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Abstract A new algorithm for the Maximum Entropy
Method (MEM) is proposed for recovering the lifetime
distribution in time-resolved fluorescence decays. The
procedure is based on seeking the distribution that
maximizes the Skilling entropy function subjected to
the chi-squared constraint χ2 ∼ 1 through iterative lin-
ear approximations, LU decomposition of the Hessian
matrix of the lagrangian problem and the Golden
Section Search for backtracking. The accuracy of this
algorithm has been investigated through comparisons
with simulated fluorescence decays both of narrow and
broad lifetime distributions. The proposed approach is
capable to analyse datasets of up to 4,096 points with
a discretization ranging from 100 to 1,000 lifetimes.
A good agreement with non linear fitting estimates
has been observed when the method has been applied
to multi-exponential decays. Remarkable results have
been also obtained for the broad lifetime distributions
where the position is recovered with high accuracy and
the distribution width is estimated within 3 %. These
results indicate that the procedure proposed generates
MEM lifetime distributions that can be used to quantify
the real heterogeneity of lifetimes in a sample.
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Introduction

Fluorescence spectroscopy is a classical method for
studying the structural and dynamical aspects of bio-
logical systems such as proteins, membranes and living
cells [1–3]. The excited states of the fluorophores have
indeed lifetimes in the range of a few picoseconds to
some tens of nanoseconds. Since this corresponds to
the time scale of many important biological processes,
such as the protein folding dynamics, the protein-DNA
interactions, the diffusion of small molecules, the ro-
tational and internal motions, the proton transfer and
the energy transfer mechanism [4–6], the time resolved
fluorescence has became an important investigation
tool.

Despite the great advances in measurement
techniques over the recent years, the analysis of
fluorescence decays belongs to the difficult tasks in
data analysis. Indeed, a parametric multi-exponential
model function is usually fitted with the experimental
data by non linear least squares methods [7]. Besides a
difficulty to find the global overall minimum of the chi-
squared function χ2 by the parametric minimization
procedure, this statistical criteria very rarely allowed
to fit the analysed decay curve by more than three
exponential functions [4]. Moreover, there are many
situations where the time resolved fluorescence profile
is described by a continuous lifetime distribution
rather than a discrete number of exponential decays.
For example, the tryptophan residues in the exited
state are usually involved in a energy transfer process
to intra-molecular acceptors that depends on the
relative distance and affects the fluorescence lifetime
[4, 8]. This behaviour of the tryptophan is used to get
structural informations on the intermediate forms of
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proteins that characterise their folding process from
an extended random polypeptide chain. In complex
situations, such as those encountered even in small
proteins, the rate of energy transfer and thus the intra-
molecular distances can be described by a continuum
distribution due to heterogeneity of the structure that
turns out to a continuum lifetime distribution for the
fluorescence decay [9–12]. In these cases, the analysis
for recovering the distribution takes advantages of a
“regularizing function” in addition to the chi-squared
statistic for forcing the data to choose one member out
of the set of the feasible distributions [13]. The Skilling
entropy S is one of these regularizing functions and it
is maximized subjected to the constraint χ2 ∼ 1 by the
maximum entropy method (MEM) thus determining
the desired distribution with no assumptions about its
functional form [14–21].

The MEM is a mathematically complex algorithm
that seeks the stationary point of the Lagrange func-
tion � = S + λ(χ2 − 1), λ being the so-called Lagrange
multiplier, that turns out to be the solution of the set
of non linear equations resulting from ∇� = 0. Due to
the once limited computer memory and low perform-
ing computational time, the conjugate gradient method
(CG) [22] has been the iterative method widely spread
for the solution of equation systems [23]. The necessary
compromise between the accuracy of the solution and
the convergence speed of the algorithm [24] limited
both the number of data points and the number of life-
times used for reconstructing the desired distribution to
a maximum values of about 1,000 and 200 respectively,
with the obvious limitation of the information content
in the MEM distribution [25, 26].

Nowadays, the extensive computing power of a stan-
dard home computer makes possible the adoption of
new iterative approaches to the MEM based on direct
methods. In this paper we present a new procedure
based on the Newton-Raphson method for solving the
Lagrange multiplier problem associated to the MEM
constrained problem. A method for the solution of
the equation system ∇� = 0 through iterative linear
approximations and LU decomposition [27] is exten-
sively discussed. The implementation of the MEM is
carried out using a homebuilt routine package written
in MATLAB (version 7.14, The MathWorks Inc., Nat-
ick, MA, 2012). The accuracy of the algorithm is investi-
gated through comparisons with numerical simulations
of fluorescence decay data. It results that the MEM al-
gorithm proposed can analyse datasets with up to 4,096
data points, that is a typical value of an experimental set
up based on a time-correlated single photon counting
technique, by considering distributions with a number
of lifetimes that ranges from 100 to 1,000.

Theory of the Method

The time-resolved fluorescence decay data {Em} can
be described by a function T(t) defined as a discrete
convolution product of the intensity decay function I(t)
by the impulse response function R(t):

T(t) =
M∑

m=1

R(tm) · I(t − tm) (1)

with tm the measurement time of the m-th data point
Em and M the number of data points. The quan-
tity R(tm) is experimentally measured at each time tm
whereas I(t) is usually modelled as a discrete sum of
exponential decays [28]:

I(t) =
N∑

k=1

αke− t
τk , (2)

For the purpose of numerical calculations the sum in
Eq. 2 is extended from the resolution limit τ1 imposed
by the experimental set-up to the maximum lifetime
τN of the chromophore observed. The quantity N is
the number of partitions of the interval [τ1, τN], αk and
τk the amplitude factors and the lifetime of the k-th
partition, respectively. The expression 2 allows to write
the convolution sum expressed by the Eq. 1 as follows:

T(tm) =
N∑

k=1

Cm,k · αk

Cm,k =
M∑

i=1

R(ti)e
− tm−ti

τk (3)

There are many sets {αk} physically allowable that
agree with the data within the experimental precision
{σk} [15] and the Maximum Entropy Method selects the
distribution {αk} that maximizes the Skilling entropy
function S [14]

S(α1, ..., αN) =
N∑

k=1

αk − αk log(αk) (4)

subjected to the following chi-squared condition:

χ2 = 1

M

M∑

m=1

(Em − T(tm))2

σ 2
m

∼ 1 (5)

with the lifetime components equally spaced in a log-
arithmic scale. Note that in Eq. 5, the number M of
observations is not reduced by the number N of para-
meters, because this condition is not used to find the
optimal set of parameters in α-space but it is used to
test whether or not computed data is in satisfactory
agreement with measured data [15].
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In the following a new algorithm for maximizing the
entropy S according to the MEM requirements will be
described. The procedure refers to the negative func-
tion −S which is minimized by the same distribution
that maximizes S obviously.

The method of Lagrange multiplier provides a strat-
egy for finding the minimum of -S with the constraint 5
by considering the following Lagrange function

�(α1, ..., αN, λ) = −S (α1, ...αN) + λ · (χ2 − 1
)
, (6)

where λ is the Lagrange multiplier.
The MEM solution is an extremal of � for some

value of the Lagrange multiplier λ, thus it is obtained
by solving the set of non linear equations ∇� = 0:

(∇�)i = [∇(−S)]i + λ
(∇χ2

)
i = 0 i = 1..N

(∇�)N+1 = χ2 − 1 = 0 (7)

with

[∇(−S)]i = log(αi);

(∇χ2)i = − 2

M

M∑

m=1

(
Em − ∑N

k=1 Cm,kαk

)

σ 2
m

Cm,i (8)

The subscript i is used to indicate the first N compo-
nents of gradients ∇�, ∇(−S) and ∇χ2, whereas the
last component is given by the subscript N + 1.

Now let x denote the vector of components
(α1, ..., αN, λ) and F = ∇�. In order to solve the set
7, each of the equations Fi = 0 is expanded in Taylor
series:

Fi(x + δx) = Fi(x) +
N+1∑

j=1

∂ Fi

∂x j
δx j + O

(
δx2) (9)

The matrix of partial derivatives appearing in Eq. 9 is
the Hessian matrix H of the function �:

Hi, j = ∂ Fi

∂x j
= ∂2�

∂x j∂xi
(10)

and its elements are given by:

∂2�

∂x j∂xi
= ∂2�

∂xi∂x j
= δi, j

x j
+ 2λ

M

M∑

m=1

Cm,iCm, j

σ 2
m

,

i, j ≤ N

∂2�

∂xN+1∂xi
= ∂2�

∂xi∂xN+1
= − 2

M

×
M∑

m=1

(
Em − ∑N

k=1 Cm,kxk

)

σ 2
m

Cm,i,

i ≤ N, j = N + 1

∂2�

∂xN+1∂xN+1
= 0 i, j = N + 1 (11)

In matrix notation the Eq. 9 is

F(x + δx) = F(x) + H · δx + O
(
δx2) (12)

By neglecting terms of order δx2 and by setting F(x +
δx) = 0, we obtain a set of linear equations for the
corrections δx (the Newton step), namely

H · δx = −F (13)

The solution to the set of equations 7 is obtained by
solving iteratively the linear set 13 that minimizes the
norm f = 1/2F · F because the correction δx move each
function Fi closer to zero simultaneously at each iter-
ation. The first iteration is performed by considering
the distribution {αk} that equals the calculated total
intensity to the experimental one, namely a flat distri-
bution with a constant value of

∑
m Em/

∑
m,k Cm,k for

all lifetimes.
The matrix equation 13 is solved by the package

linsolve of Matlab that implements a LU decomposition
algorithm that writes H as a product of two matrices
[27]:

H = L · U (14)

where L and U are respectively a lower and upper
triangular matrix. Their elements are obtained by the
Crout’s algorithm whose stability is increased by a par-
tial pivoting technique [27]. The decomposition is used
first for solving for the vector y such that

L · y = −F (15)

and then for solving

U · δx = y (16)

The advantage of breaking up the linear set 13 into
two successive ones is that the solution of a triangular
set of equations is quite trivial and is given by back-
substitution [29]. Once the new approximated solution
x + δx is obtained, one seeks negative values among its
first N components because the natural logarithm in
Eq. 8 requires only positive values. If this is the case,
the positiveness is enforced by using only a fraction of
the corrections δx.
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Generally, the Newton step δx is a descent direction
for the norm f :

∇ f · δx = (F · H) · (−H−1 · F) = −F · F < 0 (17)

Therefore, we always first try the full correction δx
because once we are close enough to the solution a
quadratic convergence is given and the proposed step
reduces f . Conversely, if the linear approximation 12 is
not satisfied, δx need not decreases the norm f and a
backtrack along the Newton direction is adopted until
an acceptable step is obtained. Particularly, one moves
to a new point

xnew = x + εδx, 0 < ε ≤ 1 (18)

and the parameter ε is chosen to minimize f in the
direction δx . This goal is achieved by using the routine
fminbnd of Matlab that implements the Golden Section
Search algorithm [30]. The improved approximation
xnew is used as a new starting point for the set of
equations 13 and the procedure is iterated until the
minimum of the functional � is achieved. The set of
values {αk} that minimizes � with χ2 ∼ 1 is the lifetime
distribution that accounts for the experimental data.

Analysis of the Accuracy of the MEM Algorithm

In the following the accuracy of the MEM algo-
rithm proposed in the previous section is investigated
through comparisons with numerical simulations of
fluorescence decay data. Synthetic data {Em} are gener-
ated with time scale and time resolution that are typical
in experimental set-up for time-correlated single pho-
ton counting technique (TCSPC) [31]. The simulated
curves consist of 4,096 data points over a time scale
of 25 ns and are generated by the convolution product
of a Gaussian profile with full-width at half maximum
(FWHM) of 120 ps, the impulse response function R(t),
and a decay model function according to the Eq. 3. The
Poisson noise statistics that affects the typical TCSPC
measurements [32] is simulated by taking as a value for
the intensity at each time a Poisson-distributed random
number with a mean equal to the calculated model
value Em. The routine poissrnd of Matalb is used to
this purpose and its algorithm is extensively described
in [33]. According to this procedure for generating
simulated data, the number of counts in each point is

its variance σ 2 and the peak counts can be considered
as a measure of the noise content of the decay curve.

Multi-Exponential Fluorescence Decays

Multi exponential intensity decays are usually adopted
for the analysis of the fluorescence emission of proteins
in aqueous solutions and lie on the border of complex-
ity that can be handled by parametric methods. In Fig. 1
we report a fluorescence decay curve (black points)
with 104 counts in the maximum generated by three
exponential functions with lifetimes τ1 = 100 ps, τ2 =
1,000 ps and τ3 = 4,000 ps and amplitude α j = 0.33,
j = 1, ..., 3. The solid red line is the curve resulting
from the fitting with the MEM algorithm by consid-
ering N = 400 points equally spaced in log τ between
τmin = 20 ps and τmax = 104 ps. The MEM convergence
is achieved for a chi-square value equals to χ2 = 1.01
and the accuracy of the algorithm is confirmed by the
random distribution of the residuals around zero as it
is shown in the lower panel of Fig. 1. The normalised
lifetime distribution that accounts for the agreement
between the MEM curve and the synthetic decay data is
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Fig. 1 The fluorescence decay intensity (black points) simulated
by three exponential functions with lifetimes τ1 = 100 ps, τ2 =
1,000 ps and τ3 = 4,000 ps and the same value for the relative
amplitude α j = 0.33. The red solid line is the curve fitted with
the MEM for N = 400 exponential decays. The residuals are
reported in the lower panel
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Fig. 2 The normalised lifetime distribution α(t)/
∑

α(t)� ob-
tained by the MEM analysis of a simulated noisy multi-
exponential decay with 104 counts in the peak channel. The
simulated data consists of 4,096 data points on a time scale of 25
ns and are characterised by 3 lifetimes: τ1 = 100 ps, τ2 = 1,000 ps
and τ3 = 4,000 ps. The MEM results are obtained for N = 400
points equally spaced in log τ between 20 ps and 104 ps and are
reported in Table 1

reported in Fig. 2. The distribution consists of multiple
peaks whose mean position 〈τ j〉 and mean amplitude
〈α j〉 are calculated as follows

〈τ j〉 =
∑N j

k=1 αkτk�k
∑N j

k=1 αk�k

〈α j〉 =
∑N j

k=1 αk�k
∑N

k=1 αk�k

(19)

where N j is the number of lifetimes represented in each
peak and �k is the spacing in log τ . The calculated mean
values 〈τ j〉 and 〈α j〉 are reported in Table 1 and are
the retrieved lifetimes and the pre-exponential factors

of the analysed decay curve. Similarly, the standard
deviation �τ of the data points of the peak region is
considered as the uncertainty in the lifetime estimate,
whereas the error of the amplitude factor is given by the
standard deviation of the values calculated for a set of
20 simulated decay curves. The parameters generated
by a non linear least-square regression analysis with a
three exponential model function are also shown in the
Table 1 for comparison. It results a very good agree-
ment among the estimates of the amplitudes α j given
by both methods. The values retrieved by the non lin-
ear fitting are indeed within three standard deviations
and have relative errors lower than 3 %, whereas the
relative amplitudes calculated from the MEM lifetime
distribution agree with the theoretical values within
2 %. As far as it concerns the three lifetimes, the values
of τ1, τ2 and τ3 are recovered by the MEM within one
standard deviation, whereas the non linear fitting pro-
cedure achieves this accuracy only for τ1, as τ2 and τ3 lie
within two and four standard deviations, respectively.
The long lifetime τ3 even outside the “three-sigma”
interval witnesses the difficulty in fitting decay curves
with more than three exponential functions.

The MEM accuracy in reconstructing a lifetime spec-
trum α(τ) can be analysed by considering the ratio
r = �τ/〈τ 〉. In Fig. 3 the values of r calculated for a
single exponential decay with lifetime τ = 3,000 ps are
reported as a function of peak counts. The results have
been obtained for a MEM analysis that has considered
both M = 4,096 (black solid curves) and M = 1,024
(red solid curves) data points. A lifetime spectrum
equally spaced in log τ between 20 ps and 104 ps has
been considered with a discretization that ranges from
N = 100 to N = 1,000 in order to investigate the sensi-
tivity of the method to the number of data points and
the lifetimes in log τ space, respectively. From inspec-
tion of the curves it results the ratio r does not depend
on the noise level when the number of counts of the

Table 1 The decay parameters recovered by the MEM analysis of a three exponential decay with 104 counts in the peak channel

Simulated parameters α1 α2 α3 τ1 (ps) τ2 (ps) τ3 (ps)
0.33 0.33 0.33 100 1,000 4,000

MEM results 〈α1〉 〈α2〉 〈α3〉 〈τ1〉 〈τ2〉 〈τ3〉 χ2

0.33 ± 0.01 0.337 ± 0.005 0.333 ± 0.003 99 ± 7 970 ± 40 3,970 ± 40 1.01

Least-square fit α1 α2 α3 τ1 (ps) τ2 (ps) τ3 (ps) χ2

0.33 ± 0.01 0.332 ± 0.006 0.340 ± 0.004 99 ± 5 970 ± 15 3,960 ± 10 1.01

The uncertainties of the lifetime estimates 〈τ j〉 are given by the standard deviations �τ of the data points of the peak regions, whereas
the errors of the amplitude factors 〈α j〉 are the standard deviations of the values calculated for a set of 20 synthetic curves. Results of
non linear least-square regression analysis are also reported for comparison together with the theoretical values of the simulated curve.
In this case the uncertainties of the parameters are given by the fitting procedure
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Fig. 3 The ratio r = �τ/〈τ 〉
calculated for the MEM
lifetime spectrum of a single
exponential decay with
lifetime τ = 3,000 ps as a
function of peak counts. The
values of r have been
calculated for different values
of the number of lifetimes
N = 100, 200, 400, 1,000 that
ranges from 20 ps to 104 ps.
The black solid curves are
obtained by considering
M = 4,096 data points in the
MEM analysis, whereas the
red solid curves are given for
M = 1,024 data points. The
black dotted curve is the
uncertainty of the mean
lifetime estimated by the non
linear fit
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peak is larger than 3 − 5 × 104. The ratio r is always
smaller than 3 % and decreases as the number N of
discretization of the lifetimes space increases. When N
is larger than 400 r is smaller than 1 % reaching the
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Fig. 4 The normalized lifetimes spectra α(τ) reconstructed by
the MEM analysis performed on fluorescence decay intensities
with ∼5 × 104 counts in the peak channel by using N = 400
points equally spaced in log τ between 40 ps and 105 ps. The
Gaussian distributions are centred at τ = 5,000 ps and have
different standard deviations, �τ = 500 ps (black open circles),
�τ = 1,000 ps (red open squares), �τ = 1,500 ps (blue open
diamonds). The solid lines are the Gaussian fitted profiles

uncertainty of the non linear fit (black dotted curve)
when N is larger than 1,000. Furthermore, the results
obtained for M = 4,096 and M = 1,024 data points are
comparable showing that the MEM accuracy is not
affected by the number of data points for M ≥ 1,024.

Gaussian Lifetime Distributions

To test the performances of our algorithm with broad
lifetime distributions, we considered Gaussian distrib-
utions centred at τ = 5,000 ps with different standards
deviation �τ = 500 ps, 1,000 ps, 1,500 ps (i.e. 10, 20 %
and the 30 % of τ ), that are assumed as a measure of
their width. A set of 20 fluorescence decays curves with
M = 4,096 data points and ∼5 × 104 number of counts
at the maximum has been generated for each of these
distributions. Each curve of every set has been analysed
with the MEM by using N = 400 points equally spaced
in log τ between 40 ps and 105 ps and each normalised
MEM spectrum α(τ) has been fitted with a Gaussian
profile to estimate the center and the width of the
distribution. In Fig. 4 the typical MEM spectra obtained
for each set (differently marked points) are shown
together with the Gaussian fitted curves (solid lines)
whereas the mono-modal section of the Table 2 reports
the mean values and the uncertainties of the center
and the width �τ of the Gaussian distributions calcu-
lated for each set of curves. The uncertainties are the
standard deviations of the estimates of the parameters
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Table 2 The center and the width �τ of the Gaussian lifetime distributions recovered by the MEM and estimated through a fitting
procedure

Gaussian Gaussian
1-modal distribution 2-modal distribution
Nominal MEM Nominal MEM
values results values results

Amplitude 1 1 0.92 ± 0.02 1
Center (ps) 5,000 4,990 ± 15 1,000 5,000 985 ± 34 5,016 ± 23
Width �τ (ps) 500 498 ± 15 300 1,500 319 ± 31 1,515 ± 95
Amplitude 0.5 1 0.45 ± 0.03 1
Center (ps) 5,000 5,008 ± 19 1,000 5,000 989 ± 42 5,012 ± 24
Width �τ (ps) 1,000 1,029 ± 20 300 1,500 329 ± 38 1,528 ± 54
Amplitude 0.25 1 0.23 ± 0.01 1
Center (ps) 5,000 5,009 ± 10 1,000 5,000 990 ± 30 5,038 ± 24
Width �τ (ps) 1,500 1,524 ± 15 300 1,500 315 ± 24 1,546 ± 31
Amplitude 0.1 1 0.092 ± 0.008 1
Center (ps) 1,000 5,000 1,036 ± 87 5,006 ± 17
Width �τ (ps) 300 1,500 336 ± 49 1,509 ± 31

A set of 20 fluorescence decay curves with 5 × 104 counts in the peak channel has been generated for each distribution. The reported
values are the means and the standard deviations of the estimates of the parameters calculated for each set. The theoretical values are
also reported for comparison. The results have been obtained by using N = 400 points equally spaced in log τ between 40 ps and 105 ps

calculated for each set. Figure 4 shows that the MEM
algorithm reproduces the Gaussian profile of the dis-
tributions with excellent resolution of the leading and
the falling edges. The fitting results are reported in the
Table 2, where a good agreement is observed between

the values estimated for the parameters of the Gaussian
lifetime distributions and the theoretical ones.

The resolution limit of the algorithm in resolv-
ing the intensities of the lifetimes spectrum has been
investigated by adding a Gaussian distribution with

Fig. 5 The normalized
lifetimes spectra α(τ)

reconstructed by the MEM
analysis (black points) for a
bi-modal Gaussian
distribution with the main
peak centred at τ = 5,000 ps
and the secondary to
τ = 1,000 ps. Four values for
the amplitude of the
additional peak have been
considered and they
represent 100 % a, 50 % b,
25 % c and the 10 % d of the
main peak. Both Gaussians
have size equals to the 30 %
of their peak location. The
results refer to fluorescence
decay intensities with
∼5 × 104 counts in the peak
channel and have been
obtained by using N = 400
points equally spaced in log τ

between 40 ps and 105 ps.
The solid red line are the two
Gaussian fitted profiles used
to estimate the characteristic
parameters of the bi-modal
distribution (see Table 2)

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1 (a)

lifetime (ps)

re
la

ti
ve

 a
m

pl
it

ud
e

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1 (b)

lifetime (ps)

re
la

ti
ve

 a
m

pl
it

ud
e

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1 (c)

lifetime (ps)

re
la

ti
ve

 a
m

pl
it

ud
e

10
2

10
3

10
4

10
5

0

0.2

0.4

0.6

0.8

1 (d)

lifetime (ps)

re
la

ti
ve

 a
m

pl
it

ud
e



210 J Fluoresc (2013) 23:203–211

different peak intensities on the tail of the distribution
peaked at τ = 5,000 ps. To this purpose, we have con-
sidered the worst case of Fig. 4 observed for a width
�τ = 1,500 ps and added an additional distribution
centred at τ = 1,000 ps with a width �τ = 300 ps. Four
values for the amplitude of this additional peak have
been considered: 100, 50, 25 and the 10 % of the main
peak at τ = 5,000 ps. As before, a set of 20 fluorescence
decay curves has been generated in each case for work-
ing out the errors in recovering the characteristic para-
meters of these bi-modal lifetime distributions through
a bi-Gaussian fitting procedure.

In each panel of the Fig. 5 the typical MEM spec-
trum (black points) and the best fit (red curve) by two
Gaussian curves have been shown. The average for
each set of decay curves of the peak position (center),
the height (amplitude) and the width (�τ ) are reported
in Table 2. As it can be seen, the position and the
width of the main peak are estimated with an accuracy
that is not affected by the presence of the secondary
peak. Similar results are observed for the retrieved
parameters of the secondary peak showing that our
algorithm resolves two distributions even when their
amplitude are in the ratio 1:10.

Conclusions

We have described a new algorithm for implement-
ing a MEM analysis of the time-resolved fluorescence
decays. The proposed procedure is based on seeking
the desired lifetime distribution by solving the set of
non linear equations ∇� = 0 through iterative linear
approximations, LU decomposition of the Hessian ma-
trix H and the Golden Section Search for backtracking.
This algorithm has been tested on complex analytically
simulated data that arise from multi-exponential de-
cays and from broad lifetime distributions. A typical
inversion with M = 4,096 data points and N = 400 dis-
cretization of the lifetime spectrum takes about 60 s
in total using an Intel(R) Core(TM)i7-2600 CPU@3.40
GHz processor with 8 GB memory. The computation
time is about 150 s when the number of lifetimes con-
sidered is N = 1,000.

The analysis of the multi-exponential decays with
our computational approach has clearly shown that the
sensitivity of the MEM increases as the number N of
discretization in log τ space increases. An accuracy in
retrieving the simulated parameters comparable to that
of non linear regression can be achieved by considering
N = 1,000 lifetimes.

The characteristic parameters of the broad lifetime
distributions have been retrieved with high accuracy.

Particularly, our MEM procedure has retrieved the
widths �τ that represent 10 % of the lifetime with a
discrepancy lower than 3 % by using a typical value
of 5 × 104 counts in the maximum peak. This result
clearly indicates that the procedure proposed generates
MEM lifetime distributions that can be used to quantify
the real heterogeneity of lifetimes in a sample with no
need for a time consuming high statistic. Moreover,
the analysis of bi-modal distributions has demonstrated
that our algorithm resolves a secondary peak even
when its relative amplitude is 10 % of the amplitude
of the neighbourhood peak.

It is also important to highlight that the MEM al-
gorithm proposed in this paper extends the analysis to
datasets of up to 4,096 data points, thereby increasing
the limit currently set at about 1,000. This increases the
information that can be achieved from the data thus
improving the accuracy in recovering the fast decay
times; in fact, short lifetimes affect the leading edge
that only contains few points. On the other hand, a
larger density (N ≥ 1,000) is beneficial also for larger
lifetimes since their spectrum can be determined with
higher resolution.

Open Access This article is distributed under the terms of
the Creative Commons Attribution License which permits any
use, distribution, and reproduction in any medium, provided the
original author(s) and the source are credited.
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