placed at “12.9 mm, 9.9 mm, and 16.5 mm”
in the liver. The optical parameters of the mouse organs
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TaBLE 1: Optical parameters of the mouse organs [19].

Tissue U (mm™) ys'x (mm™) Hom (mm™) y;m (mm™)
Muscle 0.0052 1.08 0.0068 1.03
Heart 0.0083 1.01 0.0104 0.99
Lungs 0.0133 1.97 0.0203 1.95
Liver 0.0329 0.70 0.0176 0.65
Kidneys 0.0660 2.25 0.0380 2.02
Stomach 0.0114 1.74 0.0070 1.36

including muscle, heart, lungs, liver, kidneys, and stomach
were listed in Table 1 [19]. As illustrated in Figure 3(b),
the fluorescent target was excited sequentially by 5-isotropic
point sources located one mean free path of photon trans-
port beneath the mouse surface on z = 16.5mm plane. For
inverse reconstruction, the atlas torso was discretized into
38735 tetrahedrons and 7511 nodes. The sparsity value and
fluorophore distribution were set to be 0.9 and 0, respectively,
when k = 0.

Figure 4 shows the relative deviation, the Dice coefficient,
and the sparsity value obtained during the iteration process of
the SCP-Kaczmarz and Kaczmarz algorithm. From Figure 4
we can see that, after about 20 iterations, the proposed
method converges to the true solution with sparsity value of
0.9476.

Figure 5 shows the 3D targets and 2D slices at z =
16.5mm recovered by the SCP-Kaczmarz and Kaczmarz
method after 100 iterations, respectively. The actual target is
indicated by the black circle and the reconstructed results
are normalized by the true intensity. It can be seen that
both methods can locate the target accurately, while the
first one is more appropriate for quantitative analysis and
profile reconstruction. It is known to us that the singular
value decomposition of the forward matrix, needed for
the proposed method to calculate the preconditioner, is
computationally expensive. Fortunately, the SVD only needs
to be performed for one time and can be done before the
iteration starts. So, in this work, we just measure the elapsed
time for the proposed algorithm to iteratively solve the
preconditioned FMT inverse problem by using the MATLAB
functions tic and toc and the SVD time cost is not included.
The time cost is 79 seconds and 100 seconds, respectively,
for the SCP-Kaczmarz method and the Kaczmarz method to
run 100 iterations. The corresponding memory consumption,
which is calculated by using the MATLAB instruction profile
on memory, is 565040 KB and 565016 KB. As the memory
is mainly used to store the preconditioned or the original
forward matrix, the two algorithms have similar memory
cost.

The big target model was used to recover the biodistri-
bution of fluorescent probe in heart. The target was excited
sequentially by 5-isotropic point sources located at one mean
free path of photon transport beneath the mouse surface on
the z = 7.3 mm plane where the heart centered. Figure 6
illustrates the reconstruction results (which are normalized
to the intensity of the actual target) obtained by the SCP-
Kaczmarz and the Kaczmarz method after 100 iterations,

where the actual heart inside the body is hidden for clarity.
We also plotted the recovered intensity at each node of the
discretized atlas torso, as shown in Figure 7, where the x-
axis denotes the node index and the y-axis denotes the
intensity. The relative deviation, Dice coefficient, and sparsity
are illustrated in Figure 8. Although the two methods get
different results, the sparsity values are the same after 40
iterations. The computational time of the SCP-Kaczmarz and
Kaczmarz is 80 seconds and 81 seconds, respectively, and both
the memory usages are about 565 MB.

2.4.2. Reconstruction of Multiple Fluorescent Targets. In this
section, we used the proposed SCP-Kaczmarz method to
recover multiple targets. As shown in Figure 9(a), two
spherical fluorescent targets with radius of 1 mm were placed
at “I3mm, 12mm, and 16.5mm” and “13mm, 6 mm, and
16.5mm” in the liver of the digital mouse. Figure 9(b)
illustrates the relative deviation (blue solid line), sparsity
(green dashed line), and Dice coefficient (red dotted line)
obtained by the SCP-Kaczmarz method and Figure 9(c) is the
recovered slices at z = 16.5mm after 100 iterations where
the black circles denote the actual targets. The corresponding
results obtained by the Kaczmarz method are plotted in
Figures 9(d) and 9(e). It can be seen that about 1500 iterations
are needed for the Kaczmarz algorithm to get satisfactory
results. The time for the SCP-Kaczmarz to run 100 iterations
is 72 seconds and that for the Kaczmarz to run 1500 iterations
is 1209 seconds and the corresponding memory cost is about
559 and 557 MB, respectively.

To further test the ability of the proposed method to
distinguish multiple targets, we considered three fluorescent
spheres with radius of 1 mm placed in the liver of the digital
mouse. As shown in Figure 10(a), the three fluorescent
targets were centered at “llmm, 10mm, and 16.5mm”;
“14 mm, 14 mm, and 16.5 mm”; and “13 mm, 6 mm, 16.5 mm,”
respectively. The SCP-Kaczmarz results after 100 iterations are
demonstrated in Figures 10(b) and 10(c), and the Kaczmarz
results after 1500 iterations are demonstrated in Figures 10(d)
and 10(e). The actual targets are indicated by black circles in
Figures 10(c) and 10(e). The time cost for 100 SCP-Kaczmarz
iterations and 1500 Kaczmarz iterations is about 78 seconds
and 1327 seconds, respectively. The memory consumption
for the two methods is about 555 MB. The results show that
the three targets can be distinguished by the two methods.
However, the proposed new method performs better both
in accuracy and in convergence rate compared with the
Kaczmarz method.
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2.5. Phantom and In Vivo Experiments. In this section,
our homemade dual-modality FMT-Micro-CT imaging sys-
tem [19] was used to perform the phantom and in vivo
experiments. Two phantom experiments were conducted. In
the first experiment, a 20 mm cubic phantom made from
polyoxymethylene was placed on the rotational stage of
the imaging system. A small hole with Imm radius and
2mm height was drilled at “I5mm, 7mm, and 9.5mm”

in the phantom. 40 uM of Cy5.5 solution was emplaced
in the hole to be used as the fluorescent target. A 671nm
CW laser was used as the point source to excite the Cy5.5
solution on each side of the cubic phantom and a 40 nm
bandpass filter centered at 720 nm was set before an EMCCD
camera to collect the fluorescence signal on the phantom
surface. The optical parameters for excitation and emission
wavelengths are y,, = 0.0134 mm™" and g, = 9.3 mm ™" and
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FIGURE 5: The reconstructed results of single small target. (a) 3D fluorescent targets and 2D slices at z = 16.5 mm obtained by the SCP-
Kaczmarz method. (b) 3D fluorescent targets and 2D slices at z = 16.5 mm obtained by the Kaczmarz method.
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FIGURE 6: The reconstructed 3D results for big target model. (a) Results obtained by the SCP-Kaczmarz method. (b) Results obtained by the
Kaczmarz method.
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Uom = 0.0114mm™" and p,, = 10.1 mm™', respectively. In

the second experiment, a cylinder phantom with 10 mm
radius and 30 mm height was used. Two holes with 1 mm
radius and 5 mm height were drilled in the cylinder phantom.
The two holes were centered at “5 mm, 4 mm, and 15 mm” and
“5mm, -4 mm, and 15mm,” respectively. Both holes were
filled with 40 uM of Cy5.5 solution. The 671nm CW laser
was used as the point source. Five excitation points were
set equivalently along the right half side of the phantom on
z = 15mm plane.

The cubic phantom is illustrated in Figure 11(a), where
the green cylinder denotes the Cy5.5 solution. The initial
sparsity value was set to be 0.8 for the first iteration. Figures
11(b) and 11(c) show the normalized results at z = 9.5mm
by the SC-Kaczmarz and the Kaczmarz method after 200

iterations, respectively, where the true target is indicated by
the white circle and the location errors are about 0.7 mm and
1.9 mm, respectively. Compared with the Kaczmarz result, the
intensity of the SCP-Kaczmarz result is larger due to the fact
that the latter one distributes more sparsely. The time cost
is 55 seconds and 58 seconds and the memory cost is about
100 MB.

The cylinder phantom is shown in Figure 12(a), where
the green cylinders denote the Cy5.5 solution. Figures 12(b)
and 12(c) show the reconstructed 3D targets and 2D slices at
z = 15 mm by the SCP-Kaczmarz method after 100 iterations.
To get acceptable results, 500 iterations were needed for
the Kaczmarz method. Figures 12(d) and 12(e) show the
reconstructed 3D targets and 2D slice at z = 15mm by the
Kaczmarz method after 500 iterations. 167 seconds is cost
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FIGURE 8: The recovered results by the two methods with 100 iterations. (a) The relative deviation. (b) The Dice coefficient. (c) The sparsity.

for the SCP-Kaczmarz algorithm to iterate 100 times and
862 seconds is needed for the Kaczmarz algorithm to iterate
500 times. The memory used by the two methods is about
600 MB, where the phantom is discretized into 7851 nodes for
inverse reconstruction.

The proposed SCP-Kaczmarz method was also used to
recover the fluorescent target from the in vivo small animal
experimental data [32]. In the experiment, the fluorescent
target was made of a glass tube full of 4000nM Cy5.5
solution and was implanted into the abdomen of an adult
BALB/C mouse. A 671nm CW point laser was used to

excite the target at four positions sequentially and the optical
signal on the mouse surface was collected. After the optical
images acquisition, the anesthetized mouse was scanned by
the Micro-CT subsystem. The reconstructed CT slices were
segmented into five components (heart, lungs, liver, kidneys,
and muscle) and used to provide prior structural information
for the FMT inverse problem. The sparsity value was set to
be 0.7 for the first iteration. The in vivo experiment results
are shown in Figure 13, where (a) is the CT slices, (b) is
the recovered slices by the SCP-Kaczmarz, and (c) is the
recovered slices by the Kaczmarz method. The top row in
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FIGURE 1I: Reconstruction of single target in the cubic phantom. (a) The actual fluorescent target. (b) The normalized result by the SCP-
Kaczmarz technique on plane z = 9.5 mm. (c) The normalized result by the Kaczmarz technique on plane z = 9.5 mm.

Figure 13 illustrates the cross views and the bottom row
demonstrates the coronal views. With Micro-CT, the center of
the glass tube is around “21.1, 27.8, and 7.4” mm. The center of
the recovered target by SCP-Kaczmarz is about 1.4 mm away
from the glass tube center after 100 iterations. The center of
the recovered target by Kaczmarz is about 1.7 mm away from
the glass tube center after 150 iterations. As sparsity constraint
is applied, we can see from Figure 10 that the reconstructed
target by SCP-Kaczmarz is sparser and the amplitude is larger
than the target recovered by Kaczmarz. The time cost is
50 seconds and 80 seconds for the SCP-Kaczmarz method
(100 iterations) and the Kaczmarz method (150 iterations),
respectively, and the memory used in both is about 270 MB.

3. Discussion and Conclusion

In this work, we propose a sparsity-constrained precondi-
tioned Kaczmarz method to solve the inverse problem in
FMT. First, a preconditioner is computed to minimize the

correlation between the rows of the FMT forward matrix,
then the classical Kaczmarz method is used to solve the pre-
conditioned inverse problem, and finally the large elements
of the Kaczmarz solution are kept and the other elements are
set to zero to make the result satisfy a preset sparsity value.
The threshold value is obtained by solving a minimization
problem using linear searching strategy. The performance
of the proposed algorithm is demonstrated by numerical
simulation and phantom and in vivo experiments. In numer-
ical simulation, both small target and big target can be
recovered with high accuracy by the proposed method. As the
correlation between the rows of the forward matrix has been
minimized, the SCP-Kaczmarz method converges to the true
solution rather faster than the classical Kaczmarz method. In
the phantom and in vivo experiment, the proposed algorithm
shows performance improvement both in location accuracy
and in convergence speed relative to the classical Kaczmarz
technique. Furthermore, experiments with two targets and
three targets were performed. The results show that both
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FIGURE 12: Reconstruction of two targets in the cylinder phantom. (a) The actual targets. (b) The 3D targets and (c) the 2D slices at z = 15 mm
recovered by the SCP-Kaczmarz method after 100 iterations. (d) The 3D targets and (e) the 2D slices at z = 15 mm recovered by the Kaczmarz
method after 500 iterations.
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(a)

(c)

FIGURE 13: In vivo experiment results. (a) CT slices where the glass tube is the true target. (b) Recovered slices by the SCP-Kaczmarz method.

(c) Recovered slices by the Kaczmarz method.

the methods can get satisfactory results. However, we find
that the Kaczmarz method converges rather slowly when
recovering more than one target, while the convergence of
the proposed SCP-Kaczmarz is not affected by the number of
targets. The reason may be that the correlation between the
rows of the forward matrix when multiple targets are present
is stronger compared to the case when one target is present.
And the stronger correlation leads to slower convergence of
the Kaczmarz method. After preconditioning, the correlation
is minimized and hence the convergence remains the same
for different number of targets. The computational time and
the memory usage are also calculated. The results show that,
under the same number of iterations, the Kaczmarz method
runs a little faster than the SCP-Kaczmarz method, and
they consume similar memory. That is because the memory
is mainly used to store the preconditioned or the original
forward matrix which are of the same size.

A parameter, named the wanted sparsity value, should be
predetermined when using the SCP-Kaczmarz method. As
the number of nodes in the imaging domain is known, we can
estimate the number of nodes the fluorescent target covers
and hence get a sparsity value by (9). However, we found
that the sparsity value has little effect on the reconstruction
result in our experiment. It is known to us that the singular
value decomposition of the forward matrix, needed for the
proposed method to calculate the preconditioner, is compu-
tationally expensive. Fortunately, the SVD only needs to be
performed for one time and can be done before the iteration
starts. No additional computation load will be caused when
the proposed method iteratively solves the preconditioned
FMT inverse problem. In numerical simulation, as the surface
data was obtained based on the diffusion approximation (DA)
model, which is also used in solving the inverse problem,
the proposed algorithm performs well to reconstruct the
intensity and the shape of the fluorescent target. For real

experiment, we do not know actually the light transport
model. So there is a mismatch between the true model and
the diffusion approximation, and the proposed method does
not perform as well as it does in the simulation experiment.
In the future, we will focus on light transport model based
on higher order approximation (e.g., the SP,; approximation)
and perform in vivo experiment with multiple targets to
further investigate the proposed method.
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