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Abstract: Patients with fibromyalgia (FM) show widespread pain associated with other symptoms
such as cognitive problems, depression, and anxiety among others associated with alterations in
the central nervous system. The hippocampal subfields had differences in function, histology,
and connectivity with other brain regions, and are altered in different diseases. This study evaluates
the volumetric differences between patients with FM compared with a healthy control group. A total
of 49 women with, and 43 healthy women completed this study. T1-weighted MRI was used to assess
brain volume, and FreeSurfer software was used to segment the hippocampal subfields. Women with
FM had a significant reduction in most of the hippocampal subfields. The regression equation
models were obtained to predict the volume of specific subfields of the right and left hippocampus.
These findings provide that women with FM have lower hippocampal subfields volumes compared
with healthy women. Besides, regression models show that different covariates, such as age, cognitive
impairment, or depression, are related to specific subfields.

Keywords: chronic pain; hippocampus; brain; cognitive impairment

1. Introduction

Fibromyalgia (FM) is a chronic, persistent, and diffuse disease that fluctuates in inten-
sity, characterized by widespread pain and tenderness, accompanied by other numerous
symptoms like cognitive problems, depression, anxiety, non-recovery sleep, fatigue, stiff-
ness, poor physical fitness, and mobility or balance problems [1–3]. These symptoms lead
to a reduced quality of life [4,5] and difficulties in carrying out activities of daily living [6,7].
The prevalence of FM in the general population is between 0.2 and 6.6% [8], occurring
mostly in women over 50 years old [9].

Previous research has reported central nervous system (CNS) abnormalities in people
with FM [10], including functional, metabolic, and structural alterations in brain regions
involved in pain processing [11–16]. Besides, alterations in the immune system, sleep
patterns, fatigue, and moods contributed to pain and dysfunction in people with FM. This
alteration can lead to allodynia (increased pain from a normally non-painful stimulus)
and hyperalgesia (increased response to painful stimuli) [17] associated with amplification
of peripheral and central sensory signals involved in pain perception [18], affecting the
functionality and structure of CNS. In this regard, people with FM show volume reductions
in the gray matter of numerous brain regions involved in the “pain matrix” like hippocam-
pus [13,19], prefrontal cortex [20], amygdala [20], anterior cingulate [20–22], midcingulate,
and midinsula [21] cortices.

The hippocampus is one of the most studied brain structures that play an important
role in numerous processes, including memory, navigation, cognition, moods, stress, and
pain [23–26] related to FM symptomatology. A previous review focused on FM showed
alterations in the volume and metabolite levels of the hippocampus [12]. This region is
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composed of a series of sub-regions such as the subiculum, the dentate gyrus and cornus
ammonis [27] among others. Advances in neuroimaging have allowed their study [28],
showing that each sub-region had differences in function, histology, connectivity with other
brain regions, and vulnerability to disease [29–31]. Furthermore, previous studies showed
that these sub-regions are altered in chronic pain [32], cognitive disorders [33–35], psychi-
atric disorders [36,37], and adult lifespan [38] being able to become possible biomarkers.

To our knowledge, no studies have been evaluated the hippocampal subfields volume
in people with FM compared with a healthy control group. It seems more relevant to con-
sider the subfields of the hippocampus, rather than just evaluating the whole hippocampus,
to more deeply understand the neurobiology of FM. Thereby, this study aims to evaluate
the changes in the volume of the hippocampal subfields in women with FM compared
with a healthy control group by magnetic resonance imaging (MRI) analysis.

2. Materials and Methods
2.1. Participants

A total of 50 women with FM from a local association (AFIBROEX) and 43 healthy
women from the Open Access Series of Imaging Studies (OASIS-3) participated in this
study and, therefore, were divided into two groups: (1) FM group and (2) healthy control
group (HC). FM participants met the following inclusion criteria: (a) female and ages
between 30 and 75 years, (b) diagnosed with FM by a rheumatologist according to the 2010
American College of Rheumatology criteria [1], (c) able to communicate, and (d) have read
and signed the written informed consent. On the other hand, the FM participants were
excluded if they: (a) were pregnant, (b) had any cerebral injury (traumatic brain disease,
cerebral stroke, brain tumor, or any other diagnosed pathology), and (c) illegible MRI
sequences were obtained.

The HC group was obtained by using the OASIS-3 data set. OASIS-3 is a compilation
of MRI and PET imaging and related clinical data from 1098 participants, of which 605
are cognitively normal adults, and 493 have various cognitive decline stages. Since differ-
ent studies have shown brain structural changes associated with cognitive impairment,
the sample was filtered to obtain healthy subjects of similar age and gender to the FM
group to homogenize the sample. The following inclusion criteria were established: (a)
be female and ages between 42 and 60 years, (b) have completed the Mini-Mental State
Examination score between 28 to 30, (c) have completed the Geriatric Depression Scale
score between 0 to 5, (d) height between 152 to 178 cm, (e) weight between 40 to 120 kg,
and (f) have been assessed by a T1w MRI scan with a 3.0 Tesla scanner.

The study was approved by the Research Ethics Committee of the University of
Extremadura (approval reference: 62/2017). All participants gave their written informed
consent following the updated Declaration of Helsinki.

2.2. Image Acquisition

T1-weighted images were obtained using a 3.0 Tesla scanner. For the FM group, a
system equipped with an 8-channel head coil (Achieva 3.0 TX, Philips Medical Systems,
Best, The Netherlands) was used to obtain the structural images. T1-weighted images were
acquired using a 3D T1-weighted Turbo Field Echo (T1-w TFE) sequence with the following
parameters: repetition time (TR) of 11.51 ms; echo time (TE) of 2.8 ms; 288 × 288 matrix
size; 0.9 mm slice thickness; 10◦ flip angle; 1 number of averages. For the HC group, a sys-
tem equipped with a 16-channel head coil (Siemens TIM Trio or BioGraph mMR PET-MR,
Erlangen, Germany) was used. The MP-RAGE protocol of TIM Trio scanner used the fol-
lowing parameters: TR/TE = 2400/3.16 ms, ±176 axial slices without slice gap, and 1.0 mm
nominal isotropic resolution (FOV = 256 × 256 mm). The MP-RAGE sequence of BioGraph
mMR PET-MR scanner used the following parameters: TR/TE = 2300/2.95 ms, ±176 axial
slices without slice gap, and 1.2 mm nominal isotropic resolution (FOV = 256 × 256 mm).
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2.3. Image Processing

All T1-weighted images were processed using the FreeSurfer software [39] 6.0 version
(Laboratory for Computational Neuroimaging, Athinoula A. Martinos Center for Biomedi-
cal Imaging, Charlestown, MA, USA; http://surfer.nmr.mgh.harvard.edu). The command
recon-all (http://surfer.nmr.mgh.harvard.edu/fswiki/recon-all) was used for automated
segmentation of the T1-weighted images on a MacBook Pro (Version OS X 10.14, 8GB,
2.30 GHz, Intel Core i5). The following steps were followed for the pre-processing of the
image data: (a) head motion correction and averaging [40]; (b) removal of non-brain tissue
by a hybrid watershed/surface deformation algorithm [41]; (c) automated Talairach space
transformation [42]; (d) segmentation of the subcortical and cortical structures using a
probabilistic brain atlas [43]; (e) intensity normalization [44]; (f) tessellation of the gray
matter and white matter boundary [45]; (g) topology correction; and (h) surface defor-
mation following intensity gradients to reconstruction [43]. Finally, the Iglesias et al. [28]
validated method was used to obtain the hippocampal subfields segmentation and vol-
umetric measurements of participants. This procedure uses a probabilistic atlas of the
hippocampus combining ex vivo and in vivo MRI data through Bayesian inference, which
can automatically segment the hippocampal regions in vivo. For a detailed overview,
see Iglesias et al. [28]. The automated segmentation allows to obtain twelve subfields
separated by right and left hemisphere: hippocampal tail, parasubiculum, presubiculum,
subiculum, cornu ammonis 1 (CA1), cornu ammonis 2/3 (CA2/3), cornu ammonis 4 (CA4),
hippocampus-amygdala transition area (HATA), granule cell layer of dentate gyrus (GC-
DG), molecular layer, fimbria, and hippocampal fissure. It also includes the total volume of
the left and right hippocampus. Figure 1 shows the different hippocampal subfields of a
healthy participant and a participant with FM.
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2.4. Outcome Measurements 

Figure 1. Subfields of the right hippocampus obtained from the FreeSurfer viewer in axial, coronal,
and sagittal planes. One participant with fibromyalgia and one control participant with similar
characteristics and age 59 years are shown.

2.4. Outcome Measurements

Height, weight, age, general depressive state, and cognitive impairment were collected
in both groups (FM and HC). HC group outcomes were obtained from the OASIS-3
database. The FM group was assessed through a standardized interview. The following
instruments were used for this purpose:

http://surfer.nmr.mgh.harvard.edu
http://surfer.nmr.mgh.harvard.edu/fswiki/recon-all
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The 15-items Geriatric Depression Scale (GDS) [46] is a questionnaire that allows
assessing symptoms of depression. Items are marked with a simple yes/no format. To con-
sider the possible existence of depression symptoms, the cut-off point is set at 5 or higher.
For the FM group, the Spanish version was administrated [47].

The Mini-Mental State Examination (MMSE) [48] is a wide dementia screening tool
used in clinical practice and different types of studies. This is a written test with a maximum
score of 30 points, with lower scores indicating more severe cognitive impairments. The
cut-off point is usually set at 24 for “normal” cognitive function. However, it has several
limitations depending on the education and age of the participants that must be taken
into account [49]. The Spanish version was used with the 30-point version to establish
international comparisons [50].

Furthermore, the Fibromyalgia Impact Questionnaire (FIQ) [51] in the Spanish ver-
sion [52] was used to assess the disease impact. This instrument has 10 items with 3
domains: function, overall impact, and symptoms.

2.5. Statistical Analysis

Statistical analysis was carried out using Statistical Package for Social Sciences soft-
ware (SPSS, version 24.0, IBM Corp, Armonk, New York, NY, USA). Parametric and
non-parametric tests were conducted based on the results of the Shapiro-Wilk test.

Mann Whitney U test was conducted to examine differences between groups (FM and
HC) in depression levels and cognitive functions through the GDS-15 and MMSE question-
naires.

To predict the value of the hippocampal subfields and the whole hippocampus, and
determine if there were volumetric differences between the groups the multiple linear
regression was used. This analysis also allows determining the relative contribution of inde-
pendent or predictor variables to the total variance explained in the same direction. Before
carrying out the multiple linear regression analysis, it was necessary to comply with the
necessary assumptions to obtain valid results. Among these assumptions, the dependent
variable needed to be measured on a continuous scale, there are two or more independent
variables, there is independence of residues, there is a linear relationship between the
dependent variable and each of the independent variables, there is homoscedasticity in the
data, and they do not show multicollinearity. Finally, the residuals (errors) follow a normal
distribution. The independent variables selected were age, estimated intracranial volume
(eTIV), group, GDS-15 score, and MMSE score [33,38].

ANOVA test was performed to test whether the regression model had a good fit for
the data. The values of the statistics obtained in the multiple linear regression model were
R2 or coefficient of determination representing the proportion of variance in the dependent
variable that can be explained by the independent variables. The unstandardized coeffi-
cients or B indicate how much the dependent variable varies with an independent variable
when all other independent variables are held constant.

The level of statistical significance was set at 0.05.

3. Results

The demographic characteristics of the FM and HC groups are shown in Table 1. The
Mann-Whitney U test showed that HC group obtained significantly better results than the
FM group in the GDS-15 and MMSE scores (see Table 1). Moreover, FM participants had a
moderate effect on the impact of the FM [53].
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Table 1. Characteristics of the participants.

Variables HC (n = 43) FM (n = 49) Z p-Value

Age (years) 53.37 (4.47) 54.18 (10.12) −0.051 0.959
Height (cm) 165.07 (6.30) 159.61 (6.24) −3.972 <0.001
Weight (Kg) 73.92 (6.30) 71.57 (14.05) −0.767 0.443

GDS-15 2.55 (1.71) 6.88 (4.07) −5.338 <0.001
MMSE 29.51 (0.63) 28.47 (1.42) −3.809 <0.001
FIQ-100 - 58.05 (17.85)

Years with FM
Diagnosed - 10.80 (6.33)

Years with FM
Symptoms - 19.38 (12.70)

GDS: Geriatric Depression Scale; MMSE: Mini Mental State Examination; FIQ: Fibromyalgia. Impact Question-
naire; n: number of participants; FM: Fibromyalgia; HC: Healthy Control.

One subject from the FM group was eliminated from the study because an illegible
MRI sequence was obtained. Table 2 shows the statistical results of the multiple linear
regression of the hippocampal subfields and hippocampal volumes of the FM and HC
groups. ANOVA test showed that all models were valid except in the left hippocampal
fissure, CA1 bilateral, left fimbria, and HATA bilateral subfields that could not be studied
because they did not meet the necessary assumptions to carry out the analysis.

Table 2. Volume measures and multiple linear regression analysis of the hippocampal subfields and the whole hippocampus.

ANOVA Multiple Linear Regression

Structures
FM

Mean
(SD)

HC
Mean
(SD)

F p Covariates R2 Constant B β t p

Tail

L
402.28
(51.76)

499.09
(67.58) 26.93 <0.001

Age
0.48 152.11

−1.52 −0.16 −2.02 0.046

eTIV 0.00 0.28 3.33 0.001

Group 110.41 0.72 8.72 <0.001

R
397.11
(60.20)

526.63
(76.40) 38.23 <0.001

Age
0.57 4.53

−1.23 −0.10 −1.46 0.148

eTIV 0.00 0.31 4.15 <0.001

Group 149.73 0.79 10.57 <0.001

Fissure

L a
145.84
(25.58)

147.71
(24.56)

R
156.69
(25.52)

143.50
(24.69) 5.79 <0.001

Age
0.17 68.00

0.86 0.27 2.70 0.008

eTIV 0.00 0.19 1.76 0.081

Group −8.65 −0.17 −1.60 0.113

ML

L
513.41
(47.02)

530.38
(59.16) 8.65 <0.001

Age

0.29 99.63

−1.50 −0.22 −2.40 0.019

eTIV 0.00 0.47 4.85 <0.001

Group 26.21 0.24 2.30 0.024

MMSE 7.13 0.17 1.60 0.112

R
526.55
(51.20)

539.68
(62.52) 11.27 <0.001

Age
0.28 316.88

−2.04 −0.29 −3.11 0.003

eTIV 0.00 0.49 5.00 <0.001

Group 29.78 0.26 2.69 0.009

CA1
L a

597.81
(68.26)

586.52
(64.12)

R a
615.80
(67.30)

605.79
(68.15)
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Table 2. Cont.

ANOVA Multiple Linear Regression

CA3

L
172.80
(21.51)

193.25
(30.17) 11.30 <0.001

Age
0.28 60.52

−0.52 −0.15 −1.62 0.109

eTIV 0.00 0.39 4.01 <0.001

Group 27.21 0.49 5.06 <0.001

R
196.23
(21.99)

205.73
(32.92) 11.56 <0.001

eTIV
0.29 −114.59

0.00 0.50 5.14 <0.001

Grupo 12.42 0.22 2.11 0.038

MMSE 5.43 0.24 2.40 0.019

CA4

L
216.59
(22.12)

239.00
(29.54) 13.48 <0.001

Age

0.39 −13.78

−0.57 −0.16 −1.89 0.062

eTIV 0.00 0.47 5.22 <0.001

Group 26.70 0.48 4.84 <0.001

MMSE 3.42 0.15 1.59 0.116

R
233.31
(22.21)

243.08
(30.98) 12.13 <0.001

Age
0.30 94.36

−0.55 −0.16 −1.81 0.074

eTIV 0.00 0.54 5.58 <0.001

Group 18.51 0.30 3.15 0.002

Subiculum

L
395.72
(40.41)

402.66
(49.56) 6.68 <0.001

Age
0.19 219.47

−0.90 −0.16 −1.64 0.104

eTIV 0.00 0.43 4.19 <0.001

Group 20.15 0.22 2.17 0.033

R
394.96
(38.44)

405.08
(47.62) 5.39 0.002

Age
0.16 245.46

−0.83 −0.15 −1.53 0.129

eTIV 0.00 0.38 3.61 0.001

Group 21.24 0.25 2.34 0.022

Presubiculum

L
271.72
(32.29)

285.32
(34.14) 10.47 <0.001

Age
0.27 159.66

−1.17 −0.28 −2.99 0.004

eTIV 0.00 0.43 4.37 <0.001

Group 23.26 0.35 3.52 0.001

R
257.34
(30.47)

276.78
(32.49) 8.05 <0.001

eTIV
0.22 91.36

0.00 0.34 3.37 0.001

Group 35.46 0.54 4.45 <0.001

GDS 1.82 0.21 1.80 0.076

GC-DG

L
256.51
(25.87)

277.44
(33.87) 11.52 <0.001

Age

0.35 22.67

−0.89 −0.23 −2.54 0.013

eTIV 0.00 0.46 4.90 <0.001

Group 25.50 0.41 4.00 <0.001

MMSE 3.42 0.15 1.59 0.116

R
273.89
(25.30)

282.61
(35.25) 12.36 <0.001

Age
0.30 129.11

−0.84 −0.22 −2.40 0.018

eTIV 0.00 0.54 5.58 <0.001

Group 18.51 0.30 3.15 0.002

Fimbria
L a

102.73
(18.72)

75.33
(16.50)

Age

Group

R
107.37
(18.99)

73.42
(14.38) 48.64 <0.001

eTIV
0.53 102.12

0.00 0.15 1.91 0.060

Group −31.96 −0.66 −8.47 <0.001

Parasubiculum
L

45.91
(8.20)

57.24
(11.65) 16.16 <0.001

Age
0.36 17.20

−0.31 −0.22 −2.49 0.015

eTIV 0.00 0.27 2.88 0.005

Group 13.47 0.59 6.44 <0.001

R
45.97
(8.63)

56.20
(11.02) 13.88 <0.001

Age
0.22 46.85

−0.20 −0.15 −1.57 0.119

Group 10.07 0.46 4.94 <0.001
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Table 2. Cont.

ANOVA Multiple Linear Regression

HATA
L a

58.09
(7.48)

56.49
(9.80)

R a
61.12
(7.70)

58.52
(8.98)

Hippocampus

L
3033.93
(263.48)

3202.74
(334.79) 14.84 <0.001

Age
0.34 1737.96

−10.43 −0.27 −3.05 0.003

eTIV 0.00 0.49 5.25 <0.001

Group 266.52 0.43 4.62 <0.001

R
3109.64
(286.93)

3273.53
(346.07) 15.19 <0.001

Age
0.35 1583.24

−9.93 −0.24 −2.77 0.007

eTIV 0.00 0.53 5.66 <0.001

Group 270.91 0.42 4.48 <0.001

Abbreviations: FM, fibromyalgia; HC, healthy control; SD, standard deviation; ML, molecular layer; CA, cornus ammonis; GC-DG, granule
cell-dentate gyrus; HATA, hippocampus—amygdala-transition-area; eTIV, estimated total intracranial volume; MMSE, mini-mental state
examination; GDS, geriatric depression scale; R2, coefficient of determination; B, unstandardized coefficient; β, standardized coefficient; p,
p-value. a The assumptions for performing the multiple linear regression are not met, FM = 1; HC = 2.

Multiple regressions to predict the volume of the hippocampal subfields that obtained
statistical significance in the independent variables were as follows:

For the right hippocampal subfields, it was found that the variables age, etiv, group,
and MMSE predict the LH volume from the equation:

Predicted ML volume = 99.63 − (1.50 × age) + (0.00 × eTIV) + (7.13 × MMSE) + (26.21 × group).

The variables eTIV, group and, MMSE predict the CA3 volume, from the equation:

Predicted CA3 = −114.59 + (0.00 × eTIV) + (5.43 × MMSE) + (12.42 × group)

The age, eTIV, and group predict the CG volume from the equation:

Predicted GCDG = 129.11 − (0.84 × age) + (0.00 × eTIV) + (18.51 × group)

For the subfields of the left hippocampus, the variables age, eTIV, and group predicted
the volume in the tail, presubiculum, and parasubiculum, from the equations:

Predicted Tail = 152.11 − (1.52 × age) + (0.00 × eTIV) + (110.41 × group).

Predicted presubiculum = 159.66 − (1.17 × age) + (0.00 × eTIV) + (23.26 × group).

Predicted Parasubiculum = 17.20 − (0.31 × age) + (0.00 × eTIV) + (13.47 × group).

As for predicting the volume of the whole hippocampus, the variables predicting
volume are age, eTIV, and group for both the left and the right, with the equation Predicted
left hippocampus = 1737.96 − (10.43 × age) + (0.00 × eTIV) + (266.52 × group) for the left and
the equation Predicted right hippocampus = 1583.24 − (9.93 × age) + (0.00 × eTIV) + (270.91
× group) for the right.

By performing an individualized analysis of the variables, for each year of age, the
volume of the structures decreases in almost all the structures, except the right tail, left CA3,
CA4 bilateral, subiculum bilateral, and right presubiculum. In the whole hippocampus,
there is also a decrease in volume for each year of age of 10.43 mm3 in the left and 9.93 mm3

in the right. In contrast, the right fissure presents a volume increase of 0.86 mm3 for each
year of age.

When visualizing the variable of participation in the HC or FM group, in almost all
the subfields, healthy women present a greater volume than women with FM. However,
the HC group has 31.96 mm3 less than the FM group in the fimbria.
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As for the score obtained in MMSE, for each point obtained in MMSE, the volume of
right CA3 increases by 5.43 mm3.

There are no volumetric changes in the subfields of the hippocampus based on eTIV
and GDS scores.

The differences and regression models in the left hippocampal fissure, left and right
CA1, left fimbria, and left and right HATA could not be analyzed because the assumptions
for conducting the multiple linear regression analysis were not met.

4. Discussion

This study aimed to evaluate the volumetric differences in the hippocampal subfields
and the whole hippocampus in healthy women and women with FM controlling for age,
eTIV, depression, and cognitive impairment. Besides, regression equation models were
obtained to predict the volume of the hippocampal subfields and the whole hippocampus.
This is the first study that analyzes the hippocampal subfields in women with FM compared
to a healthy control group.

Our results indicated that all regression models were valid. Moreover, the hippocam-
pal subfields and the whole hippocampus had significantly lower volumes in FM than
healthy controls except in the right fissure of the hippocampus, where no significant dif-
ferences were achieved. Considering the whole hippocampus, our results are in line with
previous research in FM that also found volumetric reductions in the gray matter of the
whole hippocampus [12,13,19]. This has also been suggested in EEG studies through
an altered theta, showing that women with FM with more years suffering from symp-
toms exhibited greater theta power spectrum [54,55]. This is relevant since theta power
spectrum is related to higher cognitive functions, synaptic plasticity, and atrophy of the
hippocampus [56].

It is now known that reductions in the volume of the hippocampus begin to occur
from mid-adulthood. From this point, progressive atrophy of the hippocampus begins to
be found as age increases [57]. In this sense, our findings are consistent with the literature
since a decrease in volume has been observed in the left and right hippocampus with
increasing age. Similarly, these reductions have been detected in most subfields except
right tail, left CA3, CA4 bilateral, subiculum bilateral, and right presubiculum. These
findings are related to a previous study that has reported a reduction of these subfields
with age [35] being the CA subfield the most affected by age. In our study, age-induced
decreases in this subfield have not been found. This could be due to the age of participants
which was relatively low HC 53.37 (4.47) and FM 54.18 (10.12). Since there is controversy
due to the methodological variability among the studies [35], further research is needed to
confirm these findings.

The incidence of depression and cognitive impairment in FM is known [58,59], and
findings have been reported confirming that patients with major depressive disorder [60]
and Alzheimer’s disease (AD) [33] have a smaller hippocampus. However, there is still
a non-homogeneous pattern of atrophy in this disease. Thus, our results were controlled
for the effect of cognitive impairment and depression, introducing these outcomes as
covariates in the statistical analyses. Therefore, findings suggest that higher MMSE scores
are associated with volume increases in the right CA3. However, no significant differences
were found between GDS scores and hippocampal subfield volumes. In this regard,
McCrae et al. [13] found differences in depression comparing HC females and FM females,
but no volumetric differences were found in the hippocampus controlling for depression.
A previous review of the hippocampal subfields in major depressive disorder [34] reported
that volume reductions occurred mainly in the CA and GCDG subfields. Our results did
not show volumetric changes in these subfields, which could hypothetically be explained
by the higher levels of depression symptoms in major depressive disorder than in FM and
the age of participants. In this regard, a previous study reported the most pronounced
depression-related alterations of the hippocampus in older adults than young people due to
the cumulative effect of depression [61] and age-related atrophy of the hippocampus [62].



Int. J. Environ. Res. Public Health 2021, 18, 1549 9 of 13

When comparing our results with the results obtained by Zhao et al. [33], in which
the hippocampal subfields were compared in different groups of patients, including AD
patients, normal controls, amnestic mild cognitive impairment patients, and subjective
cognitive decline patients, we can observe that the volumes obtained in our population
of women with FM are lower than the subjective cognitive decline group and higher
than the amnestic mild cognitive impairment group as well as the AD group. This is
relevant since, among the symptoms of FM, memory and concentration problems known
in the literature as “fibrofog” are recurrent and are considered a clinically important
aspect of FM [63]. However, our study found no specific effect caused by cognitive
impairment in the hippocampal subfields. This effect was probably not found, as no
specific neuropsychological tests were carried out in our research to control for cognitive
performance in different domains that have been altered [64]. Therefore, future research
should study the possible volumetric changes in hippocampal subfields associated with
different cognitive domains in FM through different neuropsychological tests. It is known
that depression, anxiety, pain, or sleeping disturbances can negatively affect cognitive
symptoms. However, they do not entirely explain all the cognitive symptoms of FM [65].
Nevertheless, morphological investigations show decreases of grey material in FM in
regions related to cognitive components [66,67]. As we expected, the values obtained in
depression and cognitive impairment were worse in the FM group than the HC group,
being in line with previous studies that obtained similar results [13,59,68,69]. However,
more studies are needed to know the mechanisms involved in their origin.

Regarding the volumetric results obtained in the HC group in some structures are
lower when compared to the subjective cognitive decline patient group. These differences
could be due to the segmentation methods used.

While the findings of this study are promising, some limitations must be taken into
account. The differences in the left hippocampal fissure, left and right CA1, left fimbria,
and left and right HATA could not be analyzed because the assumptions for conducting
the multiple linear regression analysis were not met. We only evaluated a sample of
women, so these results cannot be generalized to men with FM. The MRI scanners’ possible
effects could not be assessed since the sample was not randomized to be measured on
the different devices. Furthermore, the pharmacological history of subjects was not an
inclusion criterion in the present study. On the other hand, this study was based on cross-
sectional data; future research is requested to conduct longitudinal follow-up studies of the
same cohort to determine the evolution of these structures to identify possible biomarkers
in FM. Finally, we know that the segmentation method is based on an atlas developed from
elderly subjects [28], which may present slight hippocampal atrophy. However, this method
has shown test–retest reliability in estimating hippocampal volumes and hippocampal
subfields [70]. Future research should also be conducted to monitor the stress level and the
levels of glucocorticoids generated in the hippocampus. These elements seem to negatively
affect the neuronal plasticity of the hippocampus and may influence the reduction of the
volume of this structure [12]. In the same way, it would be interesting to consider whether
the subjects are medicated to establish possible relationships between decreases or increases
in volume in the subfields of the hippocampus [34].

5. Conclusions

To our knowledge, this is the first study to analyze volume differences in the subfields
of the hippocampus between healthy controls and women with FM. Our findings showed
that women with FM had a significant reduction in most of the hippocampal subfields. Be-
sides, regression models show that different covariates, such as age, cognitive impairment,
or depression, are related to specific subfields.
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