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Abstract

Machine learning (ML) is being ubiquitously incorporated into everyday products such as Internet search, email
spam filters, product recommendations, image classification, and speech recognition. New approaches for
highly integrated manufacturing and automation such as the Industry 4.0 and the Internet of things are also
converging with ML methodologies. Many approaches incorporate complex artificial neural network archi-
tectures and are collectively referred to as deep learning (DL) applications. These methods have been shown
capable of representing and learning predictable relationships in many diverse forms of data and hold promise
for transforming the future of omics research and applications in precision medicine. Omics and electronic
health record data pose considerable challenges for DL. This is due to many factors such as low signal to noise,
analytical variance, and complex data integration requirements. However, DL models have already been shown
capable of both improving the ease of data encoding and predictive model performance over alternative
approaches. It may not be surprising that concepts encountered in DL share similarities with those observed in
biological message relay systems such as gene, protein, and metabolite networks. This expert review examines
the challenges and opportunities for DL at a systems and biological scale for a precision medicine readership.
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Introduction

Improvements in technology have fueled the prolifera-
tion of omics applications. Omics is a wide domain involving

specialized and high-throughput biotechnological methods, in-
struments, and algorithms. These techniques are often used to
measure and study complex biological systems and their in-
teractions. Omics includes a multitude of areas of focus (Pirih
and Kunej, 2017) such as genomics, transcriptomics, pro-
teomics, interactomics, metabolomics, phenomics, and phar-
macogenomics to name, but a few. Each one of these areas
might also have many subdomains, each requiring further
specialization in analytical and computational approaches.

Continued growth of omics research has required im-
provements in instrumentation (e.g., longer reads in gene
sequencing and increased resolution in mass spectrometry),
bioinformatics algorithms, data science methods, and access
to computational resources. Increasingly, the scale of omics

data generation has been challenging researchers’ abilities
to integrate and model often noisy, complex, and high-
dimensional data. Deep learning (DL) is a subdomain of
machine learning (ML), which has emerged as a powerful
approach, which can both encode and model many forms of
complex data (e.g., numeric, text, audio, and image) both in
supervised (e.g., biomarker identification) and unsupervised
(e.g., anomaly detection) settings. In particular, precision
medicine presents a unique opportunity for omics data to be
integrated with many other types, including electronic health
records (EHRs), medical imaging, Internet of things (IoT)
sensors, and pharmacological entity structures, which if re-
alized, is poised to greatly improve healthcare quality.

This review focuses on opportunities and challenges for
DL applied to omics data analysis and integration with spe-
cific examples in precision medicine settings. To simplify the
analogy between biological and neural network-based mes-
sage passing systems, this review often limits discussion of
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omics to information flow between genes, proteins, and
metabolites. However, DL modeling has already been suc-
cessfully applied to a wide variety of omics tasks (Ching
et al., 2018). The combination of omics and DL are likely to
transform many domains beyond precision medicine; how-
ever, further innovation is required to fully enable DL to deal
with the unique properties of omics data.

Omics Data Possess Considerable
Challenges for DL

DL applications have had greatest successes in areas of bi-
ology where data can be represented as images (Poostchi et al.,
2018; Poplin et al., 2018) and text (Gómez-Bombarelli et al.,
2018), on data with complex nonlinear relationships (Kearnes
et al., 2016), with data sets that appropriately sample the ex-
perimental complexity space and those large enough to support
cross-validation, train/validate/test strategies, and hyperpara-
meter tuning. Omics data do not readily conform to the de-
terministic assumptions underlying many mainstream DL
implementations and require domain-specific approaches for
dealing with biologically unrelated modes of variance. For
example, let us consider a metabolomic genome-wide associ-
ation study (mGWAS) focused on relationships between me-
tabolite concentrations and gene polymorphisms to identify
differences between sick and healthy individuals.

It may be useful to consider an analogy between common
challenges in mGWAS and application of DL for image
classification. In this example, missing values might be ab-
sent pixels; batch effects, a systematic distortion in one or all
of the color channels; and low signal to noise, an increase in
transparency, identification of gene and metabolite bio-
markers of disease, and a classification of images of related
objects, which vary in similarity based on the treatment effect
size. Individual measurements, such as single-nucleotide
polymorphisms (SNPs) or metabolites, may represent portions
of each image or specific objects consistently reproduced
among many images. Reconstructing the biochemical domain
of origin for plasma or urine metabolites might be akin to
assembling an image that has been ripped into pieces and
mixed together.

Encouragingly, the flexibility of DL architectures enables
the capability to generate meaningful inferences, given en-
ough training data even from images treated in the scenarios
described above. The question remains, how can this flexi-
bility in model architectures be applied to omics analyses and
their integration?

Many omics analyses are impeded by low signal to noise,
high analytical variance, and limitations in experimental
design. Even highly controlled quantitative omics applica-
tions such as signaling lipidomics (Grapov et al., 2012) can
struggle to decouple genetic from environmental indicators
of pathophysiological states. Unlike the massively over-
whelming scales of free data available to mainstream DL
implementations, omics researchers pay a high cost for each
sample. Data set sample sizes are often limited by experi-
mental design, implementation (laboratory experiments and
human trials), throughput in data acquisition (gene expres-
sion and chemical analysis), data processing (quality controls
and normalizations), and biological interpretation methods.

These and other considerations such as rare cases often
lead to biological experiments with relatively small sample

sizes, high dimensionality, and different degrees of noise
and error. Mitigation of unwanted variation requires con-
sideration during experimental design such as addition of
replicated measurements ( Jacob et al., 2016) for precision,
reference samples for accuracy, and quality controls for batch
and sample normalizations. Without these measures, other
downstream analytical approaches may lack reproducibility
(Lin et al., 2014). Dealing with sample handling and data
acquisition errors may require many forms of normalization.

Common approaches include combinations of sample and
variable-wise methods, quality control-based signal correc-
tion such as splines and loess (Uusitalo et al., 2016) and
domain-specific approaches such as reference-based signal
drift correction (De Livera et al., 2015; Sysi-Aho et al., 2007)
for drifts in chromatography or normalization to invariant
housekeeping (De Kok et al., 2005), and negative control
genes (Gagnon-Bartsch and Speed, 2012) in genomics. Bio-
logically linked sources of variation such as differences in
concentrations of biofluids, genetic background, or demo-
graphic diversity (De Livera et al., 2012) remain other modes
of variance requiring consideration.

Sample size limitations and low signal to noise in omics
have led to selective application of ML methods, which can
give useful inference even with relatively small data and are
easy to visualize and interpret. Dimensional reduction such as
principal component analysis and variations of partial least
squares (O-PLS/-DA) are widely used in omics to explore
and explain variation in many measurements through fewer
uncorrelated principal components or latent variables. These
techniques support complexity reduction and minimization
of information loss, and enable visual exploration of linear
relationships between sample scores, variable loadings, and
similarities within (Yamamoto et al., 2009).

More recently, nonlinear methods such as t-distributed
stochastic neighbor embedding for dimensional reduction (Li
et al., 2017b) and random forest predictive models (Breiman,
2001), robust to overfitting, have emerged as valuable ap-
proaches, which are useful even for relatively small data sets.

DL Promises Unique Opportunities for Multiomics
Data Integration

Multiomics data integration is often required to robustly
model complex biochemical systems. For example, elevation
in a gene’s messenger RNA expression might not lead to
increased protein expression or elevated protein expression
may not translate into increased activity. Furthermore, a
single measurement of any one omics domain might not re-
veal dynamic or time-dependent mechanisms (metabolic flux
and circadian fluctuations) (Olafsdottir et al., 2016). These
kinds of challenges require thoughtful combinations of omics
measurements to sufficiently characterize biochemical sig-
natures reflective of the phenotype at the very moment the
sample is taken.

Omics integration is a powerful approach (Fabres et al.,
2017) that can link even small data sets across orthogonal
biochemical domains, and thereby magnify biologically rel-
evant signals (Fig. 1). This is commonly done using empirical
relationships (correlation), functional contexts like pathways
(Wanichthanarak et al., 2015), and with data derived from a
single experimental design or through meta-analyses combing
results from multiple studies (Lin et al., 2014; Song et al.,
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2012). However, only DL offers both unsupervised and su-
pervised omics data integration possibilities. For example, re-
searchers studying growth dynamics in Escherichia coli used
an ML-based data integration strategy, including a recurrent
neural network (RNN), to develop a multiomics database and
predictive model (Kim et al., 2016).

This strategy was used to effectively integrate genomic,
proteomic, metabolomic, and phenotypic data, and enabled
prediction of genome-wide effects on protein and metabolite
concentrations, and E. coli growth dynamics. This impressive
application of ML was largely made possible by the authors’
care in designing their data quality control pipeline and effort
to maximize sampling diversity of the biological space.
However, large data size requirements often hamper DL
implementations in biological settings. The amount of data
required depends on many factors such as the ability to
benefit from pretrained models through transfer learning
(Ching et al., 2018) (Fig. 2), ability to incorporate domain
context (leverage biochemical databases, biomarker to dis-
ease ontologies, and scientific articles), the ratio of samples to
variables, and the experimental effect size.

Adoption of academic and industry-wide laboratory data
standardization, ontology and sharing methods are key to
enabling large-scale experimental data integration opportu-
nities. Initiatives such as www.allotrope.org, which seek to
implement analytical platform agnostic formats for experi-
mental data sharing and results encoding (equipment, pro-
cesses, and materials) through controlled vocabulary and
extensible ontologies are needed to increase routine data in-
tegration between different laboratories.

Similarly, EHR standards such as Fast Healthcare Inter-
operability Resources (FHIR), which implement application
programming interface ideals such as HTTP-based RESTful
protocols, will be needed to effectively generate EHR data
sets, which can be integrated with other omics data. Transfer
learning or domain adaptation may offer another unique
opportunity to utilize extracted features from DL models
trained on large data sets or other domains and apply these in
custom modeling tasks on far smaller data (Fig. 2).

For example, large biological databases such as the UK
Biobank (Sudlow et al., 2015), which contains publicly avail-

able data for 500,000 participant’s genomic and phenotypic
data, including multimodal imaging, genome-wide genotyping,
and clinical outcomes, might one day seed other DL models
making this approach accessible to far smaller data. Transfer
learning has already been successfully used in image clas-
sification within a variety of unique omics-related tasks such
as cell sorting for malaria detection (Poostchi et al., 2018)
and SNP identification in genomics (Poplin et al., 2018).

Common DL Architectures Useful
for Omics Data

A prominent difference between DL and traditional ML
such as artificial neural networks (ANNs) includes DL
models’ capacity to learn and fit raw data through represen-
tation at multiple levels of abstraction or hidden layers. This
essentially produces more refinement of the representation of
observed patterns in upper layers, in contrast to the ANNs,
which only contain three layers: input, hidden, and output
(Ching et al., 2018).

Novel DL architectures are continuously developed (An-
germueller et al., 2016; Ching et al., 2018; Lecun et al., 2015;
Min et al., 2017a; Miotto et al., 2017; Tran et al., 2018) and
include deep neural networks, convolutional neural networks
(CNNs), RNNs, and autoencoders, to name a few (see http://
www.asimovinstitute.org/neural-network-zoo for an excel-
lent graphical overview of common DL architectures). One
of the most promising features of DL approaches is this
class of models’ consistent interface to data encoding and
integration. However, these methods are often criticized as
‘‘black-box’’ and do not in themselves improve ‘‘bad’’ data
quality. Simpler approaches have often been shown to be on
par or superior to DL for many tasks (Cheng et al., 2018).
Table 1 summarizes common DL architectures and their
omics applications.

FIG. 1. Multiomics data integration utilizes empirical,
functional, and other techniques to combine information
from multiple omics domains. This systems approach en-
ables robust characterization of biochemical signatures re-
flective of organismal phenotypes.

FIG. 2. DL architectures may provide unique opportuni-
ties to encode locally optimal predictors in a variety of or-
ganisms (cellular, mouse, primate, and human) and then
integrate their representations of omics layers. Through
transfer learning, researchers may leverage larger expert-
derived models to improve DL performance for their smaller
data sets.
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Improvements in Computational Frameworks
and Model Interpretation Methods

Continued advancements in ease of use of DL model im-
plementation, calculation, and interpretation are helping de-
mocratize biological researchers’ access to these powerful
tools. Readily available and highly scalable cloud computing
resources (Amazon web services, Google compute engine,
and Microsoft Azure) coupled with big data wrangling soft-
ware (SPARK and pachyderm) and specialized model
calculation-supporting hardware (graphical and tensor pro-
cessing units) have made it easier for omics researchers to
train large-scale DL models.

Challenges for reproduction of DL architectures from pub-
lished research are being addressed by tools such as DLPa-
per2Code (Sethi et al., 2018), which aim to automate extraction
of computational graphs from articles and convert this into
execution ready source code in popular DL frame frameworks
such as Keras. Despite this, further improvements in DL model
interpretation are required for broader adoption. Efforts to de-
velop local interpretable model-agnostic explanations (Ribeiro
et al., 2016) for model predictions have improved model in-
terpretation, but further advancements are needed to enable
incorporation of biological domain knowledge.

Predictive modeling in omics research settings is often
aimed at multivariate feature ranking or selection, which is
difficult to determine when using complex DL architectures.
DL models pass input signal through a series of computa-
tional layers, creating a directional dependence of the signal
encoding between previous and downstream layers, which
makes it difficult to interpret the original inputs’ contribu-
tions to the overall model fit and echoes the act of identifying
biomarkers within a linked gene, protein, and metabolite
interaction network (Fig. 3).

For example, metabolic feedback mechanisms and adapta-
tion to cellular stimuli through upregulation or downregulation
are strikingly similar to DL training techniques such as back-
propagation and dropout. Mapping DL model variable weights
into a context understandable by domain experts remains dif-
ficult. More visual interpretation approaches such as network
mapping (Grapov et al., 2015), wherein statistical, functional,
and ML-based outputs are mapped onto network manifolds
(similarity, biochemical and empirical), need to be adapted for
the layered DL feature space. Interpretation of large networks of
interdependent entities is often limited by resolution in network
layout (hairball networks). Classically, this is dealt with meth-
ods for calculation of conditionally independent (Zhao et al.,
2012) or causal networks, which poorly scale to larger data.

Table 1. Deep Learning Architectures and Approaches for Omics Analysis

Method Key features Input data and applications

CNN Hierarchical architecture commonly used for
image classification

Multidimensional arrays such as DNA-seq,
DNase-seq, protein-binding microarrays,
and ChIP-seq

Prediction of binding site, nucleosome
positioning, and DNA accessibility
(Alipanahi et al., 2015; Kelley et al., 2016;
Min et al., 2017b; Zhang et al., 2018)

Includes convolution and pooling layers
(Miotto et al., 2017)

Detection of locally and globally consistent
features in the data (Min et al., 2017a)

Strength: established architectures useful for
encoding complex local and global
interactions (e.g., relationships between DNA
motifs) (Angermueller et al., 2016)

RNN Sequential architecture useful for text and time
series data (Wenpeng et al., 2017)

Sequential data such as genomic sequences or
natural language

Cyclic connections share information from
previous and current state (Min et al., 2017a)

Prediction of protein structure, gene expression
regulation, protein homology, and DNA
methylation (Angermueller et al., 2017;
Li et al., 2017a; Seunghyun et al., 2016;
Søren and Ole, 2014)

Strength: identification of latent relationships in
sequential (Angermueller et al., 2016)

AE Unsupervised learning
Combination of encoder and decoder is used

to predict the input data and is useful for
detecting consistent patterns in the data
(Miotto et al., 2017)

Strength: nonsupervised identification of major
patterns in the data (Ching et al., 2018)

Genome-scale omics data such as gene
expression data

Identification of informative features
(Ding et al., 2018; Gupta et al., 2015)

DNN-MDA
(Date and Kikuchi,
2018)

Application of DNN for construction of
classification and regression models, and
estimation of variable importance by an
MDA

NMR-based metabolite profiling
Identification of biomarkers

Strength: estimation of variable importance

DeepNovo
(Tran et al., 2017)

Integrating CNN and LSTM RNN Tandem mass spectra of proteomics data
Strength: combining useful features

from CNN and RNN
Prediction of novel peptide sequence

AE, autoencoder; CNN, convolutional neural network; DNN, deep neural network; LSTM, long short-term memory; MDA, mean
decrease accuracy; NMR, nuclear magnetic resonance; RNN, recurrent neural network.
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Conversely, graph convolutional networks, DL methods
which operate on graph structures, leverage network com-
plexity and have been shown to project complex networks
into lower dimensional and more interpretable similarity-
based representations (Kearnes et al., 2016). For example,
semisupervised classification using a graph convolutional
network on molecular structures represented as networks or
text strings (Gómez-Bombarelli et al., 2018) has been used to
effectively model molecular structure to activity relation-
ships, and may one day enable automated methods for
pharmacological activity optimization.

DL Model-Based Data Integration is Poised to
Revolutionize Omics Applications
in Precision Medicine

Precision medicine is a burgeoning field where omics an-
alyses are enabling systems-biology based methods for pre-
ventive medicine, health promotion, and treatment
monitoring (Chen and Snyder, 2013). Approaches in cancer
diagnostics and treatment efficacy exemplify an area of re-
search requiring complex data integration (Fig. 4, EHR, im-
aging, clinical, and omics data). Common omics technology
applications in precision medicine include disease biomarker
panel assessment to quantify risk, diagnose, measure pro-
gression, and optimize treatment strategies.

For example, metabolomics has been used to identify se-
rum diacetylspermine (DAS), a novel prediagnostic marker
for non-small cell lung cancer (NSCLC) (Wikoff et al.,
2015). Furthermore, the combination of DAS and the pro-
surfactant protein B, an independently identified protein
marker for NSCLC (Taguchi et al., 2011), improved classi-
fication performance relative to either marker alone (Wikoff
et al., 2015). Genomic analyses of abnormalities in lung ad-
enocarcinomas (KRAS and EGFR mutations, EML4-ALK

fusions) have given rise to specialized treatments such as Er-
lotinib or Gefitinib for EGFR-mutant NSCLCs (Maemondo
et al., 2010; Rosell et al., 2012).

However, despite these successes, there remains consid-
erable heterogeneity in patient responses to these special-
ized treatments. Mechanisms leading to drug resistance and
patient-specific characteristics such as sex and smoking sta-
tus can have a profound impact on drug efficacy (Wang et al.,
2012; Westover et al., 2018).

These complexities highlight the need for continued de-
velopment of omics data integration methods to facilitate
optimal treatment strategies. Predictive modeling in medical
applications often involves extraction of curated predictor
variables from normalized EHR. This is a labor-intensive
process, which may discard useful information in each pa-
tient’s record. More recently, researchers have developed
near automated methods to harmonize raw EHR data to FHIR
formats (Rajkomar et al., 2018). This work showed that EHR
data sets from different hospitals (>100,000 patients) could
be integrated with low manual intervention and used to
generate DL-based predictions of patient mortality before
and after hospitalization events, which were significantly
better than the Early Warning Score.

Advantages of DL-based approaches also include the ca-
pacity to consider the entire medical record, including physi-
cians’ free-text notes. Other applications of DL, for example,
CNN, have been widely applied in medical image analysis
such as image segmentation (Lee et al., 2017) and RNN for
modeling complicated temporal (Lee et al., 2017) and time
series-based effects (Prasad and Prasad, 2014). Furthermore,
information-rich environment data derived from personal
sensors and IoT devices (smart watches, thermostats, fridges,
and phones) offer yet another opportunity for DL-based inte-
gration within precision medicine settings.

Taken together, DL approaches promise the computational
flexibility to effectively model and integrate almost any type

FIG. 3. DL model architectures and training techniques
share many similarities with biological message passing
systems. DL models contain a minimum of three layers: in-
put, hidden, and output. This could mimic representation of
relationships between gene transcription, protein expression,
and metabolite concentrations, but can also extend other
omics layers. Interesting parallels between computational and
biological optimizations such as backward propagation in DL
and signal inhibition in omics have also emerged.

FIG. 4. Personalized medicine is a quickly growing area
of research that requires complex data encoding and inte-
gration tasks, which are well suited for DL.
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of omics and other data given enough context and scale.
Currently, identification of causality in complex phenotypes
requires custom analyses and domain expert interpretation;
however, one might envision a future of medical data ac-
cessibility, quality, and scale, which could enable near au-
tomated DL-based detection of many clinically relevant
events. Needless to say, new technologies and methodologies
such as DL also demand technology assessment grounded in
responsible innovation, a topic reviewed in detail elsewhere
for the readers (Fisher, 2017).
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Abbreviations Used

AE ¼ autoencoder
ANN ¼ artificial neural network
CNN ¼ convolutional neural network
DAS ¼ diacetylspermine

DL ¼ deep learning
DNN ¼ deep neural network
EHR ¼ electronic health record

FHIR ¼ Fast Healthcare Interoperability
Resources

IoT ¼ Internet of things
LSTM ¼ long short-term memory
MDA ¼ mean decrease accuracy

mGWAS ¼ metabolomic genome-wide
association study

ML ¼ machine learning
NSCLC ¼ non-small cell lung cancer

RNN ¼ recurrent neural network
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