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ABSTRACT

There has been considerable interest in the generation of functional mesenchymal stromal cell
(MSC) preparations from induced pluripotent stem cells (iPSCs) and this is now regarded as a
potential source of unlimited, standardized, high-quality cells for therapeutic applications in
regenerative medicine. Although iMSCs meet minimal criteria for defining MSCs in terms of
marker expression, there are substantial differences in terms of trilineage potential, specifically a
marked reduction in chondrogenic and adipogenic propensity in iMSCs compared with bone
marrow-derived (BM) MSCs. To reveal the cellular basis underlying these differences, we con-
ducted phenotypic, functional, and genetic comparisons between iMSCs and BM-MSCs. We found
that iMSCs express very high levels of both KDR and MSX2 compared with BM-MSCs. In addition,
BM-MSCs had significantly higher levels of PDGFRα. These distinct gene expression profiles were
maintained during culture expansion, suggesting that prepared iMSCs are more closely related to
vascular progenitor cells (VPCs). Although VPCs can differentiate along the chondrogenic, osteo-
genic, and adipogenic pathways, they require different inductive conditions compared with BM-
MSCs. These observations suggest to us that iMSCs, based on current widely used preparation
protocols, do not represent a true alternative to primary MSCs isolated from BM. Furthermore,
this study highlights the fact that high levels of expression of typical MSC markers such as CD73,
CD90, and CD105 are insufficient to distinguish MSCs from other mesodermal progenitors in dif-
ferentiated induced pluripotent stem cell cultures. STEM CELLS 2019;37:754–765

SIGNIFICANCE STATEMENT

The generation of mesenchymal stromal cells (MSCs) from iMSCs has been proposed as an alterna-
tive strategy for obtaining unlimited sources of these cells of defined quality and capable of meet-
ing increasing demands for research and therapeutic applications. However, there are distinctions
between primary MSCs and iMSCs in terms of phenotype and differentiation. This study shows that
iMSCs share phenotypic traits with bone marrow-derived (BM)-MSCs in terms of standard marker
expression but shows marked differences in gene expression, especially in genes associated with
vascular progenitor cells. These differences may explain the altered differentiation propensity of
human iMSCs compared with primary MSCs.

INTRODUCTION

The discovery of induced pluripotent stem cells
(iPSCs) has been a key breakthrough in stem cell
biology and regenerative medicine. The properties
of pluripotent differentiation and long-term self-
renewal in vitro [1] exhibited by these cells are of
great significance and potential value in develop-
ing new therapeutic strategies without encounter-
ing ethical obstacles associated with embryonic
stem cells (ESCs). iPSCs have the same genetic
background as the somatic cells from which they

were derived, giving rise to the prospect of gener-
ating constantly renewable immunoprivileged cell
populations for autologous cell therapy [2].
Another opportunity of value is provided by the
prospect of using iPSCs to uncover the origin and
pathogenesis of human diseases [3, 4].

One aspect of iPSC technology that has
drawn considerable interest has been the gener-
ation of functional mesenchymal stromal cell
(MSC) preparations. This has arisen because of
the strong interest in the research and therapeu-
tic use of these cells. MSCs are multipotent cells
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which have been extensively tested as therapeutic agents for the
treatment of degenerative diseases, autoimmune disorders and
wound repair [5, 6]. In addition, the cells can be used to model
human diseases, for example, musculoskeletal disorders [7] and
nonhematological mesenchymal cancers [8]. MSCs are easily
accessible in postnatal tissues, including bone marrow (BM), adi-
pose tissue, and umbilical cord blood [9]. However, problems
with the inconsistency of supply, variable quality, and phenotypic
changes associated with long-term expansion have represented
impediments to effective translation [10]. To overcome these
barriers, iPSCs, with the advantages mentioned above, have the
potential to become a more standardized alternative to primary
tissues for MSC production.

Human pluripotent stem cell-derived MSCs (PSC-MSCs) were
first differentiated from ESCs, referred to ESC-MSCs, using a strat-
egy that involved differentiation of cells within the embryoid body
(EB) [11]. In recent years, protocols have also been developed for
the generation of MSCs from human iPSCs. Commonly used proto-
cols included: (a) transferring iPSCs to a suspension culture to
form EBs followed by culturing on gelatin-coated plates [12];
(b) directly seeding dissociated iPSC colonies in precoated culture
surfaces such as gelatin, collagen type 1, or synthetic polymers
[13–15]; or (c) simply replacing iPSC culture medium with MSC
medium [16]. Furthermore, inhibitors of kappaB kinase epsilon
(IKKi), the TGF-β/Activin type I receptor inhibitor (SB431542),
Activin A, and BMP4 have been used to enhance early meso-
dermal induction in culture [17, 18]. iPSC derivatives were
termed iMSCs, because of their MSC-like immunophenotype,
plastic adherent ability, and apparent multipotent differentia-
tion potential in chondro-, osteo-, and adipogenesis, therefore
meeting the minimal criteria defined by the International Soci-
ety for Cellular Therapy (ISCT standard) [19].

However, questions arise relating to the phenotypic fidelity
of iMSCs because, irrespective of the derivation methods used,
there are differences between these cells and primary MSCs. For
instance, iMSCs generally have less capacity for adipogenic and
chondrogenic differentiation. Adipocytes and chondrocytes dif-
ferentiated from iMSCs often express significantly lower levels of
lineage marker genes such as PPAR-γ and ADIPOQ (adipogenesis)
and ACAN and COL2A1 (chondrogenesis) than those derived
from primary MSCs, [20–25]. Conversely, iMSCs are markedly
efficient in osteogenesis based on the evaluation of matrix pro-
duction and osteogenic marker expression [26–29]. The altered
differentiation propensity may hinder the application of iMSCs in
current research and therapeutic strategies such as those involv-
ing primary MSCs for disease modeling and tissue regeneration.

Previous hierarchical analysis of gene expression profiles
(GEPs) suggested that both iMSCs and primary MSCs have the
characteristics of mesodermal lineage but are clearly not identi-
cal. Gene clustering analysis showed that, irrespective of the dif-
ferentiation methods used, iMSCs formed a cluster which was
close to but separated from the primary MSC group [20]. More-
over, Frobel et al. demonstrated the dissimilarity in DNA methyl-
ation patterns between the two cell types [21]. However, the
significance of the distinct GEPs between iMSCs and primary
MSCs, and the possible relationship to differences in multipo-
tency remain poorly understood.

To answer these questions, we compared the differentia-
tion ability, immunophenotype, and GEPs between multiple
iMSCs and BM-MSC lines by looking at key genes representing
different mesodermal stem cell populations. The phenotype,

multipotency, and GEP of iMSCs in serial passages were also
assessed to evaluate the impact of culture expansion. Our results
showed that iMSCs demonstrated equivalent osteogenicity but
less adipogenicity and chondrogencity when compared with
BM-MSCs. The GEPs of the two cell groups were significantly dif-
ferent and such distinction was maintained consistently during
culture expansion, suggesting that both cell types represented
different mesodermal progenitors and that iMSCs were, in fact,
more similar to vascular progenitor cells (VPCs). Previous findings
showed that even though the cell plasticity of VPCs endows
them with capacities to undergo chondro-, adipo-, and osteogen-
esis, specific conditions are required to fully induce the lineage
transformation of the cells, especially for chondrogenesis and
adipogenesis [30–34]. This may explain why iMSCs with VPC
background showed an MSC-like multipotent potential but dis-
played a functional inadequacy in a MSC preferred differentia-
tion environment. In addition, a partially overlapped surface
profile between VPCs and MSCs [35, 36] can make them indistin-
guishable by examining the markers selected in the ISCT stan-
dard. Taken together, our results suggested that it is insufficient
to apply the ISCT standard alone to precisely define MSC popula-
tions derived from iPSCs. To reduce the risk of lineage misidenti-
fication, it is necessary to further validate the cell identity with
various mesodermal progenitor markers.

MATERIALS AND METHODS

Ethical Approvals

To isolate primary MSCs, BM was harvested from the iliac crest of
three healthy donors with approval from both the NUI Galway
Research Ethical and Galway University Hospitals Clinical Research
Ethics Committees. Skin fibroblasts for generation of iPSC-3 were
obtained from a healthy donor with ethical approval by the Uni-
versity Hospital Galway research ethics committee.

Cell Lines

BM-MSC lines from three healthy donors were isolated and
cultured as previously described [37]. iPSC-1 and iPSC-2 were
kindly provided by Dr. Gareth Sullivan (University of Oslo) and
Professor James Dutton (University of Minnesota), respectively.
The conditions used for cell expansion and iPSC characteriza-
tion protocols are included in Supporting Information.

Generation of iMSCs

The EB outgrowth method was applied as described previously
with minor modifications. EBs were maintained in suspension
culture for 8 days, followed by adherent culture on gelatin-
coated plates for outgrowth of differentiated cells. During this
stage, EB formation medium was used which contained 80%
knockout Dulbecco’s modified Eagle’s medium (KO-DMEM, Invi-
trogen, Glasgow, UK), 20% fetal bovine serum (FBS; Sigma),
1 mM L-glutamine (Invitrogen, Glasgow, UK), 14 μM β-merc-
aptoethanol (Invitrogen, Glasgow, UK), and 1% nonessential
amino acids (NEAA, Invitrogen, Glasgow, UK) [11]. When out-
grown cells formed confluent areas, they were passaged to new
gelatin-coated flasks and remaining EB clumps were removed
using a 40 μm cell strainer. During this maintenance phase, cells
were fed with medium comprising KO-DMEM, 10% FBS, 1 mM
L-glutamine, and 1% NEAA [38]. Finally, when the majority of the
cells displayed an MSC-like morphology, they were transferred to
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noncoated culture flasks with MSC culture medium (passage
0 [P0]). A continued homogeneous transition was achieved in
each iMSC culture by eliminating nonadherent cells.

Proliferative Potential and Immunophenotypic
Assessment

Cell growth rate was determined as cumulative population
doubling (CPD) [39].

CPD = log No: harvesting½ �=No: seeding½ �ð Þ=log 2ð Þ

For immunophenotyping, flow cytometry analysis was per-
formed using the human MSC analysis kit (BD Bioscience, San
Diego, CA) according to the manufacturer’s protocol. Individual
antibodies against CD11b, CD19, CD45, CD34 (BD Bioscience,
San Diego, CA), and human leukocyte antigen (HLA)-DR (The-
rmo Fisher Scientific, MD) were also included in the analysis.
Samples were analyzed on the BD FACS Canto II
(BD Biosciences) and data analyzed using FlowJo 6.0.

Trilineage Differentiation

MSCs were subjected to chondro-, adipo-, and osteogenesis as
described previously with minor modifications [37]. Differenti-
ated cells were analyzed by histological and immunocytochem-
ical staining. The differentiation efficiency was also assessed
by quantitation of related biomarkers. Detailed experimental
procedures can be found in Supporting Information.

GEP Analysis

Real-time quantitative polymerase chain reaction (qPCR) and
semiquantitative PCR were performed to evaluate the GEP of
the MSCs. Protocols for sample preparation and PCR analysis
can be found in Supporting Information. Information relating
to primers is given in Supporting Information Table S1.

Statistical Analysis

All values are presented as a mean � SEM. Two-tailed Student’s
t test was performed to detect the statistical differences, in gene
expression, immunophenotype, and differentiation efficiency, be-
tween BM-MSCs and iMSCs at the same passage. To detect differ-
ences in expression variation of the selected gene of the same cell
type during culture expansion, One-way analysis of variance fol-
lowed by Bonferroni (compare all pairs of columns) correction
were performed. p < .05 was considered statistically significant.

RESULTS

Generation and Characterization of iPSC Lines

Three iPSC lines were included in this study, iPSC-1, 2, and 3.
All lines were derived from healthy donors using the standard
retroviral reprogramming method [38]. The pluripotent state
of iPSC-1 was validated previously [7] and characterization of
iPSC-2 and 3 included assessment of typical ESC-like morphol-
ogy (Supporting Information Fig. S1A), confirmation of a
normal karyotype (Supporting Information Fig. S1B) and immu-
nostaining to identify positive expression of key pluripotent
markers OCT4, SOX2, NANOG, and TRA1-60 (Supporting Infor-
mation Fig. S1C). Furthermore, teratoma assay and EB formation
were applied to examine the functional pluripotency of iPSC-2
and 3, respectively. Histological analysis of teratoma sections

derived from iPSC-2 showed that the cells were able to gener-
ate different tissue types from three germ layers (Supporting
Information Fig. S1D), whereas immunostaining of day 35 EBs
confirmed pluripotency of iPSC-3 with positive staining for α-SMA
(mesoderm), α-Fetoprotein (endoderm), and β-3-tubulin (ecto-
derm; Fig. 1A–1E).

Phenotypic Comparison of iMSCs and BM-MSCs

Since the EB outgrowth method is the most widely studied for
the differentiation of iPSCs to MSCs [17], it was used in this
study. In addition, three primary MSC lines were obtained from
BM aspirates from the iliac crest of healthy donors. P5 was
chosen as the earliest time point for analyzing iMSCs because
earlier passage cells showed heterogeneous morphology and
limited plastic adherence. The impact of serial passages on
phenotype, differentiation and GEP was studied between P5
and P8 in both iMSCs and BM-MSCs.

Preliminary analysis was carried out to compare the mor-
phology, proliferative activity, and surface antigen expression
between the two groups. Cell morphology was similar across all
preparations (Fig. 1A) and there was no significant difference
between iMSCs and BM-MSCs in terms of their proliferative
capacity (Supporting Information Fig. S2), both showing similar
mean CPD (Fig. 1B). Immunophenotypic analysis confirmed that
both cell groups expressed standard MSCs surface markers
(CD73/90/105; Fig. 1C). Some preparations showed some posi-
tive expression of hematopoietic markers (Fig. 1C). When this
was observed, we undertook a detailed analysis and found that
it was specifically associated with HLA-DR expression only and
the cells were negative for other hematopoietic markers (CD11b/
34/19/45; Fig. 1E; Supporting Information Fig. S3B, S3C). We
concluded that the preparations did not contain hematopoietic
progenitors and that the induction of HLA-DR expression was a
consequence of expansion in the FGF2-containing medium, as
described previously [40]. We also noticed that iMSCs contained
significantly less CD90+ cells than BM-MSCs (p = .0238; Fig. 1D)
and a bimodal pattern of CD90 expression was observed in iMSC
preparations only (Fig. 1C). This appeared to be a consequence
of changed CD90 expression in some cultures with passaging
(Supporting Information Fig. S3A).

Functional Comparison of iMSCs and BM-MSCs

The capacity for trilineage differentiation in both cell groups
was assessed using standard differentiation conditions. Consis-
tent with previous findings [20, 21], we observed that iMSCs
demonstrated limited adipogenic differentiation. In adipocytes
derived from BM-MSCs, Oil Red O-stained lipid droplets (LDs)
were much larger compared with those from iMSCs (Fig. 2A).
Consistently, the level of triacylglycerol (TAG) was significantly
lower in iMSCs (20-fold, p = .0056, Fig. 2B). Interestingly, the
higher DNA content seen in differentiated iMSC cultures sug-
gests potential differences in cell cycle regulation and prolifera-
tive activity between the two groups (Fig. 2C). The significantly
lower ratio of TAG per DNA suggested a disrupted TAG synthesis
in iMSCs compared with BM-MSCs (40-fold, p = .003, Fig. 2D).
This difference remained in both early passage (P5; p = .006)
and late (P8; p = .004) cultures (Fig. 2E), further indicating an
incomplete adipogenic capacity of iMSCs.

Detailed analysis of chondrogenic potential revealed striking
differences between iMSCs and BM-MSCs. Toluidine blue staining
showed an abundant glycosaminoglycan (GAG)-rich extracellular
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Figure 1. Preliminary characterization of induced mesenchymal stromal cells (iMSCs) and bone marrow (BM) derived-MSCs. (A): Cellular
morphology. Scale bar = 50 μm. (B): Proliferation capacity of each cell group compared based on the cumulative population doublings
(CPD) (mean � SEM). See Supporting Information Figure S2 for the growth rate of each line. (C–E): Surface profile analysis of the cells
(P5) using flow cytometry. Red histograms represent isotype controls with the blue overlays representing each antigen; percentages of
positive cells are shown within histograms. (C): Positive markers included CD90/73/105. The negative (Neg.) combine is a mixed antibody
pool assessing CD45, CD34, CD19, CD11b, or HLA-DR positive cells. (D): Summary of the immunophenotype of BM-MSC and iMSC lines as
detected by flow cytometry. Data represent mean � SEM of n = 3; *, p < .05. (E): Individual antibody staining of hematopoietic popula-
tions to identify the positive signal shown in the Neg. combine group. See also Supporting Information Figure S3.
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matrix (ECM) in 35 days chondrogenic pellets of BM-MSC and
very limited GAG staining in iMSC pellets (Fig. 3A). Measurement
of the accumulated GAG to DNA ratio (Fig. 3B) showed that BM-
MSCs produced 6.7-fold higher GAG at P5 (p = .008) and 14-fold
higher at P8 (p = .1).

Immunohistological analysis of specific ECM components
underscored the differences in chondrogenic response between
BM-MSCs and iMSCs (Fig. 3C). This showed that collagen type II
(COL2), collagen type VI (COL6), cartilage oligomeric matrix pro-
tein (COMP) and aggrecan were synthesized at a high level and
distributed throughout the ECM in BM-MSC derived pellets.
However, aggrecan, COL2, and COMP, hallmarks of a cartilagi-
nous phenotype, were absent or minimally expressed in iMSC
pellets. COL6 was the only ECM component that appeared to
be expressed at a high level in iMSC pellets and this was not
uniformly distributed. Taken together, these results suggested a
very limited chondrogenic proclivity of iMSCs.

In contrast, both iMSCs and BM-MSCs demonstrated strong
osteogenic capacity as measured by calcium deposition, osteocalcin
synthesis, and assembly of a collagen type I (COL1)-rich ECM.
Osteocalcin was expressed abundantly in cell aggregates main-
tained in osteogenic medium for 35 days (Fig. 4A). The osteogenic
cultures from both cell groups also showed similar abundant accu-
mulation of calcium measured relative to total DNA content
(Fig. 4B). In addition, analysis of COL1, the major collagen in bone
[41], showed a richer accumulation in iMSC-derived cultures com-
pared with BM-MSC-derived cultures (Fig. 4C).

iMSCs Were Derived Through Mesodermal
Commitment

To interrogate the possibility that lack of trilineage differentiation
capacity could be associated with the presence of heterogeneous
mixtures of cells of nonmesodermal lineage, the expression of
genes representing ectoderm and endoderm was assessed (Fig. 5).

Figure 2. Adipogenic capacity of induced mesenchymal stromal cells (iMSCs) and bone marrow (BM) derived-MSCs. (A): Morphologies
of formed lipid droplets shown by staining with Oil Red O solution. Representative images of each cell line (P5) are shown. Insets are
magnified images of the areas indicated by black arrows. Scale bar = 22.7 μm. (B–D): The amount of TAG and DNA and the ratio of TAG
per DNA between the BM-MSCs and iMSCs groups are shown. Data in each bar chart represents mean � SEM of n = 3; **, p < .01.
(E): Quantification of lipid elaborated by extraction of Oil Red O stain and measuring absorbance at O.D. 490 nm, n = 3 wells for each
group. Results are mean � SEM; **, p < .01.
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PCR analysis showed no expression of PAX6 and SOX1 indicating
that cells of neuroectodermal lineages were not present in iMSCs
and BM-MSCs [42]. Similarly, the absence of FOXA2 and CXCR4
indicated that no definitive endoderm was present. We did note,
however, that the early regulators of endodermal differentiation,
SOX17 and SOX7 [43], were detected in iMSCs in P5 but absent
in later passage cells (Fig. 5). These results suggested that differ-
ences in phenotype or differentiation potential between MSCs
derived from iPSC and from BM could not be attributed to the
presence of nonmesodermal lineage cells.

We next considered whether iMSCs and BM-MSCs differed
in terms of early or late mesodermal commitment. Previous
studies have suggested that iMSCs are less mature than BM-
MSCs and that this may influence differentiation capacity [44].

To verify this, we selected a set of markers that would reveal
the degree of mesodermal commitment for each group. We
compared the expression levels of MIXL1, MESP2, and CDH1,
all of which are involved in the regulation of early mesodermal
commitment and differentiation. MIXL1 is mainly expressed in
nascent mesoderm followed by downregulation at the point of
commitment [45, 46]. MESP2 is activated on initiation of seg-
mentation in paraxial mesoderm (PM) [47]. CDH1 is a marker
of endomesoderm and its expression pattern is reduced during
mesogenesis but maintained for endogenesis [48, 49].

There was no significant difference in expression ofMIXL1 in
iMSCs and BM-MSCs over several passages in culture (from P5
to P8, Fig. 6A). BM-MSCs showed higher expression of MESP2
compared with iMSCs across all passages. These differences were

Figure 3. Comparison of chondrogenic pellets derived from induced mesenchymal stromal cells (iMSCs) and bone marrow (BM) derived-
MSCs. (A): Representative images of toluidine blue stained sections demonstrate the presence of GAG within the chondrogenic matrix of
the pellets derived from MSCs at P5. Scale bar = 250 μm. (B): GAG quantification relative to DNA content of tested pellets. Data repre-
sents mean � SEM of n = 3; **, p < .01. (C): Representative images of immunofluorescent staining for cartilaginous matrix components
(aggrecan [red], COMP [green], COL2 [red], and COL6 [green]) on the pellets differentiated from P5 MSCs. Cell nuclei were stained with
DAPI (blue). Scale bar = 50 μm. Insets displayed in (A) and (C) are magnified images of the areas indicated by the arrowheads.
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not significant except for P5 (p = .0068; Fig. 6B). This may sug-
gest a PM origin of BM-MSCs. In contrast to BM-MSCs, iMSCs
expressed significantly lower levels of CDH1 at P7 (20-fold,
p = .0221) and P8 (10-fold, p = .0028; Fig. 6C). The marked
change may be associated with maturation to a mesoderm state.

Conversely, the high expression of both CDH1 and SOX7 in BM-MSCs
(Fig. 5) may infer the existence of an endodermal precursor
which is in line with the potential of these cells to trans-
differentiate into endodermal lineages [50]. Overall, a similarly
low level of MIXL1 detected on both cell types implies their

Figure 4. Comparison of osteogenic pellets derived from induced mesenchymal stromal cells (iMSCs) and bone marrow (BM) derived-
MSCs. (A): Representative images of immunohistochemical staining for detection of osteocalcin in pellets differentiated from P5 MSCs.
Cell nuclei were stained with hematoxylin. Insets are magnified images of the areas indicated by the red arrows. Scale bar = 250 μm.
(B): Calcium produced and standardized to DNA levels in osteogenic pellets derived from iMSCs and BM-MSCs (P5 and P8) is shown. Data
represents mean � SEM of n = 3. (C): Representative immunohistochemistry demonstrates the expression and distribution of COL1
(green) in pellets derived from P5 MSCs (top row; white scale bar = 250 μm). Corresponding magnified images of COL1 staining from the
areas indicated by the red arrowheads (bottom row; red scale bar = 50 μm).

Figure 5. Ectodermic and endodermic gene profiles in induced mesenchymal stromal cells (iMSCs) and bone marrow-derived MSCs by poly-
merase chain reaction (PCR) analysis. Cells were harvested from P5 to P8. Representative bands of the PCR products in 2% agarose gel electro-
phoresis are shown. “+” represents mixed RNA samples extracted from day 35 EBs derived from induced pluripotent stem cells as the positive
control. “−” represents the negative control for each PCR reaction (nontemplate controls were performed for each PCR reaction).
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postmesodermal initiation state. Contrasting expression pat-
terns of MESP2 indicate that iMSCs and BM-MSCs may arise
from different mesodermal subfractions.

iMSCs and BM-MSCs Represent Distinct Mesodermal
Progenitors

Next, we looked at the expression of genes that are widely used
to distinguish subpopulations of mesodermal progenitors. We
noted a dramatically higher level of PDGFRɑ expression by BM-
MSCs compared with iMSCs at all passages: P5 (24-fold,
p = .036), P6 (28-fold, p = .0702), P7 (40-fold, p = .0042), and P8
(55-fold, p = .0028; Fig. 6D). A gradual diminution in the level of
PDGFRɑ (39% over time) was also seen in iMSCs on passaging.
Conversely, KDR expression was greater in iMSCs than in BM-
MSCs from 4-fold (P5, p = .07) to 223-fold (P8, p = .1; Fig. 6E).
PDGFRα and KDR are restricted to PM and lateral plate meso-
derm (LPM), respectively, during mesogenesis [51, 52]. Recently,
PDGFRα has emerged as a promising marker for isolation of pri-
mary MSCs from BM and heart [51]. Overall, the very low level
of PDGFRα in iMSCs suggests that MSC-like cells are rare in iMSC
cultures whereas the high expression of KDR suggests that iMSCs
may originate in LPM.

In both human and mouse models, ESC-derived KDR+ stem
cells have been recognized as hemangioblasts, giving rise to
hematopoietic lineages and VPCs [53]. Based on flow cytome-
try analysis, the hematopoietic markers were expressed at
extremely low levels in iMSC lines (Fig. 1; Supporting Informa-
tion Fig. S3). Therefore, we speculate that KDRhigh iMSCs may
be VPC-like cells. The significantly stronger expression of MSX2
in iMSCs further supports this conjecture (Fig. 6F). Goupille
et al. used nlacZ as a reporter for Msx2 expression in a trans-
genic mouse model and showed that this gene was expressed
prominently in the vascular smooth muscle layer of peripheral
arteries as well as in embryonic and adult aorta endothelium
[54]. Our results showed that the overall expression levels of

MSX2 in iMSC group were 37.5- (P8) to 100-fold (P5) higher
than the levels in BM-MSCs. Statistical significance was achi-
eved by P6 (65.7-fold, p = .046; Fig. 6F). In addition, the con-
sistently high level of MSX2 in iMSCs may suggest a stable VPC
phenotype [55]. Furthermore, the unique GEP of iMSCs sug-
gests a potential differentiation propensity to endothelial pre-
cursors and vascular smooth muscle progenitors [56].

Taken together, the results suggest that iMSCs are mature
mesodermal progenitors with a VPC-like background and that
iMSCs and BM-MSCs represent different mesodermal progenitor
populations (Fig. 7). The proposal that iMSCs have a VPC-like
background provides a rationale for their functional divergence
from BM-MSCs.

DISCUSSION

In this study, the iPSC derivatives were termed as iMSCs as the
cells possessed the characteristics of MSCs as described by the
ISCT standard (Figs. 1–4). However, the GEP analysis performed
argued that these two cell groups actually represented different
mesodermal subfractions, where iMSCs were VPC-like cells
(PDGFRαlowKDRhighMSX2high) and BM-MSCs were a product of
the mesengenic process (PDGFRαhighKDRlowMSX2low; Fig. 6). The
current understanding of VPCs provides the rationale for explain-
ing inconsistencies between iMSCs and BM-MSCS, that is, the
compliance of iMSCs to the ISCT-based cell surface phenotype
and noncompliance with respect to differentiation capacity.

Firstly, flow cytometry analysis showed that iMSCs carried a
BM-MSC-like surface profile (Fig. 1C). Previous findings proved
that VPCs positively expressed not only CD73/90/105 but also
CD44/166 and STRO-1 [57–62]. Due to the partially overlapping
immunophenotype found, using these traditional MSC-associated
antigens contributes to an inability to discriminate iMSC with a
VPC-like background from the MSC population. Interestingly, the

Figure 6. RT-polymerase chain reaction analysis of mesodermal gene expression profiles between induced mesenchymal stromal cells
(iMSCs) and bone marrow derived-MSCs from P5 to P8. Data were normalized to POLR2A expression. Results are mean � SEM. *, p < .05;
**, p < .01.
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coexistence of CD90high and CD90low subsets was captured exclu-
sively in iMSC lines (Fig. 1C). Of note, this immunophenotype
was also observed in PSC-MSC lines from other studies
[13, 15, 29, 63–65]. We found that continued expansion could
induce a dynamic expression pattern of CD90 in the cells (Sup-
porting Information Fig. S3A). Although Moraes et al. showed
that depletion of CD90 in BM-MSCs stimulated their osteogenic
ability [66], this association was not found in iMSCs generated in
our study (Fig. 4B). An alternate role of CD90 in adult cardiac vas-
cular stem cells (CVSCs) was investigated by Gago-Lopez et al.,
who reported that CD90− CVSCs expressed higher levels of genes
involved in stemness when compared with CD90+ CVSCs [67].
Whether a similar influence of CD90 variation can be found in
iMSCs will need to be elucidated.

Secondly, both cell groups showed marked potential in trili-
neage differentiation. However, in contrast to BM-MSCs, iMSCs
were found to have significant osteogenic capacity; chondrogen-
city and adipogenicity were minimal (Figs. 2–4). This differentia-
tion phenotype corresponds with the known fate plasticity of
VPCs. It has been shown that VPCs display osteogenic capacity,
which can be differentiated into osteoblasts in a primary MSC
preferred condition, using β-glycerol phosphate, ascorbic acid,
and dexamethasone [30, 68, 69]. However, for chondrogenesis,
the cells require an additional treatment of BMP2, BMP4, or
TGF-β2 to complete a mesenchymal transition by interacting
with members of the type I TGF-β receptor [30, 32, 70, 71]. In
our study, TGF-β3, as one of the commonest chondrogenic
inducer for primary MSCs, was used for chondrogenesis of
iMSCs. Although previous ligand-receptor binding analysis dem-
onstrated binding ability between TGF-β3 and the type I recep-
tor, this ligand has stronger binding preference and affinity to
the type II receptor [72]. Uniquely, CD105, a type III TGF-β
receptor, also binds TGF-β3 with high affinity but fails to bind
TGF-β2, BMP2, and BMP4 [73, 74]. The distinct receptor prefer-
ence of TGF-β3 may explain the insufficient chondrogenesis of
iMSCs. With reference to adipogenesis, Zhao et al. showed that
tissue derived KDR+ CD31−CD34− cells, with characteristics of
VPCs, were capable of adipogenesis [31, 33]. Zimmerlin et al.
compared the adipogenic capacity among vascular lineages and
showed that the differentiation efficiency was low in CD31+en-
dothelial lineages but high in CD146+smooth muscle cells or
pericytes [34]. These findings confirmed that VPCs have adipogenic

potential but also implied that a pre-VSMPs derivation of iMSCs
may help to enhance their adipogenic efficiency. Taken together,
the partially overlapped multipotency and disparate require-
ments for differentiation conditions between VPCs and MSCs
provide the rationale to explain why iMSCs with a VPC-like back-
ground showed the potential for trilineage differentiation but
were dissimilar in differentiation efficiency when compared with
BM-MSCs.

GEP examination is a very important strategy for verifying
cell type after differentiation of stem cells. In this study, redefin-
ing the lineage type of iMSCs based on their GEPs helped to
explain the functional variation between the cells and BM-
MSCs. However, the number of publications including both GEP
and functional comparison between PSC-MSCs and primary
MSCs is limited. Data reported previously indicated that PSC-
MSCs with functional inequivalence to primary MSCs commonly
expressed high levels of genes associated with disparate meso-
dermal progenitors but exceedingly low levels of key MSC
genes. Barbet et al. showed that in comparison to BM-MSCs,
ESC-MSCs derived by a spontaneous differentiation method car-
ried significantly higher levels of HAND1 (LPM marker) [75],
NKX2-5, and FLT4 (cardiovascular progenitor genes) [44, 76]. In
Billing et al.’s study, mesengenic derivation of ESCs directly in
MSC maintenance medium led to the high expression of NKX2-5
and FGF12 (a promoter of vascular smooth muscle commit-
ment) [77], which were exclusively detected in the ESC-MSCs
[78]. Diederichs and Tuan generated MSCs using these methods
on iPSCs and demonstrated that KDR was significantly higher in
the resultant cells than in BM-MSCs. In addition, their data
showed that the iPSC derivatives also expressed significantly
higher MCAM, the elevation of which is associated with vascular
smooth muscle transdifferentiation of primary MSCs [20, 79].
Inefficient mesengenic induction was also seen even when the
process was derived in a controlled manner. Mesengenesis of
iPSCs by inhibiting TGF-β/Activin/Nodal signaling with SB-
431542 resulted in a greater expression of VEGFR1 (FLT1), a
marker of vascular endothelial cells in iMSCs than in BM-MSCs
[28, 80]. Mesengenic induction using FGF2 and PDGF followed
by cell sorting for a CD105+CD24− population also gave rise to a
heterogeneous culture with greater expression of vascular endo-
thelial markers (CL-P1 [81] and FAM43A [82]) and neuroprogeni-
tor markers (EFNB3 [83], SLITRK5 [84], and CKAP2L [85]) in

Figure 7. Schematic roadmap of lineage ontogenesis from pluripotent stem cells to different mesenchymal progenitors. Key genes asso-
ciated with each developmental stage are shown. Lineage choice-associated expression patterns are indicated by the colored arrows,
where green with narrow end represents downregulation and red with open end upregulation.
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ESC-MSCs than in BM-MSCs [86]. Moreover, irrespective of the
derivation methods used, extremely low expression of MSC-
associated genes was often detected in these PSC-MSCs, includ-
ing IL6 [20, 21, 28], BST1 [21, 44, 86], SFRP4 [21, 44], and VCAM1
[21, 44, 86]. The mismatches in GEPs between PSC-MSCs and
primary MSCs observed in other studies strongly support our
speculation on the lack of efficiency of the commonly used dif-
ferentiation methods in inducing the mesengenic specification
of PSCs. Subsequently, this uncontrolled lineage commitment
can lead to a generation of nonspecific mesodermal progenitor
populations.

CONCLUSION

Our data clearly demonstrated that the ISCT standard is insuffi-
cient to precisely distinguish MSCs from other mesodermal pro-
genitors. Distinct GEPs can be overlooked as a result of partially
overlapping cellular characteristics between MSCs and other
mesodermal progenitors. Inaccurate lineage identification as a
result of incomplete characterization can compromise the ability
to compare and contrast study outcomes and may be responsi-
ble for functional discrepancies of iMSC seen in other related
studies. Additional examination of markers representing differ-
ent mesodermal progenitors should be performed as a standard
process for tracking differentiation and verifying the iMSC iden-
tity before used in future investigations.

On the other hand, to further validate the VPC background
of iMSCs shown here, future analysis can be conducted to com-
pare differentiation propensity, immunomodulatory activity and
GEPs among iMSCs, BM-MSCs, and tissue-derived VPCs. It will
also be of interest to investigate whether the cell origin of iPSCs
can influence their mesengenic efficiency.
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