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Abstract: Modern imaging systems are able to produce a rich and diverse array of information, regarding various facets of 
anatomy and function. The quantity of information produced by these systems is so bountiful, however, as to have the 
potential to become a hindrance to clinical assessment. In the context of serial image evaluation, computer-based change 
detection and characterization is one important mechanism to process the information produced by imaging systems, so as 
to reduce the quantity of data, direct the attention of the physician to regions of the data which are the most informative for 
their purposes, and present the data in the form in which it will be the most useful. Change detection and characterization 
algorithms may serve as a basis for the creation of an objective defi nition of progression, which will reduce inter and intra-
observer variability, and facilitate earlier detection of disease and recurrence, which in turn may lead to improved outcomes. 
Decreased observer variability combined with increased acuity should make it easier to discover promising therapies. 
Quantitative measures of the response to these therapies should provide a means to compare the effectiveness of treatments 
under investigation. Change detection may be applicable to a broad range of cancers, in essentially all anatomical regions. 
The source of information upon which change detection comparisons may be based is likewise broad. Validation of algo-
rithms for the longitudinal assessment of cancer patients is expected to be challenging, though not insurmountable, as the 
many facets of the problem mean that validation will likely need to be approached from a variety of vantage points. Change 
detection and characterization is quickly becoming a very active fi eld of investigation, and it is expected that this burgeon-
ing fi eld will help to facilitate cancer care both in the clinic and research. 

Introduction
Since the advent of cancer therapies, there has been a need to assess the outcome of interventions. These 
assessments may be viewed generally to serve two purposes—in the clinic, assessments are made on 
individuals so that doctors can manage care appropriately; in the context of research, assessments are 
made of cohorts of patients, to assess response to therapies. The goal is the same in both contexts: the 
status of the patient and the tumor are to be monitored, and typically this is accomplished by comparing 
some observation or measurement at one time-point, to a measurement of the same kind at another 
time-point. In the early days of cancer treatment, the assessments were physical (if the tumor was visible 
or palpable from the outside), chemical (if some consequence of the tumor’s presence could be measured, 
for example from body fl uid samples), or pathological (if a part of the tumor could be biopsied or 
otherwise sampled for microscopic examination). Medical imaging has given the physician the ability 
to observe structures which were not visible from the outside, and to do so minimally invasively. Tomo-
graphic imaging has been a powerful development, since patients and tumors are inherently three 
dimensional. Imaging in three dimensions has provided the ability to delineate the spatial extent of 
lesions, and has provided the potential for much more accurate measurements. 

Imaging modalities provide information about physical properties (e.g. X-ray attenuation, T1 relax-
ation time) but not biological properties, per se, although the physical properties measured by imaging 
systems are usually related to biological properties of interest, and may be used to estimate the under-
lying biological properties quantitatively. In this capacity, different imaging modalities refl ect different 
aspects of tumor growth, for example, x-ray attenuation is highly effective at demonstrating calcifi ca-
tions. Magnetic resonance imaging is very fl exible in that it can observe many different aspects of tissue: 
T1 relaxation time, T2 relaxation time, proton density, diffusion, etc. MR angiography provides the 
ability to visualize blood fl ow. MR spectroscopy provides the ability to visualize chemical constituents. 
Through the injection of a contrast medium such as gadolinium (Gd), regions of breakdown of the blood 
brain barrier (BBB) may be visualized in a brain MRI, as well as perfusion characteristics of tissue in 
the brain and other structures. Information related to function rather than structure may also be acquired 
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—functional magnetic resonance imaging (fMRI), 
for example, provides the ability to image regional 
brain activation. Positron emission tomography 
(PET) provides the ability to image function 
through metabolism. Blood flow velocity and 
direction may be observed using Doppler ultra-
sound. Microscopic imaging may be conducted 
in vivo using ultrasound biomicroscopy (UBM) or 
optical coherence tomography (OCT). 

An important problem in medical imaging (and 
in many other fi elds) is the explosive growth of 
data production. Imaging devices are now able to 
produce a preponderance of data, and computer 
systems can process and store this information with 
relative ease. In medical imaging and other fi elds, 
the human being remains at the end of the image 
production pipeline, with the potential to be over-
whelmed by the quantity of data being presented. 
In the context of medical imaging, this has been 
termed “image overload” (Andriole et al. 2004). 
To elaborate, in a magnetic resonance imaging 
study of a patient with a brain tumor, a given patient 
may be imaged using a variety of pulse sequences: 
T1, T2, Fluid-attenuation by inversion recovery 
(FLAIR), T1 with gadolinium (Gd), Proton Density 
(PD), diffusion, perfusion, MR angiography, 
magnetic resonance spectroscopy, etc. Further, 
each sequence is made up of several hundred thou-
sand voxels: historically, the images have been 
displayed as a series of slices. Advances in data set 
sizes of CT and MR have shown exponential 
growth that track advances in computing power 
(Erickson et al. 2001). The wealth of information 
produced by efforts to image with progressively 
fi ner resolution, with more image contrast types, 
over progressively larger regions of anatomy 
should be benefi cial to the clinician; it may become 
problematic, however, if not carefully managed. 
Important information may be hidden beneath the 
wealth of data, making looking for the features of 
interest like looking for the proverbial needle in a 
haystack. Information may be spread across 
multiple slices or pulse sequences, making it diffi -
cult for the human to assimilate the data, and 
identify important features (at least when the infor-
mation is presented as it is today). 

In some sense, information overload provides 
the imperative to use sophisticated computational 
strategies to provide the radiologist with informa-
tion more focused on the patient and the clinical 
task (e.g. biology and disease related information) 
rather than physics centric information which has 

been presented historically. Plain-film x-ray 
imaging systems have provided radiologists with 
x-ray attenuation information, because that was what 
fi lm could provide. In the past, in the limited cases 
in which post-acquisition image processing systems 
have been applied, these have been relatively simple. 
Hounsfi eld units have in some cases been thresh-
olded in CT to defi ne tissue types and then used to 
present colored 3D images, and Doppler ultrasound 
images have often been thresholded to help identify 
areas of flow above a certain range. However, 
because of an historical lack of computing algo-
rithms, and because of limits to the types of informa-
tion and numbers of measurements provided by 
imaging systems, it has been diffi cult for imaging 
systems to make many sure judgments, beyond these 
relatively simple examples. Minimally processed 
physical information was what was presented to 
the radiologist, because that was what was sure, 
and this has continued into current medical 
practice—radiologists still examine T2 weighted 
images, when what they are really interested in are 
the biological properties: tumor growth, infl am-
mation, infarction, etc. Likewise, physicians have 
historically examined a selection of volumes at 
multiple time-points, when what they are really 
interested in is what has changed. However, there 
may now be a shift in the form of presentation. 
The explosion of data produced by CT and MR 
scanners has made it both necessary and possible 
for the radiologist to be presented with processed 
data which is more refl ective of the underlying 
biological properties, which are what is of interest, 
instead of the measured physical properties (which 
the radiologist was likely going to use to infer the 
biological properties of interest). If the radiologist 
is interested in change in a known process 
compared to a prior time point, then the radiologist 
should be given an image of change, and these 
changes should refl ect the underlying biology to 
the greatest degree possible. 

The benefi ts of and problems associated with 
rapidly increasing quantity of data acquisition is 
by no means specifi c to medical imaging, but 
instead is occurring across a gamut of disciplines 
([NoAuthorGiven], 2006). Likewise, the desire 
to identify changes between serial images and 
efforts to use computers to help accomplish this 
task has not only been described within the 
context of medical imaging (Patriarche and 
Erickson, 2004), but is also being simultaneously 
explored in other imaging fi elds including remote 



Cancer Informatics 2007:4 3

A New Tool for Imaging Informatics and Cancer Research

sensing, astronomy, surveillance, geology, and 
others (Radke et al. 2005; Bovolo and Bruzzone, 
2005; Lu et al. 2004; Coppin et al. 2004). There is 
additionally extensive work being undertaken in 
the neuroscience of change perception (Simons 
and Levin, 1997; Rensink, 2002; Thornton and 
Fernandez-Duque, 2002; Simons and Rensink, 
2005; Noë et al. 2000; Levin et al. 2000) (i.e. how 
people compare images in their minds when they 
do so manually). It is very likely that researchers 
involved in the development of change detection 
techniques could benefi t from familiarity with 
this growing body of literature, because under-
standing the neurologic mechanisms behind 
successful manual identifi cation of changes, and 
understanding the situations in which and reasons 
why clinicians fail to recognize changes may 
suggest computational strategies for automated 
support.

Change Detection 
and Characterization
Establishing the presence or absence of change over 
time, and characterizing those changes, is a common 
clinical task and a key motivation for the acquisition 
of serial imaging studies—the goals of this task 
contrast with those of acquiring single time-point 
imaging studies in order to explain symptoms and 
diagnose disease. In current clinical practice, the 
former is in some respects more challenging than 
the latter, fi rst because serial analysis requires the 
examination of at least twice the quantity of infor-
mation compared with single time point analysis, 
and second because side-by-side comparison 
requires the radiologist to perform a mental compar-
ison function after assessing each time point, based 
upon memory of both acquisitions. Making the task 
even more challenging is the fact that data produced 
by current state of the art scanners is confounded 
with a variety of acquisition-related factors (e.g. 
signal nonuniformity and noise, patient positioning 
inconsistencies, modality-specifi c artifacts, etc.), 
and these factors may change from the time of one 
acquisition to the next, so in order to generate a 
mental map of the changes, the clinician must 
mentally fi lter out these confounds. A selection of 
methods, mathematical formulations, and computer 
algorithms have been used to compare serial volu-
metric images—to identify, and in some cases 
localize, changes (Patriarche and Erickson, 2004). 
These have utilized greater and lesser degrees of 

automation, and have shown greater and lesser 
degrees of effectiveness. 

“Manual” approaches
Methods focused on reducing the image data to 
concise quantitative measures are more relevant in 
the context of research, where it may be desired to 
compare the response of one group of patients 
(enrolled in the ‘control’ arm) with another group 
of patients (enrolled in the experimental treatment 
arm). Various approaches have been taken in the 
past to produce such simple metrics. Several groups 
have used maximal diameter and related methods. 
In one such method, response evaluation criteria in 
solid tumors (RECIST) (Padhani and Ollivier, 2001; 
Gehan and Tefft, 2000; Therasse et al. 2000; 
Tsuchida and Therasse, 2001; Padhani and Husband, 
2000), lesions larger than 1 cm are identifi ed, the 
largest in-plane diameter of each is measured, and 
an overall sum is computed. Two related methods, 
the World Health Organization (WHO) method 
(Miller et al. 1981) and the Southwest Oncology 
Group method (Green and Weiss, 1992), use largest 
diameter and largest corresponding perpendicular. 
In these methods, “largest diameters” are used to 
capture the extent of the tumor. Other groups have 
used volumetrics, in which the boundary of the 
tumor or other region of interest is defi ned, for 
example by outlining, and then the total volume of 
abnormal appearing tissue is summed (Rusinek 
et al. 1991; Weiner et al. 2000; Jack et al. 1998; 
Haney et al. 2001a; Haney et al. 2001b). 

Single-diameter methods are very effective at 
reducing data. The measures produced are intended 
to refl ect patient status, or when computed for two 
serial acquisitions and then compared, of response 
to therapy or progression of disease. In spite of 
this, there are two chief problems with these 
methods: one is that they do not adequately capture 
the status of the patient (Patriarche and Erickson, 
2004), and the other is that they suffer from a high 
inter- and intra-rater variability (Thiesse et al. 
1997; Filipek et al. 1991; Clarke et al. 1998). In 
some respects, the tasks these methods pose to the 
clinician are poorly constructed: RECIST for 
example, assumes a reliably defi nable diameter, 
but many tumors are infi ltrative, and thus may not 
present a discrete boundary. By focusing on 
maximal in-plane diameter, they implicitly assume 
that tumors grow uniformly in all directions, but 
this is certainly not the case. Changes in image 
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acquisition parameters or imaging plane can cause 
changes in the measurement even though the tumor 
is actually unchanged. In some respects, such 
methods are also poorly matched to the human 
ability to perceive: the clinician cannot necessarily 
easily tell by visual inspection which is the largest 
diameter, and thus their measures are not deter-
ministic and do not always refl ect the maximal 
extent of the tumor. The methods do not always 
measure all features important to the assessment of 
changes in status: in addition to changing in extent, 
tumors may also change in character (for example, 
in terms of internal signal properties or margin 
appearance). Rate of change may also differ greatly 
from one location within the tumor to another, and 
thus it may be very important to consider the 
inherent heterogeneity of tumor cells. 

“Automated” approaches
“Manual” approaches are to a great degree directed 
towards simplifying the problem, requiring interac-
tion with as little data as possible at a time, and 
taking as little time as possible to perform. Compu-
tational approaches may be quite complicated in 
comparison (but are still intended to be relatively 
simple from the perspective of the user), and may 
produce important performance improvement from 
the perspective of the radiologist. Even anatomic 
alignment can improve the performance of radiolo-
gists [Erickson CI, 2006]—and this one step greatly 
facilitates further computational steps, such as subtrac-
tion. Computers may be programmed to perform 
arbitrarily complicated tasks perfectly deterministi-
cally (or, if desired, maximally deterministically, 
which can sometimes be advantageous), often 
showing better performance as the volume of data 
increases. This is important, because this means 
analysis strategies do not have to be performed 
upon drastically simplifi ed versions of the data— 
the analysis processes can be quite complicated, 
and can produce extremely rich and tailored output. 
Although some express skepticism that such systems 
can work in practice, some authors have shown it to 
be possible to construct these systems (Patriarche and 
Erickson, 2006a), and to make them extremely auto-
mated and produce highly rich information as their 
output. These systems have further been shown to 
offer enormous potential value to clinicians (Patriarche 
and Erickson, 2006b). 

Some approaches to computer-assisted change 
detection focus on localization of changes, whereas 

others focus on reduction of the data at the output 
stage. A relatively simple and intuitive computa-
tional approach which has been used for change 
detection and localization is registration followed 
by subtraction; this method has been demonstrated 
to offer a high degree of sensitivity to changes 
(Hajnal et al. 1995a; Hajnal et al. 1995b). Some 
authors have used non-linear registration / warping, 
and in some cases, such as when the tissue is 
deformable and such deformation is what is of 
interest, these approaches are very natural and 
appropriate (one example would be when it is of 
interest to determine whether the ventricles of the 
brain are being compressed by mass effect). 
Other approaches have combined the ability of 
approaches such as subtraction to produce local-
ized descriptions of change, with the ability of 
approaches such as diameter-based approaches, 
volumetrics, and other measurement sampling 
approaches to produce concise quantitative 
summaries of change (Patriarche and Erickson, 
2006a, Patriarche and Erickson, 2006b). 

Benefi ts of the Direct Computation 
of Change 
The emphasis on change assessment, rather than 
size assessment, is purposeful. The direct compu-
tation of change from the total body of data (as 
opposed to computation of some measure from the 
data from each time-point and subsequent compar-
ison of the measures from the two time-points) can 
help to overcome a variety of problems. Two 
acquisitions provide more information than one, 
and this incremental information might be used to 
help resolve ambiguity. The acquisition from one 
time-point can provide a standard of reference for 
the other. Artifacts, for example, are relatively 
unlikely to present identically in multiple acquisi-
tions. By applying a dedicated change detection 
method which uses more than one acquisition, these 
problems may be reduced. A dedicated change 
detection algorithm may implicitly manage artifacts, 
using the fact that changes resulting from artifacts 
being present at one time-point but absent or 
different at the other are relatively unlikely to mani-
fest in the same way as real changes, which typically 
manifest in particular ways (Figure 1). An algorithm 
might also explicitly manage artifacts, for example 
by using knowledge of specifi c varieties of artifacts 
(e.g. RF inhomogeneities)—by examining and 
comparing regions of normal tissues at both 
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time-points, and by developing a mathematical 
description of the artifact in the particular case for 
use in intermediate stages of processing. Using such 
a method, the impact of RF inhomogeneities at 
both time-points might be reduced not only in 
regions of normal tissue, but through inference and 
models, in regions of pathology (including 
changing pathology) as well. 

Boundaries of interest may be defi ned by the 
extent of the changing region, rather than by the 
extent of the abnormal appearing region (this is in 
contrast with the approach taken by size methods 
such as volumetrics). The delineation of tumor 
boundary, whether by manual or automated means, 
will always have error. If the actual change encom-
passes only a fraction of the entire lesion, then the 
cumulative error incurred as a result of delineating 
the boundary of the entire lesion twice (once at each 
time-point) could easily overwhelm the change 
measurement (and it would not describe changes in 
character). Attempting to identify the regions of 
change, directly, rather than defi ning lesion bound-
aries at each time point, avoids this source of 
error. 

In the context of therapy response assessment, 
the nature of the change may be of greater interest 
than its absolute size. Imaging based measurements 
frequently do not refl ect total lesion burden (Kelly 
et al. 1987a; Kelly et al. 1987b; Burger et al. 1988; 
Johnson et al. 1987; Tovi, 1993; Tovi et al. 1994), 
but changes in the imaging appearance are very 
likely to refl ect changes in the underlying disease. 

A subtle lesion seen in imaging could also be 
ambiguous, and may or may not be related to the 
disease under investigation. Change computed 
from serial imaging studies may be a relatively 
simple way to help disambiguate these question-
able features, as change may provide greater 
sensitivity and specifi city than static intensity 
characteristics, or imaging appearance. 

The ability to detect changes 
of subtle degree
The ability to detect subtle changes, in both struc-
tures which were previously normal and in structures 
which were previously abnormal, is an area of great 
potential for computer methods. The ability to detect 
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Figure 1.  Scatterplot in T1-T2 space showing samples of normal-appearing white matter (NAWM, navy blue), cerebrospinal fl uid (CSF, 
magenta), and non-enhancing T2 abnormality (NETTA, yellow) for a brain cancer patient.  As normal appearing white matter acquires 
greater abnormal character, its T2 intensity increases and its T1 intensity decreases.  A trajectory is followed through feature space, and 
from the perspective of quantifying lesion character, variation in the direction of this trajectory is what is most important.  Specifi cally, a 
voxel half-way along this line between the NAWM centroid, and the CSF centroid, might be said to be 50% abnormal, while a voxel three-
quarters of the way along this line might be said to be 75% abnormal.  By focusing on fractional shifts in the position of voxels in feature 
space along this trajectory, very subtle changes in character may be detected.  At the same time, variation in the position of a voxel perpen-
dicular to this line may be treated as being due to noise.  In the above fi gure, the blue line labeled ‘curve’ has been fi tted by a computer 
program in order to emphasize the trajectory. 
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subtle changes allows earlier evaluation of treatment 
effects and thus, earlier intervention if a treatment 
is failing. Changes due to a therapy may also be 
transient, and may be quickly overwhelmed by 
progression, but these changes may still be of 
interest to the researcher, and it is necessary to have 
a mechanism to measure these changes. Mecha-
nisms to detect subtle response from short-interval 
acquired scans may help identify which patients are 
responders and which are not, at least as effectively 
as genetic profi les. Manual detection of these subtle 
changes is very challenging; change detection algo-
rithms may identify and characterize predictive 
changes before they are obvious and defi nite with 
the unaided eye. 

The ability to detect changes of small 
size
Related to the issue of the detection of subtle 
changes is the ability to detect spatially small 
changes—the difference being that subtle changes 
are changes which are subtle in character but which 
may (or may not) encompass a large spatial extent; 
whereas small changes are changes covering a 
small spatial extent but which may or may not be 
subtle in character. Visually comparing images in 
a ‘side-by-side’ mode cannot be as sensitive to 
small changes as computer algorithms that can 
compare ‘in-place’. Visualization modes that allow 
‘in-place’ comparison (such as ‘fl icker display’) 
can increase sensitivity to small changes, but 
computer algorithms are still likely to be more 
effective.

The ability to localize changes 
Methods of change detection which produce local-
izable measures of change are likely to be very 
useful. To the clinician, the location of progression 
may be important since it may help to determine 
which symptoms can be attributed to disease 
progression. For example, in melanoma lesions 
observed using ultrasound biomicroscopy or optical 
coherence tomography, a change indicating penetra-
tion of the basal cell layer versus superfi cial layers 
has signifi cant implications for treatment and prog-
nosis. In brain tumors observed using MR or CT, 
whether or not the tumor is infi ltrating critical struc-
tures such as eloquent cortex likewise has great 
implications for the patient and for the future 
behavior of the disease. Localizable descriptions of 

change may also provide information regarding 
which regions of the tumor are more aggressive. 
This may be important from a clinical stand-point, 
if the clinician wishes to biopsy the most aggressive 
parts of the tumor. It may be important from a 
research stand-point, because the researcher might 
wish to biopsy both the more aggressive regions of 
the tumor, and separately the less aggressive regions 
of the tumor, and perform comparative genomic 
analysis, to help to better understand what makes 
the category of tumor aggressive or not. In the 
context of individualized medicine, the inherent 
heterogeneity of tumors is very important because 
the intent in individualized medicine is to tailor the 
therapy not just to the patient’s genome, but perhaps 
more importantly to the disease as well. Imaging-
based change detection may offer the best possibility 
for optimal therapy, by enabling targeted biopsy and 
additionally by providing a description of the 
response to therapy of all regions of the tumor.

Considerations Guiding 
the Development of a Change 
Detection System

Practical considerations 
Seven criteria may be proposed to guide the develop-
ment of change detection and characterization 
methods. 1) The measures minimize the effect of non-
biological changes (for example acquisition related 
issues). There are a variety of ways this objective 
might be approached, including attempting to explic-
itly reverse the effects of the confounds or the method 
might be made to be insensitive to the confounds. 2) 
Minimize inter- and intra-observer variability. In the 
context of the clinic, reduced variability means greater 
confi dence in diagnoses, fewer mistakes, and a greater 
willingness to act earlier. In the context of research, 
reduced variability means that smaller cohorts and/or 
shorter time periods are required to achieve desired 
power. 3) The measures should require as little human 
effort as possible. 4) The computed measures should 
correlate with or predict the clinical status of the 
patient. 5) The measures should provide localizable 
descriptions of change. 6) The fi nal measures should 
be intuitive. 7) The measures should be quantitative 
(or some aspects of them should at least be expressible 
quantitatively), so that they may be compared using 
established statistical approaches, and summarized in 
research articles or clinical documents. 
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Technical considerations 
There are a number of key technical points which 
should be considered during the development of 
these algorithms. 

1) It is feasible to suppress noise, artifact, and 
other confounding factors by using knowledge 
about imaging and biology. Knowledge about 
tissue properties, and imaging characteristics 
may be incorporated into change detection and 
characterization algorithms. 

2) Change, like discrete anatomical structures, 
tends to exhibit coherence in space, in contrast 
with noise which usually does not. Spatially 
contiguous regions which exhibit similar traits 
(e.g. all changing in the same way) may there-
fore be detected with greater sensitivity than a 
pixel-by-pixel method could achieve. 

3) Changes may be identifi ed in terms of character 
as well as extent (although the latter may be 
identifi ed because it manifests as one sub-type 
of the former). This separation of tasks is im-
portant for a variety of reasons, particularly for 
multi-parametric images. There are times when 
the extent of the lesion is unchanged, but the 
character does change. It is also possible to have 
opposing fi ndings (one image type indicates 
decrease, while another indicates increase) 
within a complete examination. By computing 
a character change image, one may identify 
these more complex changes, compared with a 
simple computation of extent. A classic example 
of this is that on most MRI pulse sequences, a 
small amount of edema in white matter signals 
like gray matter. An algorithm focused on 
boundaries might miss this fi nding, and assign 
substantial changes to white matter and gray 
matter volumes. An algorithm that looked at the 
nature of change (e.g. this was white matter, 
therefore, what now signals like either gray 
matter or white matter with some edema must 
be the latter) will be more accurate than one 
focused strictly on either extent or character.

The role of artifi cial intelligence 
and a priori knowledge
Change detection and characterization has been 
proposed as a new fi eld of computer-aided diag-
nosis (Khorasani et al. 2006). As in other fi elds of 
computer aided diagnosis, change detection and 
characterization algorithms will be built upon a 

foundation of image processing and knowledge. 
The example above in which white matter with 
minimal edema ‘looks like’ gray matter is a good 
example of the importance of knowledge. Humans 
are able to distinguish this confounder because of 
knowledge about where white matter and gray 
matter are expected to be. In addition, there is 
knowledge about MRI, indicating that white matter 
with slight edema does appear like gray matter. 

Essential steps in change detection 
and characterization systems
From an algorithmic stand-point, there appear to 
be a number of essential elements of change detec-
tion and characterization systems. The ideal formu-
lation has not yet been determined, although initial 
studies have been done. Our own current change 
detection system implementation is architected as 
a processing pipeline and so we will describe these 
elements as steps. 

The fi rst step in successful change detection is 
suppression of acquisition-related confounders. 
Obviously, one should avoid intentional change, 
and work to minimize other sources of variation 
in acquisition. In the case of serial MR examina-
tions, possible confounds include changes in 
patient position, RF heterogeneity, intravenous 
contrast changes (time of contrast administration, 
contrast type, contrast concentration), acquisition 
parameters, etc. It is usually necessary to perform 
pre-processing to attempt to remove at least some 
of these acquisition related changes. 

In the case of MRI, it is necessary to manage 
the effects of changing acquisition parameters/
contrast characteristics that occur in clinical prac-
tice. The quantitative values of the intensities of 
different tissues may vary dramatically from one 
acquisition to another, due to changes in acquisition 
parameters and other factors. To address this 
problem, we have developed an algorithm that uses 
knowledge about anatomy and MR sequence 
properties to generate reference tissue samples in 
patient images (Patriarche, 2004). Despite the fact 
that the specifi c intensities may change from one 
acquisition to another, there are specifi cs about the 
intensities which don’t change. For example, 
the algorithm can make use of the knowledge that 
the fractional representation of tissues in a partial-
volumed voxel (e.g. white matter on the edge of a 
CSF-fi lled cavity) will manifest in feature space 
as a linear combination of the multispectral inten-
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sities of the contributing tissues, with the weighting 
of the contribution of the multispectral intensities 
of the contributing tissues, being equal to the frac-
tional volumetric representation of the contributing 
tissues. To elaborate, if the centroids of the tissues 
represented in a particular voxel are known, the algo-
rithm may mathematically generate a line connecting 
the centroids of the contributing tissues in multispec-
tral intensity space. Then, the position of a particular 
voxel along that line indicates the fractional volume 
contribution of the contributing tissues. Because the 
effects of changing contrast properties are never 
explicitly reversed, this is an example of managing 
acquisition related effects without attempting to 
reverse them—managing the issue (in this case 
contrast property changes) by using an algorithmic 
approach unaffected by the issue. 

The next step in change detection involves 
categorization of the contents of voxels, into the 
tissue(s) they appear to contain (e.g. white matter, 
gray matter, or CSF in the brain) based on image 
intensities and using knowledge of how tissues 
appear, in conjunction with a priori anatomical 
information. It is important to note that our system 
explicitly focuses on the space between ‘clusters’ 
in feature space, instead of on the clusters them-
selves—i.e. the algorithm is specifi cally focused 
on identifying and characterizing tissue mixtures 
within a voxel. This is a critical part of what 
facilitates the algorithm’s ability to detect subtle 
changes. One effect of the assignment of voxels to 
transition categories is noise reduction, because 
these transition categories are constrained in their 
possible multispectral intensity characteristics, and 
variations from these known multispectral insten-
sity characteristics may thus be attributed to noise 
and disregarded. 

The next step is to detect changes in the character 
of tissue and to assign changes in the extent of each 
tissue type. A growing tumor will result in a change 
in extent of tumor, but also a change in the boundaries 
for the adjacent normal tissues (due to mass effect); 
these deformations could be measured with non-linear 
registration algorithms. An example of change in 
character is increased T2 signal within a structure; 
these could be measured with algorithms specifi cally 
designed to measure this kind of change (Patriarche 
and Erickson, 2006a). In some portions of the image 
which would be expected to exhibit large discrete 
boundaries, fi nite element model representations of 
boundaries might be appropriate, which would be a 
means to achieve sub-voxel resolution, allowing the 

detection of sub-voxel shifts in boundary position. 
Development of the finite element model would 
require the application of extensive a priori knowledge 
of anatomy and imaging characteristics. For deform-
able tissues, non-linear registration/warping could be 
performed at this point, under the constraints of the 
fi nite element model and knowledge of the ways that 
tissues can and can not change from one time point 
to the next. Obviously warping algorithms would have 
to be applied under the knowledge that tissues will 
almost defi nitely not retain their imaging intensity 
characteristics (i.e. changes in character are expected 
to occur—as mentioned above), but in locations where 
anatomy will be retained (though possibly warped) 
from one acquisition to the next, intensity character-
istics will remain consistent with the type of tissue 
contained in the region at both time-points. Warping, 
in the language of mathematics, is an ill-posed 
problem, at least from the perspective of the imaging 
data. Of course, there is a correct solution, but there 
is not a unique solution considering only the imaging 
data. An essentially unlimited number of warping 
fi elds might be developed to explain any deformations 
which might exist. Additionally, an essentially unlim-
ited number of trade-offs between changes in character 
and changes due to deformation may be developed. 

Warping algorithms offer an opportunity to 
detect changes which do not themselves directly 
cause intensity changes—at least not at the site of 
interest (i.e. at the site of tumor deposition). 
Specifi cally, multivariate calculus operations may 
be performed upon the derived warping fi eld to 
help identify sites of tumor deposition which may 
or may not directly exhibit abnormal imaging 
intensity characteristics (Thirion and Calmon, 
1999), which should be considered to be important 
since one consequence of the nonequivalence 
between what imaging systems measure (physical 
properties) and what clinicians seek (information 
regarding pathology) is that tumor does not always 
appear in imaging to be distinct from its surround-
ings (Kelly et al. 1987a; Kelly et al. 1987b; Burger 
et al. 1988; Johnson et al. 1987; Tovi, 1993; Tovi 
et al. 1994), but more likely it may be expected to 
displace its surroundings. A warping step would 
additionally help to simultaneously establish true 
and correct correspondence between voxels from 
one acquisition to the next. 

After the changes have been quantifi ed, it is 
likely that most voxels will possess measurable 
changes even if there is no underlying biological 
change, strictly due to noise. Such noise may be 
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identified and eliminated by tests of spatial 
coherence, because changes due to underlying 
biological processes tend to exhibit spatial 
coherence, whereas changes due to noise do not. 
The algorithm may determine whether spatially 
contiguous regions are changing in the same 
manner (i.e. an entire spatially contiguous region 
of the patient’s anatomy which is acquiring T2 
abnormality). Regions which are too small in extent, 
or which are too subtle to be certain that they are real, 
may then be discarded. 

Validation

Technical validation
As in many technology validation problems, 
developers of change detection algorithms must 
document that their algorithms are detecting and 
characterizing an imaging change correctly. Addi-
tionally, it is important to document that the 
changes are due to biologically important changes 
(e.g. tumor progression). Survival of the patient 
has often been used as the ultimate standard, but 
is now falling out of favor because unrelated 
factors can affect survival, and survival increases 
the time and cost of performing clinical trials. 

There are several ways that one might validate 
change detection methods from a technical perspec-
tive. Creating a family of phantom images with 
known changes is one commonly applied technique. 
Such a phantom could be very simple—phantom 
images may not appear very similar to real images. 
However, such simple phantoms are ideal for 
evaluating specifi c components of change detection 
algorithms. One might create a family of phantoms 
to investigate such aspects as the effect of back-
ground and noise, performance on low contrast/
diffuse changes, higher contrast but physically small 
changes, changes in shape versus changes in inten-
sity, effects of adding more than 2 time points, 
adding more signal channels, and so on. It is possible 
to create phantoms that very closely model the 
imaging device properties, even if the objects in the 
image do not appear much like biologic objects. 
This can allow one to create a single phantom with 
a range of changes that can more easily demonstrate 
strengths and weaknesses of algorithms than 
morphologically correct phantoms (Patriarche and 
Erickson, 2006a). Once each component has been 
optimized, they are combined to create a change 
detection system. Evaluating that system will require 

either a more complex phantom, or it may then be 
applied to biologic data.

For cases where morphology is important, there 
are some resources already available which can 
produce morphologically correct phantoms which 
can also simulate real imaging devices, including 
the ability to add noise or some basic artifacts like 
fi eld shading in MRI (Cocosco et al. 2006; Cocosco 
et al. 1997; Kwan et al. 1999; Kwan et al. 1996; 
Collins et al. 1998). 

One must also consider how to assess phantom or 
real image changes. One may wish a global binary 
response: is there any change between a pair of 
images. Another type of response would be to count 
how many pixels are changing. Finally, one could ask 
for a relative scale of how much change is occurring 
in each pixel. For each of these types of change 
measures, one could then identify true positives, true 
negatives, false positives and false negatives. This 
would then allow computation of standard metrics of 
performance such as sensitivity, specifi city, accuracy, 
as well as measures more frequently used for classi-
fi ers such as Percent Correctly Classifi ed, the Jaccard 
Coeffi cient, or the Yule Coeffi cient.

Clinical validation
A criticism of most phantom methods is that they 
do not fully represent the properties of the images 
seen in clinical practice. For this reason, it is neces-
sary to validate change detection algorithms using 
real patient/subject data. The challenge is that 
getting ground truth may be diffi cult with living 
subjects. Although it is quite possible to get multiple 
examinations on a patient or an animal, it is diffi cult 
to get ‘ground truth’ for consecutive imaging time 
points. Getting that ground truth through invasive 
means (biopsy at the time of an examination) would 
likely confound subsequent imaging examinations. 
Traditional biopsy methods require removing tissue 
to see what is there. One must then assume that what 
is left behind is the same—an assumption that is not 
always correct. Furthermore, the procedure of 
collecting the tissue may induce changes (e.g. 
hemorrhage, scarring) that are not the changes of 
interest, but which will be changes to the algorithm. 
One could get reasonable ground truth for the last 
time point if the tissue is removed en bloc and 
correctly aligned with imaging. Animal models in 
particular may allow collection and fi xation of the 
entire brain, allowing the best chance for good align-
ment of tissue specimens with imaging.
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A common strategy for evaluating imaging 
methods is to use multiple human experts to develop 
a panel consensus about the image(s) that should 
represent truth. The weakness in this case is the 
assumption that the change is of a size and magni-
tude that it will be detected by most human experts. 
We have shown that using the computer to re-align 
images will help observers more accurately detect 
changes, and this may help defi ne a better ground 
truth (Erickson, Submitted). If they are aligned, the 
so-called ‘fl icker’ display method has been shown 
to be useful for helping humans to detect subtle 
changes between 2 images. But neither of these 
methods helps humans to detect changes that span 
multiple image types. Therefore, while the panel 
consensus model may be helpful for some aspects 
of validation (e.g. “does change detection reduce 
the variability of observers?”) it may not be helpful 
in documenting that it improves sensitivity.

An alternative strategy for validating algorithms 
using real images is based on the premise that 
consistency is nearly as valuable as accuracy, as 
long as one is reasonably sensitive. In this case, one 
might collect 3 serial examinations on a subject, 
which we will refer to as A, B, and C. For most types 
of output, one should expect that the change from 
A to B plus the change from B to C should equal 
the change from A to C. Of course, it is important 
to defi ne the transform functions: if one is simply 
producing a binary output like progression or no 
progression, then the math would be 1+1=1 where 
1 = progression and 0 = no progression. The same 
math might apply if one considered the images on 
a pixel by pixel basis with each pixel being labeled 
as progression (1) or no progression(0). 

For cases where the output is not binary, one 
might consider summing the changes in a given 
category (e.g. the net volume change of a certain 
type for A to B plus that change for B to C should 
each the net change of that type for A to C). It should 
also be refl exive—that is, A to B should equal the 
inverse of B to A. For this general class of methods, 
it is essential that a reasonable accuracy be demon-
strated—an algorithm that arbitrarily set every pixel 
to showing change/progression would meet the 
above criteria but not be very useful. 

Another way one might document the clinical 
value of a change detection system is if one could 
demonstrate that it correctly predicts future (humanly 
detectable) progression based on early, short-interval 
scans. In this case, one might obtain a baseline 
examination, plus an examination early in the course 

of treatment and use the change detection algorithm 
to identify signatures that predict that the tumor will 
visibly respond (or not). If one could determine that 
a tumor is not responding early, one could switch to 
an alternative therapy early. This might improve 
patient survival while also reducing costs by 
avoiding continuing an ineffective therapy.

There are other evaluations that are of interest, 
including documenting the impact of change detec-
tion on the human faced with image overload; one 
could evaluate the impact on effi ciency. While this 
is an important socio-economic problem, it is not 
directly germane to understanding cancer, and will 
not be described further.

Conclusions
Change detection and characterization is a burge-
oning fi eld, located at the confl uence of: rapidly 
increasing quantity of image data acquisition; the 
development of new therapies and the need to objec-
tively evaluate them; and continued increase in the 
availability of inexpensive computational power. It 
is expected that this fi eld will continue to develop, 
and that change detection and characterization will 
both benefi t from and alleviate the problems associ-
ated with image overload, and will help clinicians 
to fully utilize the information at their disposal. It 
is expected that the ability of change detection and 
characterization systems to generate quantitative 
and reproducible measures will facilitate the devel-
opment of objective defi nitions of disease progres-
sion and regression, and these in turn will help to 
select the most effective therapies. Methods for 
evaluation of change detection and characterization 
technologies will continue to be an important facet 
of this rapidly progressing technology. 
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