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Abstract

Generating diverse protein libraries that contain improved variants at a sufficiently high frequency is critical for improving
the properties of proteins using directed evolution. Many studies have illustrated how random mutagenesis, cassette
mutagenesis, DNA shuffling and similar approaches are effective diversity generating methods for directed evolution. Very
few studies have explored random circular permutation, the intramolecular relocation of the N- and C-termini of a protein,
as a diversity-generating step for directed evolution. We subjected a library of random circular permutations of TEM-1 b-
lactamase to selections on increasing concentrations of a variety of b-lactam antibiotics including cefotaxime. We identified
two circularly permuted variants that conferred elevated resistance to cefotaxime but decreased resistance to other
antibiotics. These variants were circularly permuted in the V-loop proximal to the active site. Remarkably, one variant was
circularly permuted such that the key catalytic residue Glu166 was located at the N-terminus of the mature protein.
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Introduction

Directed evolution is a powerful technique used to improve

protein properties. Directed evolution involves the generation of a

protein library and subsequent rounds of selection or screening to

identify improved protein variants. Generation of diverse protein

libraries containing improved variants is therefore important for

successful application of directed evolution techniques. Many

studies have demonstrated the use of random mutagenesis, cassette

mutagenesis, DNA shuffling and similar approaches as effective

diversity generating methods for directed evolution. Circular

permutation is the intramolecular relocation of the N- and C-

termini of a protein [1]. Circular permutation is an atypical

method for diversity generation, since it can be used to change the

linear order of the primary sequence, but not the identity of the

amino acids in the sequence. Circular permutation can alter the

folding kinetics of a protein and create variants that could retain

comparable wild-type functionality [2,3,4,5].

Very few directed evolution studies have used circular

permutation as the diversity-generating step. However, there is

growing evidence to suggest that the approach has merit for

certain applications, including improving enzyme activity and

altering substrate specificity. Although the goal was not to improve

enzyme activity, a few circular permuted 5-aminolevulinate

synthases were found to have higher catalytic efficiencies than

the wild-type enzyme [6]. More recently, random circular

permutation has been successfully applied as the diversity

generation step for the directed evolution of Candida antarctica

lipase B [7,8] and Bacillus circulans xylanase Bcx [9]. Circular

permutation at select sites in lipase B was found to increase

hydrolytic activity up to 175-fold on certain substrates [8,10]. Such

improved variants often have the relocated termini proximal to the

active site [7,9], which may alter activity through local, subtle

conformational changes and increased backbone flexibility [11].

Circular permutation has also found use in directed evolution for

creating diversity in the fusion geometry between two proteins in

order to create protein switches [12,13].

TEM-1 b-lactamase (BLA) is a class A periplasmic bacterial

enzyme that can hydrolyze a wide range of penicillin and

cephalosporin antibiotics by a mechanism that involves the

acylation and deacylation of a serine residue [14]. BLA cleaves

the four atom b-lactam ring and deactivates the antibacterial

properties of the antibiotic. This renders the antibiotics ineffective

against gram-negative bacteria like E. coli. BLA’s V-loop is

considered to play an important role in the catalytic activity of

BLA against b-lactam antibiotics [15,16,17]. The relative

proximity of BLA’s N- and C-termini makes the enzyme a good

candidate for circular permutation; however, rationally designed

circular permutants were found to be poor catalysts compared to

the wild type protein [18].

We previously reported the creation of a hybrid of maltose

binding protein (MBP) and BLA in which BLA was circularly

permuted in the V-loop and inserted into MBP [19]. TEM-1 b-

lactamase has poor activity against third-generation cephalosporin

b-lactams such as cefotaxime (CFTX) in part due to steric reasons;

however, many substitutions within and outside the V-loop are
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known to increase CFTX resistance and some of which are

believed to act by repositioning the V-loop and enlarging the

active site cavity [17]. The MBP-BLA hybrid gene conferred wild-

type resistance to CFTX but reduced resistance to other b-lactam

antibiotics. We speculated that the relatively high resistance to

CFTX was a result of the circular permutation of BLA in the V-

loop, since a change in substrate specificity due to mutations and

insertions in or near the V-loop has been observed [15,16,17].

This result led us to wonder how effective circular permutation

would be for altering the catalytic activities of BLA. We present

here the results of a study to address this question.

Results and Discussion

Circular permutation of BLA and insertion into MBP alters
BLA substrate specificity

We have previously used random circular permutation as a

diversity-generating tool for the creation of protein switches. An

iterative process involving random circular permutations of bla and

random insertions of bla into the gene for maltose binding protein

yielded hybrid proteins in which BLA enzyme activity was

modulated by maltose [19]. One particular switch, MBP317-

347, was identified from Library 7 in which random circular

permutations of bla were inserted in place of the codon 317 in the

gene for MBP. MBP317-347 has severely compromised catalytic

activity in the absence of maltose that increases several hundred-

fold in the presence of maltose. However, the catalytic activity in

the presence of maltose was 40-fold less than wild-type BLA.

Consistent with this, E. coli cells expressing MBP317-347 had a

lower minimum inhibitory concentrations (MIC) for a variety of

penicillins and cephalosporins than did cells expressing BLA

(about 8–16 fold lower; Table 1). However, the MIC for

cefotaxime for cells expressing either MBP317-347 or BLA were

the same, suggesting that MBP317-347’s substrate specificity was

different than BLA and potentially, that MBP317-347 had higher

activity than BLA for hydrolyzing cefotaxime.

Random circular permutation of BLA
We wondered if the altered catalytic activity of the BLA domain

of MBP317-347 might be a result of the circular permutation. The

BLA domain in MBP317-347 is circular permuted within the V-

loop that contains the key active site residue Glu166. Alternatively,

the altered specificity could be a result of perturbations resulting

from insertion of the BLA domain into MBP. We also wondered if

circular permutation might be a route for improving enzyme

activity in general. Systematic circular permutation and kinetic

characterization of dihydrofolate reductase had earlier identified a

few circular permutants with modest improvements in catalytic

activity [5]. However, at the time we began these experiments it

was unknown to what extent random circular permutation

employed as a diversity-generating step in directed evolution

would result in gain of function mutants, since such an experiment

had not been reported. We thus examined whether random

circular permutation of bla would result in enzymes with improved

catalytic activity. Qian and Lutz have since demonstrated how

random circular permutation employed for the directed evolution

of Candida antartica lipase B can produce substantial improvements

(up to 175-fold) in catalytic activity on some substrates [7,8].

Construction and characterization of the library of
circularly permuted BLA

The library of random circular permutations of bla contained in

Library 7 [19] was amplified using primers designed to anneal to

the MBP gene on either side of bla. The primers had BsgI sites

such that digestion of the PCR product with BsgI followed by

degradation of the 39 overhangs by Klenow would result in a blunt

ended product with no DNA originating from the MBP gene

(Figure 1A). The original N- and C-termini of BLA are joined by a

DKS linker in this library. The DKS linker has been previously

identified as a beneficial tri-peptide linker for BLA circularly

permuted at residue 216 [18]. The circularly permuted bla gene

library was inserted into a vector such that it was fused to a

sequence coding for the natural 23 amino acid bla signal sequence

on the 59 end and a series of three stop codons in all reading

frames at the 39 end (Figure 1B). The signal sequence is necessary

to export BLA to the periplasm and to confer significant resistance

to b-lactam containing antibiotics.

The number of transformants in the library that had a single

insert was 56105. This greatly exceeds the number of possible

‘‘perfect’’ circular permutations of the gene (798). However, the

process of random circular permutation results in tandem

duplications and deletions at the site of circular permutation in

addition to perfect circular permutations. In addition, the insert

can be either inserted in the correct orientation, or in the reverse

orientation. If one estimates that at each position there could also

be deletions and duplications of up to 50 bp each, the theoretical

degeneracy of the library is 7986(50+50)62 = 1.5966105. Assum-

ing all variants are equally probable, the probability that our

library contains the most active member of these possible variants

is 87% [20].

Sequencing of 25 random members of the naive library

indicated no obvious bias in the site of circular permutation

(Figure 2A). Next, functional library members were selected by

plating the naı̈ve library on LB agar plates supplemented with

16 mg/ml ampicillin (this concentration is 8-fold higher than the

MIC for cells not expressing any b-lactamase) or with 250 mg/ml

ampicillin. Functional variants from each plating condition were

chosen at random and sequenced (Figure 2B&C). Active variants

identified from the 250 mg/ml ampicillin plates were heavily

biased towards circular permutations very near the original N- and

C-termini of the protein (Figure 2C). The site of circular

permutation was more varied for those clones selected at the

lower ampicillin concentration (Figure 2B).

Selection of BLA variants that conferred improved
antibiotic resistance

The above selection was for minimally functional b-lactamase

activity. Selections were subsequently performed on the naı̈ve

library to identify library members that exhibited antibiotic

resistance above that conferred by bla. The naı̈ve library was

Table 1. MIC of beta-lactam antibiotics conferred by BLA and
variants of BLA.

MIC for indicated antibiotic (mg/ml)

Protein Cefotaxime Ampicillin Cefazolin Cephalothin

MBPa (Control) 0.02 2 1 4

MBP317-347a 0.04 512 2 8

BLAb 0.04 8192 16 64

CFX011b 0.18 #2048 #8 #32

CFX019b 0.16 #2048 #8 #32

aat 37uC.
bat 22uC.
doi:10.1371/journal.pone.0035998.t001

Circular Permutation of TEM-1 b-Lactamase
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plated (both at 37uC and at room temperature) on plates

containing one of four antibiotics (ampicillin, cefazolin, cephalo-

thin and cefotaxime) at or above the MIC for these antibiotics

conferred by bla. Only in the case of cefotaxime were clones with

elevated resistance identified. The number of colonies that grew

indicated that about three library members exhibited resistance to

at least 0.08 mg/ml cefotaxime and room temperature. The

plasmid DNA from fourteen colonies that grew at room

temperature on agar plates supplemented with 0.08 or 0.10 mg/

ml cefotaxime were isolated and retransformed into fresh E. coli

cells. Six colonies were false positives since the retransformed cells

did not have resistance above background. The remaining eight

library clones had an MIC for cefotaxime of at least 0.12 mg/ml

(3-fold higher than the MIC of cells expressing BLA).

Sequencing revealed two library members with very similar

sequences: CFX011 (BLA[166-286]-DKS-BLA[24-163]-VL) and

CFX019 (BLA[157-286]-DKS-BLA[24-163]-VL). Like the BLA

domain of MBP317-347, these two variants are circularly

permuted in the V-loop. This change in substrate specificity due

to alteration in or near the V-loop is consistent with previous

reports [15,16]. Interestingly, CFX011 is permuted at exactly

Glu166, which is known to be a key catalytic residue [21].

Characterization of the improved circularly permuted
variants

The MIC conferred by CFX011 and CFX019 were determined

on a number of antibiotics and compared to that exhibited by bla

(Table 1). Whereas the MIC for cefotaxime were 4-fold higher, the

MIC’s for ampicillin, cephalothin and cefazolin were all

considerably lower than that conferred by bla. This indicates that

the increased level of resistance provided by these two variants

cannot solely be for reasons of increased expression of the protein,

and that circular permutation has resulted in an alteration of the

substrate specificity of the enzyme. Experiments designed to

express CFX011 and CFX019 using the vectors on which they

were isolated suffered from poor expression of the circular

permutants (as judged by western blots and b-lactamase activity

assays on lysates) and poor yields upon attempted purification

using a phenylboronic acid agarose affinity column. This suggests

that circular permutation compromised the production of

CFX011 and CFX019 in E. coli. Thus, the most likely explanation

for the increase MIC conferred by CFX011 and CFX019 is

increased specific activity for hydrolyzing cefotaxime. Alternative-

ly, these variants would have to be expressed at significantly higher

level than BLA, retain TEM-1 levels of activity on cefotaxime, and

Figure 1. Library construction. (A) The previously described collection of circularly permuted bla genes [19] was PCR-amplified using primers
designed to anneal just outside the circularly permuted bla DNA. Both primers contained an appropriately spaced BsgI restriction site (cuts and the
indicated dashed lines) such that treatment of the digested product to remove the two-base 39 overhand would result in the circularly permuted bla
library without any ‘‘scars’’ from the surrounding DNA. (B) Plasmid pC8BlaStop is derived from pDIM-C8 [23] and contains appropriately place SapI
and AflII sites such that fusion of the circularly permuted bla library can occur seamlessly to the bla signal sequence (blass) and a series of stop
codons in all three reading frames (in bold).
doi:10.1371/journal.pone.0035998.g001
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selectively lose activity on ampicillin, cephalothin and cefazolin.

This scenario seems unlikely.

Conclusions
A directed evolution strategy involving random circular

permutation was successfully applied to increasing the ability of

TEM-1 b-lactamase to provide resistance to the antibiotic

cefotaxime. The genes that provided increased resistance to

CFTX were circularly permuted in the region corresponding to

the V-loop of the protein. The genes conferred decreased activity

against other cephalosporins and ampicillin. This finding indicates

that circular permutation altered the substrate specificity of the

enzyme. Since increased expression of the circularly permuted

variants relative to wild-type would be unlikely, we proposed that

the increased resistance derives from an increase in catalytic

activity on cefotaxime, although confirmation will require

characterization of the catalytic activity in vitro. It is interesting

that insertions in the V-loop generated by pentapeptide mutagen-

esis also resulted in increased resistance to CFTX [15], indicating

that different perturbations in this loop can result in similar

changes in specificity, perhaps by removing steric constraints.

Materials and Methods

Materials
All enzymes were purchased from New England Biolabs. All

DNA purification kits were purchased from Qiagen. Cefotaxime

and ampicillin were purchased from Fisher Scientific. All

oligonucleotides were purchased from Invitrogen. pGEM T-vector

cloning kit and Taq polymerase were purchased from Promega

(Madison, WI). All other chemicals were purchased from Sigma.

Circular permutation library construction
The library was constructed in plasmid pC8BlaStop, a plasmid

derived from pDIM-C8 [22] in which the section between the

BamHI and SpeI sites is modified according to Figure 1A. Ten mg

of pC8BlaStop was digested with 36 units of AflII and 25 units of

SapI. The desalted digestion product was treated with Klenow and

alkaline phosphatase according to the manufacturer’s specifica-

tions. The large blunt fragment was isolated by agarose gel

electrophoresis.

The insert was derived from a previously described library

(called Library 7) of circularly permuted bla genes that was inserted

into a specific location in the gene encoding maltose binding

protein [19]. To create the library for the work described here we

amplified this library of circularly permuted bla genes by PCR

using the following primers: 59-TTACGAGGAGTGCAGGGC-

GAAAGATCCACGT-39 and 59-CACCTTTCTGTGCAGTT-

TCCATGGTGGCGGC-39 using 40 ng of template DNA. These

primers located flanking BsgI sites an appropriate distance from

the circularly permuted library such that digestion of the PCR

product with BsgI and treatment with Klenow and dNTPs

produced a blunt ended product without any extra DNA from the

malE gene (Figure 1B). From the PCR reaction DNA of the correct

size was isolated by agarose gel electrophoresis. Five mg of isolated

DNA was digested with 50 units BsgI in the presence of 80 mM S-

adenosylmethionine according to the manufacturer’s instructions.

BsgI cuts 16 base pairs downstream from its recognition sequence

leaving behind the randomly circular permuted bla gene library

with a 2-nucleotide 39 overhang. These two overhang nucleotides

were degraded by treating the isolated PCR product with

Klenow(exo+) in the presence of dNTPs to create the blunt insert.

One hundred ng of linear, blunt pC8BlaStop vector was ligated

to this 100 ng insert. The 10-ml reaction was carried out at 22uC
overnight (for 24 hours) using 30,000 Weiss units of T4 DNA

ligase. After ethanol precipitation, 5% of the precipitated product

was electroporated into 75 ml DH5a E. coli cells using 0.2 cm

cuvettes. Eight separate electroporations were performed and

combined. The total number of transformants in the cpBLA

library was about 0.56106.

Library characterization and selection
A frozen stock of the naı̈ve library was diluted and plated on LB

agar plates containing no antibiotics, 16 mg/ml ampicillin (Amp)

or 250 mg/ml Amp. The plates were incubated overnight at room

temperature. Plasmid DNA from inoculum prepared from

randomly selected colonies were sequenced.

To select from genes that conferred increase resistance to b-

lactam containing antibiotics, frozen stocks of the naı̈ve library

were diluted and plated on LB agar plates containing ampicillin,

cefazolin, cephalothin or cefotaxime at concentrations at or above

the MIC provided by bla. The plates were incubated overnight at

Figure 2. Sites of circular permutation BLA based on DNA sequencing of (A) 25 randomly selected members from the naı̈ve library, (B) 20 randomly
selected members capable of growing on plates containing 16 mg/ml ampicillin, and (C) 10 randomly selected members capable of growing on plates
containing 250 mg/ml ampicillin. The first amino acid in the mature wild-type BLA is 24 (since the signal sequence of amino acids 1–23 is removed)
and the last amino acid is 286. The linker joining the N- and C-termini has the amino acid sequence DKS.
doi:10.1371/journal.pone.0035998.g002
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37uC and room temperature. Only on cefotaxime containing

plates did any library members grow. The plasmid DNA was

isolated and retransformed into DH5a E.coli to confirm that the

reason for the elevated levels of resistance was plasmid-borne.

Minimum inhibitory concentration determination
Minimum inhibitory concentrations (MICs) were determined by

plating dilutions of overnight inoculums supplemented with

varying concentrations of ampicillin, cefazolin, cephalothin or

cefotaxime. Colonies that appeared on the LB plates after

24 hours incubation at room temperature were counted. The

lowest concentration of the antibiotic required to prevent growth

of at least 99% of the plated cells (compared to plates with no

antibiotic) was taken to be the MIC.
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