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In recent years, nonalcoholic fatty liver disease (NAFLD) has become the most common
liver disease in the world. As an important model animal, the characteristics of gut
microbiota alteration in mice with NAFLD have been studied but the changes in metabolite
abundance in NAFLD mice and how the gut microbiota affects these intestinal metabolites
remain unclear. In this experiment, a mouse model for NAFLD was established by a high-
fat diet. The use of 16S rDNA technology showed that while there were no significant
changes in the alpha diversity in the cecum of NAFLD mice, the beta diversity changed
significantly. The abundance of Blautia, Unidentified-Lachnospiraceae, Romboutsia,
Faecalibaculum, and Ileibacterium increased significantly in NAFLD mice, while
Allobaculum and Enterorhabdus decreased significantly. Amino acids, lipids, bile acids
and nucleotide metabolites were among the 167 significantly different metabolites
selected. The metabolic pathways of amino acids, SFAs, and bile acids were
significantly enhanced, while the metabolic pathways of PUFAs, vitamins, and
nucleotides were significantly inhibited. Through correlation and MIMOSA2 analysis, it is
suggested that gut microbiota does not affect the changes of lipids and bile acids but can
reduce thiamine, pyridoxine, and promote L-phenylalanine and tyramine production. The
findings of this study will help us to better understand the relationship between gut
microbiota and metabolites in NAFLD.

Keywords: nonalcoholic fatty liver disease (NAFLD), mice, 16SrDNA, metabonomics, MIMOSA2
INTRODUCTION

Recently, nonalcoholic fatty liver disease (NAFLD) has become one of the most common liver
diseases in the world. NAFLD is also one of the main causes of liver transplantation in the United
States (Gadiparthi et al., 2020) and has replaced Viral Hepatitis B as the most common chronic liver
disease in China (Xiao et al., 2019). The implication of the gut microbiota in the regulation of host
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metabolic balance has been demonstrated in the last decade.
Many studies conducted in both animal models and humans
revealed a significant role of the gut microbiota in the
pathogenesis of metabolic disorders, strongly influenced by
diet and lifestyle modifications. The gut microbiota recently
emerged as a pivotal transducer of environmental influences
(dietary components and drug treatments) to exert protective or
detrimental effects on several host tissues and systems, including
regulation of intermediary metabolism, liver function, and
cardiovascular disorders, either directly via translocation or
indirectly through microbial metabolism or their function in
metabolic disorders (Bäckhed et al., 2004).

The overall composition of the gut microbiota is determined
by a number of factors including host genetics, environment, and
hygiene (Repass et al., 2016). The composition of the gut
microbiome is influenced by environmental factors more so
than by host genetics, where diet represents the predominate
environmental factor influencing the makeup of the intestinal
microbiome community (Pilla et al., 2020).Diets can directly
interact with microorganisms to promote or inhibit their growth,
and the capability to extract energy from specific dietary
constituents bestows a direct competitive advantage to selected
members of the gut microbial community, rendering them more
capable of proliferating at the expense of less-adept members.
Diets not only affects the absolute and relative abundance of gut
bacteria but also their growth kinetics (Korem et al., 2015; Zmora
et al., 2019). Consumption of a high-fat diet (HFD) induces
dysbiosis of gut microbiota, the relative abundance of Firmicutes
and Proteobacteria increased, while the relative abundance of
Bacteroidetes and Verrucomicrobia decreased (Walker et al.,
2014b; Araujo et al., 2017; Wang et al., 2018). These changes
were seen in the intestinal bacteria of both obese (Zhang et al.,
2015; Chambers et al., 2019; Sergeev et al., 2020a) and NAFLD
patients (Del Chierico et al., 2016; Hrncir et al., 2021), leading to
metabolic dysfunction, insulin resistance, inflammation, obesity,
and T2D (Sikalidis and Maykish, 2020), a major factor causing
NAFLD. In contrast, consumption of a very-low-calorie
ketogenic diet (VLCKD) can increase the abundance of SCFA-
producing bacteria, such as Lactobacillus and Bifidobacterium
spp., resulting in amelioration of adipose tissue inflammation in
obesity and NAFLD (Cunha et al., 2020; Alsharairi, 2021).

Diet not only changes composition of intestinal bacteria but
also is an important factor in changing intestinal metabolites
such as amino acids, fatty acids, bile acids, and other metabolites
(Yang et al., 2021). All the species interconnected in the gut
produce an extremely diverse reservoir of metabolites from
exogenous dietary components and/or endogenous compounds
generated by microorganisms and the host (Agus et al.,
2021).The gut microbiota can interact with the host by
producing metabolites (Ye et al., 2019; Liang et al., 2021),
which are small molecules (<1500 Da) representing
intermediates or end-products of microbial metabolism. The
beneficial or detrimental effects of specific microbiota-derived
metabolites depend on the context and the host state, suggesting
the primordial nature of the symbiotic microbiota in ensuring
optimal health in humans. The liver and the intestine are tightly
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 2
linked through the portal circulation. Consequently, intestinal
metabolites primarily arriving at the liver may have pathogenic
implications (Chassaing and Gewirtz, 2014; Brandl et al., 2017).
It is currently believed that intestinal metabolites such as bile
acids, lipids, amino acids, vitamins, and trimethylamine N-oxide
are involved in regulating the occurrence and development of
NAFLD. However, changes in the intestinal metabolites in
NAFLD and which metabolite changes are caused by gut
microbiota remain unclear.

In our experiment, 16S rDNA and Metabonomics technology
were used to analyze the cecal microbiota and its metabolites in
mice to study their characteristics and relationships and explore
the regulation of gut microbiota and its metabolites on
NAFLD development.
MATERIALS AND METHODS

Animal Study
Animal Feeding and Sample Collection
Six-week-old specific pathogen-free male C57BL/6 mice
(weighting 17-19 g) were purchased from Beijing Weitong
Lihua Laboratory Animal Technology Co., LTD and housed at
22 ± 2°C and 50%-60% relative humidity in a specific pathogen-
free facility maintained on a 12-hour light/dark cycle in the
Laboratory Animal Center of Southwest Medical University.
After one week of acclimatization, 20 mice were randomly
divided into two groups for 12 weeks: CK group, (n=10,
Standard chow diet), NAFLD group (n=10, High fat diet,
HFD). The standard chow diet comprised 65.08 kcal%
carbohydrates, 23.07 kcal% proteins and 11.85 kcal% fats,
while the HFD diet contained 20 kcal% carbohydrates, 20 kcal
% proteins and 60 kcal% fats. All experimental mice had free
access to food and water. The physical activity, consumption of
food and water, and defecation of experimental mice were
observed daily.

At the end of the prescribed feeding period, all mice were
fasted overnight and anesthetized with an intraperitoneal
injection of 1% pentobarbital sodium (50 mg/kg body weight).
After anesthetization, blood samples were collected from the
cardiac artery. The liver samples were dissected and weighed
immediately. The liver index was calculated using the following
formula: liver wet weight/total body weight ×100%. After the
liver was fixed with 4% paraformaldehyde, the tissue was
sectioned and stained with hematoxylin-eosin (HE). The
contents of the cecum were placed in liquid nitrogen and
tested for the microbiome and metabolome. The experimental
protocol was approved by the Animal Ethics Committee of
Southwest Medical University (No. of Animal Ethics
Approval: SWMU2019243).

Biochemical Analysis of Serum
Blood samples were acquired in the morning and centrifuged at
3500 r/min for 10 min at 4°C. Recovered supernatants were
separated into 200 ml tubes and immediately frozen at -80°C.
Liver function indexes such as alanine aminotransferase (ALT),
May 2022 | Volume 12 | Article 870785
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aspartate aminotransferase (AST), triglyceride (TG), total
cholesterol (TC), high-density lipoprotein (HDL) and low-
density lipoprotein (LDL) were detected by a fully automatic
veterinary biochemical analyzer.

Microbiota Analyses
Cecal DNA was isolated using the Qiagen Gel Extraction Kit
(Qiagen, Hilden, Germany). The genomic DNA was amplified
using fusion primers targeting the 16S V3-V4 rRNA gene with
indexing barcodes. All samples were pooled for sequencing on
the Illumina HiSeq platform according to the manufacturer’s
specifications. Raw pyrosequencing reads were generated from
FLASH (V1.2.7, http://ccb.jhu.Edu/software/FLASH/). Quality
filtering, chimera removal and de novo operational taxonomic
units (OTUs) clustering were carried out using the Uparse
(V7.0.1001, http://drive5.com/uparse/), which identifies highly
accurate OTUs from amplicon sequencing data with an identity
threshold of 97%. Then the OTUs were used to screen effective
sequences using Mothur (http://www.mothur.org/). The
representative sequences of OTUs were used to analyze alpha-
diversity (Chao1, Ace, Shannon and Simpson diversity index)
based on their relative abundance. A heatmap was generated
according to the relative abundance of OTUs by R software
(V2.15.3, http://www.R-project.org). Principal Co-ordinates
analysis (PCoA) based on UniFrac distance was performed
with Qiime (V1.9.1, http://qiime.org/scripts/split_libraries_
fastq.html). The linear discriminant analysis (LDA) with effect
size measurements (LEfSe) was used to identify indicator
bacterial groups specialized within the two groups.

Non-Targeted Metabolomics
Untargeted metabolomics were used to analyze 100 mg of cecal
contents/sample. For LC-MS analysis, the samples were re-
dissolved in 100 mL acetonitrile/water (1:1, v/v) solvent.
Analyses were performed using a UHPLC (1290 Infinity LC,
Agilent Technologies) coupled to a quadrupole time-of-flight
(AB SciexTripleTOF 6600) in Shanghai Applied Protein
Technology Co., Ltd. The positive and negative ionization
modes of electrospray ionization (ESI) were used for mass
spectrometry. The samples were separated by UHPLC and
analyzed by Agilent 6550 mass spectrometer and the
chromatographic and mass spectrometry conditions used are
provided in the references (Luo et al., 2019).

For the data extracted using XCMS, ion peak data for which
>50% of the data were missing within a group were deleted. After
the data had been pre-processed by Pareto-scaling, pattern
recognition was performed using SIMCA-P software (version
14.1, Umetrics, Umea, Sweden), consisting of unsupervised
principal component analysis (PCA) and supervised
orthogonal partial least squares discriminant analysis (OPLS-
DA). The 7-fold cross-validation and response permutation
testing were used to evaluate the robustness of the model. The
variable importance in the projection (VIP) value of each
variable in the OPLS-DA model was calculated to indicate its
contribution to the classification. Metabolites with VIP value >1
were further applied to Students t-test at a univariate level to
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 3
measure the significance of each metabolite and p-value less than
0.05 were considered statistically significant.

The metabolites were blasted against the online Kyoto
Encyclopedia of Genes and Genomes (KEGG) database (http://
geneontology.org/) to retrieve their KEGG orthologs (KOs) and
were subsequently mapped to pathways in KEGG. KEGG
pathway enrichment analyses were applied based on the
Fisher’s exact test, considering the whole metabolites of each
pathway as background dataset. Only pathways with p-value
under a threshold of 0.05 were considered significant. The
studied metabolites relative expression data was used to
perform hierarchical clustering analysis. For this purpose,
Cluster3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/
software.htm) and the Java Treeview software (http://jtreeview.
sourceforge.net) were used.

Bioinformatic Analysis Using
Multi-Omics Integration of
Metabolome and Microbiome
Correlation Analysis Between Metabolome
and Microbiome
The Spearman statistical method was used to analyze the correlation
coefficients between the significant differences and metabolites
screened in the experimental samples, as well as combine the R
language (V2.15.3, http://www.R-project.org) and Cytoscape
software (V3.8.2, https://cytoscape.org/) to perform matrix heat
mapping, hierarchical clustering, and correlation network analysis.
This allowed for exploration of the relationships between
microbiota and metabolites from multiple angles.

Model-Based Integration of Metabolite Observations
and Species Abundances 2
Integration of microbiome and metabolomics data was performed
using Model-based Integration of Metabolite Observations and
Species Abundances 2 (MIMOSA2), freely available at http://
borensteinlab.com/software_MIMOSA2.html (Mchardy et al.,
2013). MIMOSA2 summarizes paired microbiome–metabolome
datasets to support mechanistic interpretation and hypothesis
generation. MIMOSA2 applies a method for predicting relative
metabolic turnover, using a metabolic network model to translate
the resulting enzymatic gene abundance estimates into community-
based metabolite potential (CMP) scores. Moreover, MIMOSA2
characterizes the relative capacity of community members to
produce or consume metabolites based on a priori metabolic
information of the activity of metabolic enzymes for each species
from the KEGG database. It also describes how well each metabolite
can be predicted by metabolic potential and estimates how much
each taxon can explain each metabolite. While correlation-based
statistical analyses of metabolomic measurements are not
mechanistic, this framework has the advantage of proposing
mechanisms for the contributions of species to the turnover of
particular metabolites. A more detailed description of this
framework can be found in previously published work by the
developers (Mchardy et al., 2013; Noecker et al., 2016). However,
the current version of MIMOSA2 has several limitations, including
the inability to capture host metabolism and it does not consider the
May 2022 | Volume 12 | Article 870785
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signaling processes, transcriptional regulation, or bounds on
metabolic fluxes. Nevertheless, it assigns effects for enzymes
catalyzing nonreversible reactions and presumably captures major
metabolic fluxes for well-characterized microbes. However, the
information is lost from reversible reactions, which may hinder
the prediction of metabolites in other pathways (Chorna
et al., 2020).

Statistical Analysis
Data are presented as mean ± SD. Statistical significance for body
weight, fat weight, liver weight, liver index, serum indexes (TC,
TG, HDL, LDL, AST, ALT), and relative abundance of bacteria
were determined with Students t-test or Wilcoxon Rank Sum
test. A p-value <0.05 was considered statistically significant.
Statistical analysis was performed with SPSS software (Version
22, SPSS Inc., Chicago, USA)
RESULTS

The Animal Model of NAFLD Was
Successfully Established
Weight Gain and Fat Increase in NAFLD Mice
After being fed a high-fat diet for 3 months, the NAFLD mice
were obviously enlarged (Figures 1A, B) with a markedly
increased body weight (39.69 ± 4.31g, Figure 1C) and had
significant differences as compared to normal mice (26.86 ±
1.08g, P<0.01) (Figure 1C). NAFLD mice had significantly
more visceral fat (perirenal fat and epididymal fat) than normal
mice (Figures 1D, E). The visceral fat weight of NAFLD mice
(3.43 ± 0.77g) was significantly higher than that of the normal
mice (0.61 ± 0.08, P<0.01) (Figure 1F).

Liver Steatosis in NALFD Mice
To the naked eye, the liver of normal mice appeared to be dark
red while the liver of NAFLDmice was khaki yellow (Figure 1G).
Weighing the liver and calculating the liver index (% of body
weight),liver index in NAFLD mice had no significant change
(Figure 1H). Pathological sectioning showed that normal mouse
liver cells were polygonal, arranged in hepatic cords, and
distributed radially around the central vein with large round
nuclei in the center of the cells, uniform cytoplasm, no lipid
droplets, no steatosis, or inflammatory cell infiltration. The
structure of the liver lobules of NAFLD mice was disordered,
with the liver cells obviously swollen and lipid droplets of
different sizes were present in the cytoplasm. The fusion of the
lipid droplets caused the cell nucleus to shift or even disappear
and some liver cells had ballooned in varying degrees
(Figure 1I). Through the NAS scoring system, the NAS score
was 3.4 (Figure 1J), indicating moderate NAFLD.

Serological testing found that the levels of liver injury
indicators of NAFLD mice, total cholesterol (TC) (Figure 2A),
triglycerides (TG) (Figure 2B), lipid indicators of low-density
lipoprotein (LDL) (Figure 2D), alanine aminotransferase (ALT)
(Figure 2E) and aspartate aminotransferase (AST) (Figure 2F),
were significantly higher than the CK group. High-density
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 4
lipoprotein (HDL) (Figure 2C) level was significantly lower
than the CK group and each serum index had significant
statistical significance (P<0.05).

The Structure of Gut Microbiota
in Mice With NAFLD Was Significantly
Changed
The Alpha Diversity of Gut Microbiota Was Not
Changed in NAFLD Mice
Differentmetrics have been devised tomeasure alpha diversity with
emphasis on the different aspects of the community structure: Ace,
Chao1, Shannon, and Simpson indexes (Figures 3A–D). Ace index
and Chao1 index are used to evaluate the richness of microflora,
while Shannon index and Simpson index are comprehensive
indexes reflecting the richness and uniformity of microflora. The
results showed that all four indexes analyzed had no significant
difference (P>0.05), indicating that HFD did not change the alpha
diversity of intestinal microbiota in mice.

The Beta Diversity of Gut Microbiota Was
Changed in NAFLD Mice
Beta diversity measuring the variations in community membership
across the different groups was performed to prove the
differentiation between groups using OTU abundance with
weighted Unifrac metrics, weighing species abundances with
phylogenetic relationships among taxa. In principal coordinate
analysis (PCoA) plots of cecal microbiota, there was significant
difference between normal mice and NAFLD mice (Figures 3E, F).

The Abundance of Major Bacteria Was
Changed in NAFLD Mice
We analyzed the 10 phyla, classes, families and genera with the
highest relative abundance. Intergroup comparison was done by
Students t-test, if data were normally distributed, or otherwise by
Wilcoxon rank-sum test. Itwas found that the relative abundanceof
Firmicutes (P=0.025), Unidentified_Bacteria (P=0.013) and
Deferribacteres (P=0.001) increased significantly, while
Bacteroidetes (P<0.001) and Tenericutes (P=0.01) decreased
significantly at the phylum level (Figure 4A). At the class level,
Clostridia (P<0.001), Unidentified_Bacteria (P=0.013),
Gammaproteobacteria (P=0.007), Unidentified_Actinobacteria
(P=0.001) and Unidentified_Deferribacteres (P=0.001) increased
significantly, while Bacteroidia (P<0.001) decreased significantly
(Figure 4B). At the family level, Lachnospiraceae (P=0.002),
Atopobiaceae (P<0.001), Helicobacteraceae (P=0.004),
Burkholderiaceae (P=0.005) and Muribaculaceae (P<0.001)
increased significantly, while Eggerthellaceae (P=0.002) and
Ruminococcaceae (P=0.038) decreased significantly (Figure 4C).
At the genus level, Blautia (P=0.003), Ileibacterium (P=0.049),
Faecalibaculum (P=0.034), Helicobacter (P=0.004) and
unidentified_Lachnospiraceae (P=0.003) increased significantly,
while Allobaculum (P=0.001) and Enterorhabdus (P=0.003)
decreased significantly (Figure 4D). Through LEfSle analysis, two
different phyla (Unidentifined_Bacteria and Bacteroides), four
classes (Bacteroides, Clostridium, Gamma-Proteobacteria and
Unidentified-Bacteria), three orders (Bacteroides, Clostridium
May 2022 | Volume 12 | Article 870785
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and Campylobacter), seven families (Lachnospiraceae,
Helicobacteraceae, Eggerthellaceae, Muribaculaceae, Atopobiaceae,
Peptostreptococcaceae and Ruminococcaceae), eight genera
(Hel i cobac ter , Blaut ia , Rombouts ia , I l e ibac ter ium ,
Faecalibaculum, Enterorhabdus, Allobaculum and Unidentified-
Lachnospiraceae) and three species (Helicobacter-bilis,
Lachnospiraceae-bacterium-M18-1 and Ileibacterium-valens) were
found (Figures 4E, F).

Intestinal Metabolite Profiles in NAFLD
Mice Were Changed
To explore the mechanism by which intestinal microbiota
influences the formation of NAFLD, we used an untargeted
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 5
metabolome to detect cecal contents in mice. Firstly, we
compared the total ion chromatograms (TIC) of 10 QC
samples in positive or negative ion modes, including the
retention time (RT), peak, intensity and degree of separation.
Overlap of the TIC of QC samples was good, indicating that the
method used was robust, with high repeatability and stability.
The sample TIC showed that the peak shape was intact and that
adjacent peaks were well separated from each other, indicating
that the chromatographic and mass spectrometric conditions
were suitable for sample identification (Figures S1A, B). Pearson
correlation analysis was conducted on QC samples. Correlation
coefficients of three QC samples in positive and negative ion
mode were all greater than 0.99, indicating good correlation
A B

D E F

G

I

H

J

C

FIGURE 1 | The body weight, fat mass, liver weight and Histopathology with CK and NAFLD mice, CK mice were fed Standard chow diet, NAFLD mice were fed
HFD. (A, B) Representative pictures of CK and NAFLD mice, showing enormous discrepancy in body size. (C) Body weight changes in ND or HFD fed mice over 12
weeks. From week 7, the body weight of NAFLD group was significantly higher than CK group. (D, E) Representative pictures of perirenal fat and epididymal pad fat
showing the difference of fat size between NAFLD mice and Control mice. (F) Tissue weight of perirenal fat and epididymal fat pads after 12 weeks of treatment.
(G) Gross appearance of the liver. The liver of NAFLD mice was khaki yellow and that of normal mice was dark red. (H) There were no significant differences in liver
index (% of body weight) between the groups. (I) Hematoxylin and eosin (H&E) staining of liver (400×), hepatocyte steatosis was obvious in NAFLD mice. (J) Through
the NAS scoring system, the NAS score is 3.4, indicating moderate NAFLD. “**” indicated p-value < 0.01 (students t-test).
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between QC samples (Figures S1C, D). QC samples fluctuated
within the range of positive and negative three standard
deviations in MCC, indicating that the test data were reliable
(Figures S1E, F).

The PCA score plot showed that the interpretation rates of
model (R2X) for normal mice and NAFLD mice under the
positive and negative ion mode conditions were R2X=0.554
and 0.569 (Figures S2A, B), respectively. The two groups of
samples were well separated and samples in the same group were
well aggregated together (Figures S2A, B). The OPLS-DA
supervised model was used to highlight the differences between
groups. In the positive ion mode of the OPLS-DA score plot,
R2X=0.438, R2Y=0.987(Figure S2C), Q2 = 0.962, whereas in the
negative ion mode, R2X=0.435, R2Y=0.992, Q2 = 0.948 (Figure
S2D). Both R2Y and Q2 values were close to 1, indicating that the
model was stable and reliable. The OPLS-DA models were
validated based on interpretation of variation in Y (R2Y) and
forecast ability based on the model (Q2) in cross-validation and
permutation tests by applying 200 iterations. The Q2 intercept
values were less than 0.05, indicating that there was no
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 6
overfitting and the OPLS-DA model had good predictability
(Figures S2E, F). We used Fold Change Analysis (FC) and
Students t-test to obtain the FC value and P value respectively
to make a volcano map. In this experiment, using FC>1.5 and
P<0.05 as the screening conditions to obtain the volcano map,
123 metabolites were screened in the positive ion mode and 78
metabolites were screened in the negative ion mode. All
metabolites in the positive and negative ion mode were seen to
be normally distributed. By combining the VIP values obtained
from the OPLS-DA model and using VIP>1 and P<0.05 as the
screening conditions for significantly different metabolites, 167
significantly different metabolites were obtained (Figures
S3A, B).

In order to further screen the marker metabolites, the 167
significantly different metabolites selected in this experiment
were analyzed by Hierarchical Clustering and KEGG metabolic
pathways through the MetaboAnalyst 4.0 online analysis
platform. The enrichment results of KEGG pathway (top 20)
are shown in Figure 5, indicating that metabolites are mainly
involved in the following metabolic pathways, including ABC
A B

D

E F

C

FIGURE 2 | Serum lipid and liver function in Control and NAFLD mice. (A-F) Total cholesterol (TC), triglycerides (TG), high density lipoprotein (HDL), low density
lipoprotein (LDL), aspartate aminotransferase-AST (E) and alanine aminotransferase (ALT) were significantly elevated in NAFLD mice. “*” indicated p-value < 0.05,
“**” indicated p-value < 0.01 (Students t-test).
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transporter, protein digestion and absorption, aminoacyl-tRNA
and arginine biosynthesis, glycine, serine and threonine
metabolism, alanine, aspartic acid and glutamate metabolism,
histidine metabolism, arginine and proline metabolism,
unsaturated fatty acid biosynthesis, fatty acid biosynthesis,
Pyrimidine metabolism, and purine metabolism.

Some of the Metabolite Changes Are
Caused by the Gut Microbiota
The Spearman statistical method was used to analyze the
correlation coefficients between the 8 genera with significant
differences in the cecal microbiota screened by 16S rDNA
technology and the 167 differential metabolites screened by
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metabolomics (Figure S4). The results showed that 8 kinds of
genera are related to 70 amino acids and their derivatives
(Figure 6), 32 lipids (Figure 7), 6 bile acids (Figure 8A), 20
nucleotides (Figure 8B) and vitamins (Figure 8C). However,
whether intestinal bacteria are involved in the metabolism of
these 167 metabolites is still unclear.

To evaluate the relative ability of members of the
cervicovaginal microbial community in each sample groupings
to produce or utilize individual metabolites (Chorna et al., 2020),
we compared the contribution of individual species to the
calculated community metabolic profile (CMP) scores on the
MIMOSA2 website. MIMOSA2 is an extension of MIMOSA, a
novel framework for mechanistically linking microbiome
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FIGURE 3 | Alpha and beta diversity analysis of the bacterial community in the cecal contents of Control and NAFLD mice. (A-D) ACE, Chao1, Shannon, Simpson
indexes had no significant difference between Control and NAFLD mice. (E, F) Beta diversity assessed by using PCoA of weighted UniFrac distance metrices had
significant difference between Control and NAFLD mice. “*” indicated p-value < 0.05, (Wilcox Rank-Sum test).
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ecology and metabolomic data (Noecker et al., 2016; Nalbantoglu
and Sayood, 2019; Chorna et al., 2020; Gallardo et al., 2020).
Well-predicted metabolites were identified by the CMP score
model in CK and NAFLD groups by examining the total pool of
metabolites with a positive model slope and a model p-value<0.1.
The gut microbiota contributed to the changes in the abundance
of 7 metabolites: thiamine, hypoxanthine, L-phenylalanine,
tyramine, betaine, 5-Methylcytosine and pyridoxine
(Figure 9A and Table S2). According to the literature, of the
seven metabolites, betaine, thiamine, phenylalanine and
tyramine exert a potential inhibitory effect on fatty liver. By
MIMOSA2 analysis, intestinal microbiota promoted
upregulation of betaine, L-phenylalanine, and tyramine and
down-regulation of thiamine and pyridoxine. An unknown
bacterium (Greengene ID#184451) has the ability to express
betaine-aldehyde dehydrogenase (KEGG ID#K00130) and is the
major bacterium responsible for the change in betaine
abundance. f_Coriobacteriaceae (Greengene ID#269986),
g_Helicobacter (Greengene ID#4339015), f_Peptostreptococcaceae
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(Greengene ID#258904), f_Lachnospiraceae (Greengene
ID#246246) and unknown bacterium (Greengene ID#184451)
can express chorismate mutase (KEGG ID#K14170),
phenylalanyl-tRNA synthetase alpha chain (KEGG ID#K01889)
and phenylalanyl-tRNA synthetase beta chain (KEGG
ID#K01890), and are the main bacteria causing the upregulation
of L-phenylalanine in NAFLD mice. Dorea (Greengene
ID#839200) and g_Turicibacter(Greengene ID#216933), which
can express Monoamine oxidase (KEGG ID#K00274), are the
main bacteria causing the upregulation of tyramine.
g_Ruminococcus (Greengene ID#306914), unknown bacterium
(Greengene ID#184451) and f_Coriobacteriaceae (Greengene
ID#269986), which can express pyridoxine kinase (KEGG
ID#K00868), are the main bacteria causing the downregulation of
pyrdoxine. g_Allobaculum (Greengene ID#135952) can express
thiamine phosphate phosphatase (KEGG ID#K06949) and since
its downregulation promotes thiamine downregulation, it is also
one of the main reasons for L-phenylalanine upregulation
(Figure 9B and Table S2).
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FIGURE 4 | The distribution and composition of the bacterial community at each classification level. (A-D) Cecal bacterial profiles at the Phylum, Class, Family
and Genus levels displaying relative abundance of the partial cecal microbiota. (E) Functional biomarkers found by linear discriminant analysis effect size (LEfSe);
(F) Functional cladogram obtained from LEfSe. “*” indicated p-value < 0.05, “**” indicated p-value < 0.01 (Wilcox Rank-Sum test).
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DISCUSSION

In order to explore the role of gut microbiota and its metabolites
in the formation of NAFLD, we induced liver steatosis by HFD.
We used HFD induction rather than methionine-choline
deficiency diets because HFD models better mimic fatty liver
disease in humans (Arao et al., 2020). Studies also showed that
while the HFD-induced NAFLDmouse model was reversible, the
liver of NAFLD mice induced by methionine deficiency diet
showed obvious inflammation and liver fibrosis, which was in an
irreversible state. Therefore, it is recommended to use HFD
induction if studying the early stages of fatty liver and
methionine-choline deficient feed induction if studying the
severe stages of fatty liver. Only about 20% of NAFLD in
humans will enter the fibrosis stage (Matteoni et al., 1999;
Sanyal, 2019). While our histopathological section also showed
significant steatosis of the liver, it was still mainly steatosis
without massive hepatocyte necrosis and fibrosis.

The cecal contents of mice was collected as the research focus.
Alpha diversity analysis based on 16S rDNA showed no
significant differences in the Chao1, Ace, Shannon, and
Simpson indexes between NAFLD mice and normal mice
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(Figures 3A–D). The results indicate that the diversity and
richness of gut microbiota in NAFLD mice did not change.
The beta diversity analysis showed a significant change in the
PCoA index, indicating that while the HFD had not changed the
types of bacteria taxa present, it had changed the relative
abundance of bacteria at different classification levels. Thus,
the structure of gut microbiota was changed but since the
changes were not severe, it was still in the reversible stage. This
is also a common feature of gut microbiota after HFD induction
(Walker et al., 2014; Xiao et al., 2017; Wallis et al., 2020). After
returning to a normal diet, the gut microbiota returns to its
original characteristics (Xiao et al., 2017). Consequently, we
propose that the changes in intestinal structure are mainly
caused by diet (Xiao et al., 2017).

At the phylum level, it was found that Firmicutes in the
NAFLD mice increased significantly while the Bacteroides
decreased significantly. This is supported by the results of
other studies (Lambert et al., 2015). After a HFD, the
abundance of murine Firmicutes increased while that of
Bacteroides decreased (Walker et al., 2014). In the human gut,
the abundance of Firmicutes in people with obesity (Sergeev
et al., 2020), fatty liver (Lambert et al., 2015) or diabetes (Palacios
FIGURE 5 | Metabolic pathway analysis using MetaboAnalyst 4.0 (http://www.metaboanalyst.ca). x-axis: Rich factor, y-axis: metabolic pathway. Circle color
represents -log10(p-value) and the size of the circle represent the number of metabolites enriched in metabolic pathway.
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FIGURE 6 | Spearman correlations between significant bacteria based on LEfSe and differential amino acids and their derivatives are presented in the form of a
correlation coefficient matrix heat map. The correlation coefficient r is shown in color. r >0, positive correlation, shown in red; r < 0 represents a negative correlation,
shown in blue, and the darker the color, the stronger the correlation. “*” indicated p-value < 0.05, “**” indicated p-value < 0.01.

Gu et al. Gut Microbiota and Metabolites of NAFLD Mice
et al., 2020) also increased and the abundance of Bacteroides
decreased. Hildebrandt et al. (Hildebrandt et al., 2009) believed
that after the normal diet was changed to a high fat diet,
regardless of the obesity status of the mice, the number of
Bacteroides in their gut decreased, while the numbers of
Firmicutes and Proteobacteria increased. This shows that the
changes in gut microbiota are due to diet instead of obesity or
fatty liver.

LEfSe analysis highlights statistical significance and biological
correlation and can identify diagnostic markers. LEfse analysis
showed that the abundance of six bacteria genera increased
significantly, while two other genera showed a significant
decrease in the cecum of NAFLD mice. The abundance of
Helicobacter, unidentified_Lachnospiraceae, Blautia,
Romboutisa, Faecalibaculum and Ileibacterium significantly
increased in our experiment. Helicobacter is considered as
an intes t ina l pathogenic bac te r ium, be long ing to
Campylobacteraceae with Helicobacter pylori. Some studies
believe that Helicobacter is a contributing factor in the
development of NAFLD and that eradication of Helicobacter is
an effective preventive or therapeutic measure (Sumida et al.,
2015; Waluga et al., 2015) but this remains a controversial issue
at present (Baeg et al., 2016; Kim et al., 2017). Blautia is also
another controversial bacterium. The abundance of Blautia is
positively correlated with obesity (Goffredo et al., 2016) and
serum TG (Tang et al., 2018; Carbajo-Pescador et al., 2019),
suggesting that Blautia may be involved in the early occurrence
of obesity-related NAFLD. However, in some studies, Blautia has
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 10
been shown to be a potentially beneficial bacterium (Li et al.,
2016; Fu et al., 2018) which can ameliorate NAFLD or obesity
(Zhang et al., 2019; Zhou and Fan, 2019; Zheng et al., 2020).
There are few studies on Romboutsia, Faecalibaculum (Li et al.,
2018; Hu et al., 2019) and Ileibacterium (Bai et al., 2019). In those
studies, these bacteria were significantly increased in NAFLD
mice, although their physiological effects on NAFLD are not
clear. Results of LEfSe analysis showed that Allobaculum and
Enterorhabdus significantly decreased in NAFLD mice. Other
experiments also found that Allobaculum was also significantly
decreased after HFD induction (Raza et al., 2017; Ghaffarzadegan
et al., 2018). Allobaculum was confirmed to be an important
functional bacterium (Zhang et al., 2012; Everard et al., 2014)
that is negatively correlated with obesity, especially subcutaneous
fat content (Hu et al., 2019). It has been reported that
Allobaculum, as a beneficial bacterium, is associated with
weight loss in mice with normal metabolism, manifested as
insulin sensitivity and remission of systemic inflammation.
Some researchers hypothesized that the increased abundance
of Allobaculum can help young mice resist the development of
obesity (Hildebrandt et al., 2009) and assist in improving the
integrity of the intestinal barrier (Le Roy et al., 2013).
Enterorhabdus is a gram-negative bacterium that exists only in
mice and its association with obesity has been controversial (Guo
et al., 2020). In conclusion, the relationship between these
bacteria and NAFLD requires further study.

To further explore the relationship between gut microbiota
and NAFLD, we performed metabolome analysis of cecal
May 2022 | Volume 12 | Article 870785
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FIGURE 7 | Spearman correlations between significant bacteria based on LEfSe and differential lipid are presented in the form of a correlation coefficient matrix heat
map. The correlation coefficient r is shown in color. r >0, positive correlation, shown in red; r < 0 represents a negative correlation, shown in blue, and the darker the
color, the stronger the correlation. “*” indicated p-value < 0.05, “**” indicated p-value < 0.01.
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content. We successfully screened 167 differential metabolites.
Through correlation analysis between differential metabolites
and gut microbiota, we found that although changes in gut
microbiota have a certain correlation with changes in lipid
metabolites (Figure 7), MIMOSA2 analysis showed that the
difference in microbiota did not contribute to changes in lipid
metabolites (Figure 9A and Table S2). The HFD which we
used contains 34% lard. Oleic acid is the largest component of
lard (with a content of 31.97%-50.52%), followed by Palmitic
acid (19.97%-27.75%), Stearic acid (6.37%-17.81%), LA
(11.7%-23.84%) and a-LA (0.23%-2.09%) (Shestakov Iu and
Piroxhnik, 1976; Jensen et al., 1999). Metabolome analysis
found that Oleic acid and Palmitic acid significantly increased,
while LA, a-LA, AA, Stearidonic acid, EPA and DHA were
significantly reduced in NAFLD mice. Therefore, we
speculated that the HFD, instead of the gut microbiota, was
responsible for the decrease of w3-PUfas and the increase of
saturated fatty acids and oleic acid in the intestinal tract of
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 11
NAFLD mice, thus leading to the accumulation of liver
lipids (Figure 10).

Our experiment found that the levels of bile acids, an
important metabolite in cecum of NAFLD mice, were also
changed with a significant increase in six bile acids (Table S1).
High level of TG leads to an increase in cholesterol. Since
cholesterol is the precursor of bile acid production, the
increase in cholesterol leads to the upregulation of bile acid.
Previous studies suggest that high-fat and high-cholesterol diets
alter the composition of bile acids in the gut, causing imbalances
in the gut microbiota and aggravating bile acid metabolism
disorders (Liu et al., 2020; Rao et al., 2021). A common link
among many NASH pathogenesis pathways is the disruption of
BA homeostasis. Bile acids bind to farnesoid X receptor (FXR),
which is critically involved in maintaining BA, glucose, and lipid
homeostasis (Chen et al., 2019). Also, dysbiosis of gut microbiota
is able to modify the profile of BAs in patients with NAFLD
(Aragonès et al., 2019). However, through MIMOSA2 analysis,
May 2022 | Volume 12 | Article 870785
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we found that gut microbiota did not contribute to the changes
in bile acids. Hence, we hypothesize that a HFD causes an
increase in triglycerides and cholesterol, which in turn causes
an increase in bile acids and thus, leads to changes in gut
microbiota (Figure 9A and Table S2). Our experiments
confirmed that the serum cholesterol content of NAFLD group
was significantly higher than that of CK group and that six bile
acids, CA, DCA, DTA, CDCA, LCA and TUDCA in the
intestine, were significantly upregulated. Therefore, based on
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 12
the correlation analysis results, we suggest that the upregulation
of these six bile acids inhibited Allobaculum and Enterorhabdus
but promoted the proliferation of Helicobacter, Blautia,
Unidentified-Lachnospiraceae, Romboutsia, Faecalibaculum and
Ileibacterium (Figure 10).

Metabonomics analysis found that most of the metabolites in
the intestinal tract that were significantly changed were amino
acids, with six amino acid metabolic pathways being enriched,
including arginine biosynthesis; alanine, glutamic acid, and
A

B C

FIGURE 8 | Spearman correlations between significant bacteria based on LEfSe and differential nucleotide (A), bile acid (B), vitamin (C) are presented in the form of
a correlation coefficient matrix heat map. The correlation coefficient r is shown in color. r >0, positive correlation, shown in red; r < 0 represents a negative
correlation, shown in blue, and the darker the color, the stronger the correlation. “*” indicated p-value < 0.05, “**” indicated p-value < 0.01.
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A B

FIGURE 9 | Microbial contribution to metabolite variance based on MIMOSA2. (A) Comprison plots showed the overall relationship between community-level
metabolic potential scores (CMP) and metabolite measurements. R-square (Rsq) of the regression model used for prediction represents the sum of the contributions
of all listed taxa to the metabolite variance. Contribution results are only included for metabolites with a model p-value less than 0.1 and positive slope of model.
(B) Contribution heatmap showed the major taxonomic contributors with Varshare more than 0.01 to variation for each metabolite, red represents positive
contribution; blue represents negative contribution; the darker the color, the greater the contribution. “Varshare” represents the fraction of the variation in each
metabolite explained by the taxon in question, according to the overall community model.
FIGURE 10 | Schematic figure illustrating the relationship between gut microbiota and metabolites, and its effect on NAFLD. Red font represent up-regulated
metabolites; blue font represent down-regulated metabolites. The blue line represents the pathways studied in this experiment, and the black line represents the
pathways supported by the literature.
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aspartic acid metabolism; histidine metabolism; arginine and
proline metabolism; glycine, serine and threonine metabolism;
valine, leucine and isoleucine biosynthesis (Figure 5). Previous
studies have investigated how aspartate, glutamine, glutamate,
arginine, alanine and L-citrulline can inhibit the formation of
fatty liver. Leng et al. (Leng et al., 2014) found that aspartate can
slow down LPS-induced liver injury, specifically by inhibiting
the expression of pro-inflammatory factors (TNF-a and COX-
2) and reversely regulating the expression of genes related to
TLR4 and NOD signaling pathway. Glutamine and glutamate
are the precursors of glutathione. Glutamine can improve lipid
metabolism, enhance anti-inflammation, and antioxidant
capacity while a variation of glutamate content can indicate
metabolic damage caused by obesity (Jobgen et al., 2009a).
Supplementation with glutamine in obese rats was also
associated with a reduction of the proinflammatory cytokines
TNF-a and interleukin-6 in serum and peripheral tissues
(Greenfield et al., 2009), suggesting that glutamine may have
anti-inflammatory effects. Arginine possesses antioxidative and
anti-inflammatory capacities (Bronte and Zanovello, 2005;
Gogoi et al., 2016) and participates in the ornithine cycle to
promote urea formation, playing an important role in intestinal
inflammation through immune responses and oxidative
reactions. In addition, arginine supplementation reduces
adiposity and improves glucose tolerance in obese rodents
and humans (Popov et al., 2002; Fu et al., 2005; Jobgen et al.,
2009b; Monti et al., 2012). Supplementation of HFD mice with
alanine acutely suppresses weight gain in association with lower
gene expression of fatty acid synthase in the liver and higher
gene expression of adipose triglyceride lipase in the epididymal
fat (Freudenberg et al., 2013). Thiago R. Araujo et al. (Araujo
et al., 2016) verified that alanine and arginine supplementation
effectively prevents fat deposition. Furthermore, alanine
supplementation is more effective than arginine, since alanine
managed to decrease the two abdominal fat stores evaluated. L-
citrulline has anti-inflammatory and anti-oxidative properties
and can break down fats, (Jegatheesan et al., 2015; Jegatheesan
et al., 2016). According to MIMOSA2 analysis, the increase in
these amino acids is not due to the action of gut microbiota, but
may be caused by diet or body metabolism. Isoleucine, valine
and leucine are collectively referred to branched chain amino
acids (BCAAs). In our study, valine and leucine significantly
increased in NAFLD mice, while isoleucine had no significant
change. The metabolic dysregulation is often associated with an
increase in the levels of valine and leucine (Floegel et al., 2013;
Mardinoglu et al., 2014; Rosso et al., 2016; Gaggini et al., 2018).
The dysregulation of BCAAs metabolism in patients with
NAFLD, with BCAAs in blood and urine being higher
(Hoyles et al., 2018; Zhou and Fan, 2019). High levels of
BCAAs lead to obesity-related IR and glucose intolerance and
serve as sensitive indicators of abnormal metabolism of insulin-
related proteins (Gevi et al., 2018). Animal studies showed that
BCAAs supplementation reduced obesity induced by a high-fat
diet but caused significant liver damage in high-fat induced
mice, which was associated with lipolysis abnormalities (Zhang
et al., 2016). Therefore, BCAAs can reflect hepatic steatosis level
Frontiers in Cellular and Infection Microbiology | www.frontiersin.org 14
independently of conventional metabolic risk factors and its
metabolic abnormalities may to some extent precede the
development of NAFLD (Kaikkonen et al., 2017). MIMOSA2
analysis showed that changes in valine and leucine were also
not caused by gut microbiota. Only betaine, L-phenylalanine,
and tyramine were affected by gut microbiota (Figure 9A and
Table S2). Betaine, a trimethyl derivative of glycine,
participates in liver metabolism as a methyl donor in the
liver. It can regulate LXRa/PPARa pathway, reduce ER stress
and predict cardiovascular outcomes. Therefore, it mainly plays
a role in liver protection and confers antioxidant and anti-
inflammatory benefits (Bertoldo et al., 2013). Phenylalanine is
an aromatic amino acid along with tyrosine and tryptophan
(AAAs), which degrade to produce a wide range of anti-
inflammatory agents and phenolic compounds that act as
toxins or neurotransmitters. AAAs have been shown to
increase s ignificant ly in HFD-induced obesi ty and
cardiovascular diseases such as type 2 diabetes (Liu et al.,
2017). In our study, there was a significant increase in
tyramine in NAFLD mice. Tyramine is produced by tyrosine
decarboxylate under the action of certain intestinal bacteria,
including Enterococcus and Enterobacteriaceae, followed by
further deamination and oxidation to produce toxic
substances such as phenol and paracresol, which destroy
cellular structures and increase permeability (Murooka et al.,
1978; Bargossi et al., 2015; Liu et al., 2017; Park et al., 2020). In
addition, MIMOSA2 analysis also found that gut microbiota
influenced pyridoxine and thiamine levels. Thiamine and
pyridoxine inhibit the formation of fatty liver (Mayengbam
et al., 2015; Kalyesubula et al., 2021). Analysis of the single
OTU found that most of the strains played dual roles and it was
difficult to analyze their roles in the occurrence and
development of NAFLD. However , g_Allobaculums
(GreenGene ID#135952) may inhibit the formation of
NAFLD, while g_Helicobacter (GreenGene ID#4339015) may
promote the formation of fatty liver. MIMOSA2 analysis
showed that g_Allobaculums (GreenGene ID#135952)
contributed significantly to the changes in the abundance of
three metabolites. g_Allobaculums (GreenGene ID#135952)
can produce thiamine phosphate phosphatase and promote
thiamine production. Thus, thiamine was downregulated
due to a decrease in the abundance of g_Allobaculums
(GreenGene ID#135952). g_Allobaculums (GreenGene
ID#135952) may play a role in inhibiting the formation of
fatty liver. In addition, the upregulation of g_Helicobacter
(Greengene ID#4339015) only contr ibuted to the
upregulation of L-phenylalanine. Therefore, we hypothesized
that g_Helicobacter (Greengene ID#4339015) could promote
the development of fatty liver by producing L-phenylalanine
(Figure 9B and Figure 10).
CONCLUSION

The gut microbiota of NAFLD mice changed significantly. The
abundance of Blautia , Unidentified-Lachnospiraceae ,
May 2022 | Volume 12 | Article 870785
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Romboutsia , Faecalibaculum , Ileibacterium increased
significantly in NAFLD mice, while Allobaculum and
Enterorhabdus decreased significantly. A total of 167
metabolites in the intestinal tract of NAFLD mice also
exhibited significant changes. Although there was a significant
correlation between differential bacteria genera and differential
metabolites in the cecum of NAFLD mice, MIMOSA2 analysis
showed that the alterations in only seven metabolites were
caused by gut microbiota, and the alterations in lipid and bile
acid were not caused by gut microbiota. Gut microbiota may
promote the formation of NAFLD by downregulating thiamine
and pyridoxine, while upregulating L-phenylalanine and
tyramine. g_Allobaculums (GreenGene ID#135952) may inhibit
the formation of NAFLD by producing thiamine and degrading
L-phenylalanine. g_Helicobacter (Greengene ID#4339015)
promotes the formation of NAFLD by promoting L-
phenylalanine production.
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