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Increasing evidence suggests that oxidative stress plays an essential role during carcinogenesis. However, the underlying
mechanism between oxidative stress and carcinogenesis remains unknown. Recently, microRNAs (miRNAs) are revealed to be
involved in oxidative stress response and carcinogenesis. This study aims to identify miRNAs in hepatocellular carcinoma
(HCC) cells which might involve in oxidative stress response. An integrated analysis of miRNA expression signature was
performed by employing robust rank aggregation (RRA) method, and four miRNAs (miR-34a-5p, miR-1915-3p, miR-638, and
miR-150-3p) were identified as the oxidative stress-responsive miRNAs. Pathway enrichment analysis suggested that these four
miRNAs played an important role in antiapoptosis process. Our data also revealed miR-34a-5p and miR-1915-3p, but not miR-
150-3p and miR-638, were regulated by p53 in HCC cell lines under oxidative stress. In addition, clinical investigation revealed
that these four miRNAs might be involved in oxidative stress response by targeting oxidative stress-related genes in HCC
tissues. Kaplan-Meier analysis showed that these four miRNAs were associated with patients’ overall survival. In conclusion, we
identified four oxidative stress-responsive miRNAs, which were regulated by p53-dependent (miR-34a-5p and miR-1915-3p)
and p53-independent pathway (miR-150-3p and miR-638). These four miRNAs may offer new strategy for HCC diagnosis
and prognosis.

1. Introduction

Hepatocellular carcinoma (HCC) is the fifth most com-
mon cancer and the third cause of cancer-related mortality
worldwide [1]. It is established that hepatitis virus infec-
tion, as well as environmental carcinogens such as afla-
toxin or chemical carcinogens, is associated with the
development of HCC [2]. Although the carcinogenic
mechanism of above risk factors varies, the common path-
ological process affected by those risk factors is hepatic
chronic inflammation. Recruitment of inflammatory cells
in hepatic environment and chemical mediator release, such
as cytokines, chemokines, and reactive oxygen species (ROS),

are considered to play a vital pathogenic role during hepatic
carcinogenesis [3].

ROS are a group of chemically reactive molecules con-
taining oxygen, which are mainly derived from cellular oxi-
dative metabolism and play essential roles in the regulation
of multiple cellular processes. During the development of
many diseases, including malignant diseases, increasing
ROS levels might lead to the imbalance of the pro-oxidant/
antioxidant equilibrium and subsequently induce changes
of intracellular molecules, including lipids, proteins, and
nuclear acids [4]. Thus, the exploration of the intracellular
molecules responsible for oxidative stress might enrich our
understanding of molecular hepatic carcinogenesis.
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Recently, accumulating evidences suggest that a series
of small noncoding RNAs (microRNA) can be induced
by oxidative stress. Several studies have examined the
changes of the microRNA (miRNAs) expression profiles
in varying cells upon treatment with hydrogen peroxide
(H2O2) [5–14]. Unfortunately, inconsistent conclusion
was made from those miRNome profiling studies. Con-
founding factors may include employment of different cell
origins, various detection platforms, and application of
different statistical methods.

To overcome those limitations, in the present study, we
integrated these published relevant studies and performed a
meta-analysis applying the rank aggregation method. We
identified four common oxidative stress-responsive micro-
RNAs in H2O2-treated cells. Moreover, we also evaluated
the association between those oxidative stress-responsive
microRNAs and p53, a key oxidative stress-responsive
mediator in HCC cell lines. Finally, we validated the
expression of identified miRNAs and their target genes
in HCC tissues.

2. Materials and Methods

2.1. Literature Search and Inclusion Criteria.We performed a
literature search in PubMed, Embase, andWeb of Knowledge
databases using search term combination of (miRNA∗ or

microRNA∗ or mir-∗) and profil∗ and (oxidati∗ or hydro-
gen peroxide) and (cell∗ or cell line∗). We firstly screened
all abstracts and selected potential abstracts for further
full text evaluation. Only the original experimental studies
that explored miRNA profile using a high-throughput
miRNA expression profiling methods such as second-
generation sequencing, polymerase chain reaction (PCR),
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Figure 2: Integrated analysis of oxidative responsive-miRNAs by
RRA method. The column was presented according to −Log10
(P value) of each miRNA which was calculated by RRA method.
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Figure 1: Heatmap of miRNAs reported by nine miRnome profiling studies. One selected miRNA was presented as red or white according to
whether it was report by one study or not.
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or microarray-based high-throughput methods in H2O2-
treated cells were included.

2.2. Data Extraction and Rank Aggregation Analysis. Rank
lists of up- or downregulated miRNAs were extracted from
the included studies. All included miRNA names were firstly
standardized using miRBase (release 21.0). Rank aggregation
method was implemented using an R package “Robust Rank
Aggreg.” This method analyzed miRNAs that are ranked
consistently better than expected and assigns a P value for
each miRNA.

2.3. Pathway Enrichment Analysis. We firstly collected vali-
dated targets of each miRNA using miRTarBase database
(http://mirtarbase.mbc.nctu.edu.tw/). Gene ontology (GO)
biological process enrichment of those validated targets was
performed using Database for Annotation, Visualization
and Integrated Discovery (DAVID) v6.8 (https://david
.ncifcrf.gov/). Fisher’s exact test was used to identify the sig-
nificant pathway terms. Heatmap was presented by log-
transformed P value. Moreover, the combinatorial pathway
enrichment analysis of multiple miRNAs was analyzed using
“miRPath” algorithm (http://www.microrna.gr/miRPathv2).

2.4. miRNA-Gene Interaction Network Analysis. We firstly
performed target prediction by using Targetscan website
(http://www.targetscan.org/), and only cumulative-weighted
context++ score<−0.4 was selected for further analysis.

The interaction between miRNA and their predicted
target networks was constructed using the Cytoscape
software. In the validation group, the miRNA-gene inter-
action was presented based on their Pearson’s correlation
coefficient.

2.5. HCC Cell Line Culture. Four TP53 wild-type HCC cell
lines, including HepG2, SMMC-7721, HHCC, and SK-Hep-
1, were selected for experimental validation. All cell lines
were cultured using Dulbecco minimum essential medium
(DMEM) supplemented with heat-inactivated 10% fetal
bovine serum (FBS), 100U/ml penicillin, and 100μg/ml
streptomycin. Cells were incubated at 37°C and 5% CO2 in
a HF100 chamber (Heal Force, Hong Kong, China).

2.6. Pro- and Antioxidant Treatment. For pro-oxidant treat-
ment, HCC cell lines were firstly synchronized by serum
starvation overnight and then treated with 200μM of H2O2
for 24 h. For antioxidant treatment, cells were preincubated
with N-acetylcysteine (NAC, 5mM) for 6 hours before expo-
sure to H2O2. Following treatment, cells were harvested for
further analysis.

2.7. Transfection of siRNA. RNA interference mediated by
duplexes of 21-nucleotide RNA was performed in HCC
cell lines. siRNA-TP53 (5′-CUGGAAGACUCCAGUG
GUA-3) and control-siRNA were synthesized by Gene-
Pharma (Shanghai, China). Transfection of siRNA
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Figure 3: Expression of four oxidative stress-responsive miRNAs in different HCC cell lines. The expressions of miR-34a-5p, miR-1915-3p,
miR-638, and miR-150-3p were measured by qRT-PCR method in HepG2 (a), SMMC-7721 (b), HHCC (c), and SK-Hep-1 (d). All HCC cell
lines were treated with saline, 200μMH2O2 or 5mM NAC+200μMH2O2, respectively. All these experiments were conducted in triplicate.
∗P < 0 05; ∗∗P < 0 01; ∗∗∗P < 0 001; ns, no significant.
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(100 nM) was carried out with Lipofectamine 2000
(Invitrogen, Carlsbad, CA, USA) according to the man-
ufacturer’s protocols.

2.8. Quantitative Reverse Transcription-Polymerase Chain
Reaction (qRT-PCR). Total RNA was extracted from cultured
cells using Trizol reagent (Invitrogen, Carlsbad, CA, USA).
qRT-PCR was performed using the SYBR® PrimeScript™
miRNA RT-PCR Kit and SYBR Premix Ex Taq™ (TaKaRa
Biotechnology, Dalian, China). All primers of selective
miRNAs were also synthesized by TaKaRa. The miRNA
expression was assayed in triplicate and normalized to U6.

The relative miRNA expression was calculated using the
comparative-Ct (△△Ct) method.

2.9. Public Datasets for Validation. To validate the
expression of miRNAs and their targets in HCC tissues,
we used public datasets containing 100 paired HCC
tissue samples (GSE62007 and GSE62043). GSE62007
dataset was conducted on miRXplore Microarray plat-
form, and GSE62043 dataset was conducted on Agilent-
014850 Whole Human Genome Microarray platform.
For hepatocellular carcinoma, The Cancer Genome Atlas
(TCGA) dataset were used to explore the prognosis
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Figure 4: The interaction network between four miRNAs and their predicted targets.
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values of four miRNAs in HCC. The data were obtained
from SurvMicro web tool (http://bioinformatica.mty.itesm.
mx/SurvMicro).

2.10. Statistical Analysis. All data in this study were analyzed
by SPSS 11.0 software (SPSS Inc., Chicago, IL, USA) and
expressed as mean± standard error of measurement (SEM).
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Analysis of continuous variables was performed using a
Student t-test. Expression correlation between variables was
tested by Pearson’s correlation analysis. P < 0 05 was consid-
ered statistically significant.

3. Results

3.1. Identification of Oxidative Stress-Responsive miRNAs. A
total of 11 studies from 10 published articles were
screened [5–14], and 8 studies were based on human cells
[6, 7, 10–14], which were selected for further analysis. In
summary, 504 aberrantly expressed miRNAs were recorded,
including 404 upregulated and 99 downregulated miRNAs.
Among them, twenty upregulated miRNAs were reported
by more than three studies (Figure 1). By applying a rank
aggregation analysis, we identified four oxidative stress-
responsive miRNAs which were significant upregulated
under H2O2 treatment, including miR-638, miR-150-3p,
miR-1915-3p, and miR-34a-5p (Figure 2).

3.2. Validation of Oxidative Stress-Responsive miRNAs in
HCC Cell Lines. To further explore the expression changes
of identified miRNAs in oxidative stress response in HCC,
we treated four TP53 wild-type HCC cell lines with 200μM
H2O2 (the most widely used concertation) for 24 h and
measured expression levels of four miRNAs (miR-34a-5p,
miR-1915-3p, miR-638, and miR-150-3p). Our data revealed
that the expressions of four miRNAs were all significantly
increased after H2O2 treatment. By contrast, when preincu-
bation with 5mM NAC for 6 h, the upregulated expressions
of miR-34a-5p, miR-1915-3p, miR-638, and miR-150-3p
caused by H2O2 treatment were abrogated (Figure 3). The
above results provide evidence that the expressions of miR-
34a-5p, miR-1915-3p, miR-638, and miR-150-3p were
tightly associated with intracellular oxidative stress status in
HCC cell lines.

3.3. Function Prediction of Oxidative Stress-Responsive
miRNAs. We firstly performed target prediction by using
Targetscan web tool, and the miRNA-target interaction
was visualized in Figure 4. To further evaluate biological
functions of four miRNAs, we selected their experimental
validated targets for GO pathway enrichment analysis.
The number of enriched GO biological process of each
miRNA ranged from 22 to 474 (Figure 5(a)). By conduct-
ing a heatmap of P values derived from Fisher’s exact
test, four miRNAs were shown to be all closely related
to antiapoptosis pathways (Figure 5(b)). Furthermore,
combinatorial pathway enrichment analysis revealed that
those four oxidative stress-responsive miRNAs were
related to p53 signaling pathway (Table 1). Previous stud-
ies had clearly demonstrated the closely association
between p53 signaling pathway and oxidative stress [15, 16],
suggesting a critical role of four miRNAs (miR-34a-5p,
miR-1915-3p, miR-638, and miR-150-3p) in oxidative
stress response.

3.4. miR-34a-5p and miR-1915-3p Are Regulated by p53
under Oxidative Stress. Since our data suggested an associa-
tion between oxidative stress-responsive miRNAs and p53

signaling pathway, we wondered whether the expressions of
these miRNAs in oxidative stress response are regulated by
p53. Evidences from our [17, 18] and other groups [19] sug-
gested that p53 was upregulated in response to oxidative
stress in HCC. Thus, by employing four HCC cell line data,
we quantified the correlation coefficient between p53 and
four oxidative stress-responsive miRNAs expression. We
found that p53 gene (TP53) was statistically positively cor-
related to the expressions of miR-34a-5p and miR-1915-3p
(P < 0 05), but not miR-638 and miR-150-3p (P > 0 05)
(Figure 6), indicating that p53 might regulate the miR-34a-
5p and miR-1915-3p function in oxidative stress response.
To further verify this hypothesis, we then examined the
miR-34a-5p and miR-1915-3p expressions in siRNA-TP53-
transfected HCC cells. As shown in Figures 7(a) and 7(c),
the miR-34a-5p and miR-1915-3p expression levels were
significantly decreased by knocking down of TP53 (all
P < 0 05). Furthermore, knocking down of TP53 was shown
to be able to attenuate the increased expression of miR-34a-
5p and miR-1915-3p induced by H2O2 treatment, providing
solid evidence for the regulatory roles of p53 in miR-34a-5p
and miR-1915-3p in oxidative stress response (Figures 7(b)
and 7(d)).

3.5. Clinical Values of Four Oxidative Stress-Responsive
miRNAs in HCC. To gain insight into clinical values of four
oxidative stress-responsive miRNAs in HCC, we firstly
obtained 4 miRNAs and 90 oxidative stress-related gene pro-
filing data based on 100 paired HCC samples (GSE62007 and
GSE62043) from Gene Expression Omnibus (GEO, http://
www.ncbi.nlm.nih.gov/geo/) (Figure 8(a)). By calculating
the expression correlations between each miRNA and
oxidative stress-related gene, we conducted a miRNA-
gene interaction network (Figure 8(b)). Our data showed
that miR-150-3p and miR-1915-3p were negatively corre-
lated with more than half of oxidative stress-related
genes (54/90 and 50/90, resp.). miR-34a-5p was nega-
tively correlated with 44 out of 90 oxidative stress-

Table 1: The signaling pathway enrichments of validated targets of
four miRNAs.

KEGG signaling pathways P value

KEGG_04115: p53 signaling pathway 2.24E− 10
KEGG_04310: Wnt signaling pathway 4.83E− 09
KEGG_04330: notch signaling pathway 1.34E− 06
KEGG_04630: Jak-STAT signaling pathway 3.83E− 04
KEGG_04722: neurotrophin signaling pathway 1.73E− 03
KEGG_04340: hedgehog signaling pathway 1.89E− 03
KEGG_04010: MAPK signaling pathway 3.33E− 03
KEGG_04370: VEGF signaling pathway 4.06E− 03
KEGG_04350: TGF-beta signaling pathway 4.98E− 03
KEGG_04660: T cell receptor signaling pathway 9.59E− 03
KEGG_04150: mTOR signaling pathway 2.14E− 02
KEGG_04920: adipocytokine signaling pathway 3.27E− 02
KEGG_03320: PPAR signaling pathway 3.36E− 02
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related genes. Meanwhile, miR-638 was only negatively
correlated with the least number of oxidative stress-
related genes (38/90), which was partially consistent with
previous study [20]. Moreover, tissue expression pattern
also validated the positively correlation between p53 and
miR-34a/miR-1915-3p with correlation coefficients of 0.13
and 0.16, respectively.

Next, we explored the prognosis values of four oxidative
stress-responsive miRNAs in HCC patients. We obtained
HCC TCGA data by using SurvMicro web tool (http://
bioinformatica.mty.itesm.mx/SurvMicro) and conducted
Kaplan-Meier analysis of HCC patients with different
miRNA expression levels. We found that HCC patients with
lower miR-34a and miR-1915-3p expression levels had
shorter overall survival time, although we did not get a
statistically significant P value which might due to a small
sample size (Figures 9(a) and 9(b)). Similarly, we also
found that miR-638 and miR-150-3p could predict HCC
patients’ survival time, with a P value of 0.042 (Figure 9(c)).
It should be pointed out that the expression level of
miR-638 in high-risk group was slightly higher than that
in low risk group, with a nonsignificant P value
(Figure 9(d)), which may warrant future larger study to
confirm or refuse it.

4. Discussion

For decades, oxidative stress has been reported to impact car-
cinogenesis. However, the underlying interaction among oxi-
dative stress and carcinogenesis remains unknown. Recently,
increasing evidence suggested that some intracellular miR-
NAs play critical roles in oxidative stress response and carci-
nogenesis. Therefore, in the current study, we aim to identify
several oxidative stress-responsive miRNAs which might
involve in liver carcinogenesis. We firstly performed a
comprehensive analysis by employing a recently published
rank aggregation analysis method [21], to identify oxida-
tive stress-responsive miRNAs. Based on miRNA profiling
data, four miRNAs (miR-34a-5p, miR-1915-3p, miR-638,
and miR-150-3p) were identified as the common upregu-
lated miRNAs under oxidative stress. Next, we also vali-
dated these four oxidative stress-responsive miRNAs in
four different HCC cell lines. Specifically, we found that
the upregulation of miR-34a-5p and miR-1915-3p, but
not miR-638 and miR-150-3p, was depended on p53 sta-
tus in oxidative stress (Figure 10). Finally, our data also
provide clinical evidences for the possible negative regula-
tion of oxidative stress-related genes by these four miR-
NAs in HCC tissues. We found that the expression levels
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Figure 6: The expression correlation between four miRNAs and TP53. (a) miR-34a-5p, (b) miR-1915-3p, (c) miR-150-3p, and (d) miR-638.
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of those four miRNAs were associated with overall sur-
vival time in HCC patients.

miR-34a-5p is one of the most explored miRNAs in car-
cinogenesis [22]. Although comparatively low levels of miR-
34a-5p expression were reported in several cancers [23, 24],
discrepancies emerged in HCC. Researchers found that the
expression of miR-34a was downregulated during methyl-
deficient diet-induced liver carcinogenesis [25]. By contrast,
in a chemical-induced HCC model, miR-34a-5p was found
to be upregulated [26]. We speculate that miR-34a-5p might
be regulated by different mechanisms during liver carcino-
genesis. It has been widely accepted that chemotherapeutic
agents exhibited anticancer effects by producing ROS in the
target tissue. We observed the ROS generation in HCC
cells with cisplatin treatment [17]. Bai et al. also found
that miR-34a-5p suppressed mitochondrial antioxidative
enzymes with a concomitant increase in intracellular ROS
level [27]. All above evidences suggested the miR-34-5p
expression might be related to ROS level in HCC cells. In
the present study, by conducting an oxidative stress model
in four HCC cell lines, we confirmed that miR-34a-5p was
related to intracellular oxidative stress status. Furthermore,
we also found miR-34a-5p was involved in the p53-

dependent pathway, which was consistent with previous
results [22, 28].

miR-1915-3p was another dysregulated miRNA in vari-
ous types of cancer, such as prostate cancer, renal cell carci-
noma, breast cancer, lung cancer, and colorectal cancer
[29–33]. However, the function of miR-1915-3p remains
unknown in HCC. The present study revealed for the first
time that miR-1915-3p was upregulated by oxidative stress,
depending on p53 status in HCC. Recently, a study based
on colorectal cancer cells also confirmed our results [32].
The authors [32] reported that miR-1915-3p was involved
in response to chemotherapeutic drug-induced DNA damage
by targeting Bcl-2, the latter of which was an important
regulator of oxidative stress [34]. Additionally, they also
found that p53 induced the processing of pri-miR-1915-3p
to pre-miR-1915-3p, which promote overexpression of
mature miR-1915-3p in. These data suggested that, differ-
ing from miR-34a-5p, miR-1915-3p expression was regu-
lated by p53 in a transcription-independent way. When
focusing on the genes potentially affect oxidative stress,
we found that many oxidative stress-related genes might
be potential targets of miR-1915-3p. These evidences sug-
gest that by targeting oxidative stress-related genes, miR-
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Figure 7: miR-1915-3p and miR-34a-5p are regulated by p53. (a, c) After transfection of siRNA-TP53, the expression of miR-34a-5p and
miR-1915-3p was analyzed by qRT-PCR. (b, d) After transfection of siRNA-TP53, the expression of miR-34a-5p and miR-1915-3p was
measured with or without H2O2 treatment. ∗P < 0 05; ∗∗P < 0 01; ∗∗∗P < 0 001; ns, no significant.
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1915-3p might possess a significant role in the regulation of
oxidative stress response.

miR-638 was previously reported to be associated with
cellular senescence [6] and DNA damage [35]. In 2013,
Christenson et al. [20] screened the gene expression in
miR-638-inhibited fibroblasts and suggested that miR-638
might involve in oxidative stress response. In the present
study, we, for the first time, identified miR-638 as an oxi-
dative stress-induced miRNA in HCC cell lines. We found
that the elevated expression of miR-638 was not induced
by p53. However, the regulation mechanisms of miR-638
during oxidative stress have hardly been investigated. Tay

et al. found that miR-638 was encoded by Dnm2 locus
and demonstrated that both two components, miR-638
and its host gene Dnm2, were overexpressed in tumori-
genesis [36]. Moreover, it was also reported that Dnm2
could be upregulated by radiation-induced oxidative stress
[37]. Therefore, we hypothesized that oxidative stress
might promote transcription of host gene Dnm2 and
miR-638 was cooperatively upregulated. Furthermore, our
data also showed that HCC patients with high risk had a
higher expression level of miR-638 than low risk group.
However, the association between miR-638 and cancer
prognosis was inconsistent. Some studies showed that the
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Figure 8: Four miRNAs and oxidative stress-related genes in HCC. (a) Heatmap of 90 oxidative stress-related gene expressions in HCC
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downregulation of miR-638 was involved in malignant
phenotypes of osteosarcoma, gastric carcinoma, and colorec-
tal carcinoma [38–40]. By contrast, Bhattacharya et al. [41]
reported that miR-638 promoted melanoma progression.

Besides, Ren et al. [42] also found that miR-638 acts as an
oncogene and promotes cell proliferation and metastasis in
esophageal squamous cell carcinoma and breast cancer cells.
Considering our data did not get a statistically significant
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Figure 9: Prognosis values of four miRNAs in HCC. (a) Kaplan-Meier curve of overall survival for patients with different risk groups
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P value, the jury must refrain from drawing a firm conclu-
sion until a well-designed clinical study confirms or refutes
the above findings.

Additionally, we also observed that miR-150-3p was
induced by oxidative stress and was not depended on
p53 overexpression. However, its functions in oxidative
response and liver carcinogenesis have yet to be unra-
velled. It was reported that miR-150-3p could be induced
by NF-kB activation [43]. Considering the important roles
of NF-kB pathway in oxidative stress response and inflamma-
tion [44], investigating the underlying interaction between
NF-kB and miR-150-3p will be of particular interest to study
the molecular mechanisms of oxidative stress response in
liver carcinogenesis.

Taken together, we identified four oxidative stress-
responsive miRNAs (miR-34a-5p and miR-1915-3p, but
not miR-638 and miR-150-3p) and further demonstrated
p53-dependent and p53-independent mechanisms of
miRNA expression regulation in HCC. Given a critical
role for oxidative stress in carcinogenesis, our present
findings have significant clinical implications. These miR-
NAs might offer new potential strategy for cancer diagno-
sis and prognosis.
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