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Abstract: The mineralized tissues (alveolar bone and cementum) are the major components of
periodontal tissues and play a critical role to anchor periodontal ligament (PDL) to tooth-root
surfaces. The integrated multiple tissues could generate biological or physiological responses to
transmitted biomechanical forces by mastication or occlusion. However, due to periodontitis or
traumatic injuries, affect destruction or progressive damage of periodontal hard tissues including PDL
could be affected and consequently lead to tooth loss. Conventional tissue engineering approaches
have been developed to regenerate or repair periodontium but, engineered periodontal tissue
formation is still challenging because there are still limitations to control spatial compartmentalization
for individual tissues and provide optimal 3D constructs for tooth-supporting tissue regeneration
and maturation. Here, we present the recently developed strategies to induce osteogenesis and
cementogenesis by the fabrication of 3D architectures or the chemical modifications of biopolymeric
materials. These techniques in tooth-supporting hard tissue engineering are highly promising
to promote the periodontal regeneration and advance the interfacial tissue formation for tissue
integrations of PDL fibrous connective tissue bundles (alveolar bone-to-PDL or PDL-to-cementum)
for functioning restorations of the periodontal complex.

Keywords: biopolymers; alveolar bone; cementum; tissue engineering; regenerative medicine;
fabrication; periodontal tissues

1. Introduction

1.1. Tooth-Supportive Structures; Periodontal Tissues

The fundamental function of periodontal tissues is to support the teeth during external stimulation,
such as mastication and occlusion, as well as position the teeth in the alveolar bone sockets [1,2].
The periodontal complexes are composed of the alveolar bone: mineralized tissue to support the
tooth and tooth-supporting tissue; the periodontal ligament (PDL): the fibrous connective soft tissues
with the specific angulations to transmit mechanical stimulation; the cementum: the mineralized
layer on the tooth-root surface that anchors the PDL fibrous bundles to the tooth-dentin surface;
and the gingiva: the soft tissue on the alveolar bone crests that prevents microbiome invasion into the
periodontal complexes [1,3–5]. Recently, many different studies have concentrated on engineered PDL
formations with perpendicular or oblique orientations to the tooth-root surface using biopolymer-based
scaffolds [6,7] or PDL cell sheet technologies [8–10]. PDL tissues within 200–300 µm interfaces
are situated between two different mineralized tissues, such as the alveolar bone and cementum,
for mastication-mediated adaptations or biomechanical transmission [1,5,11]. PDL Sharpey’s fibers,
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which are the end terminals of collagenous PDL bundles and facilitate the insertion of PDL fibers into
mineralized tissues (bone and cementum), can generate biochemical responses [12–14]. Therefore,
the mineralized tissues that anchor Sharpey’s fiber bundles are important to structuralize the periodontal
complex (alveolar bone–PDL–cementum) as tooth-supporting architectures (Figure 1) [5,13].
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The mandible has two different bone tissues: basal bone and alveolar bone, and they can be
physiologically recognized based on mineral densities and biochemical evaluations [15,16]. The basal
bone is formed in the fetus prior to tooth development, as part of the skeleton, and can be existed for
the oral maxillofacial structure retention even though alveolar bone is completely resorbed after tooth
loss [17]. The main roles of the basal bone in the cranial–oral–maxillofacial complex are having various
facial muscle attachments for movement and containing mandibular canals for the alveolar nerve
and vein-artery systems, rather than supporting the teeth [17]. The alveolar bone in the periodontal
complex is the part of the maxilla or mandible for the teeth and is a dynamic tissue for adapting
architectures and generating responses against biomechanical stimulation from tooth locomotion,
mastication, and occlusion, which can be transmitted from the teeth and PDLs [16]. Therefore, tooth
movements are significantly associated with the rapid remodeling (formation–resorption) of alveolar
bone tissues and are continuously performed to generate the homeostatic balance between resorption
by osteoclastic cells and apposition by osteoblastic cells [18,19]. As a result of bone remodeling
processes, the mineral density of the alveolar bone surrounding the teeth can have a lower mechanical
stiffness than basal bone structures [18,19]. Moreover, interfacial structures, which are the mineralized
tissues on the socket surfaces between the alveolar bone and the PDL regions, can be used as anchorage
of Sharpey’s collagenous fiber bundles of the PDLs to form hierarchical architectures for systematic
tooth-supporting functions [1,3,20].

Cementum is the mineralized tissue layer on the tooth-root surface and plays the critical role
of PDL functionalization by anchoring collagenous Sharpey’s fiber bundles to tooth-root dentin
surfaces [14,21–24]. There are two major classifications of cementum: the acellular extrinsic fiber
(acellular) cementum and the cellular intrinsic fiber (cellular) cementum [25–27]. Acellular cementum is
found on the cervical and mid-portion of tooth roots with thin layers (50–200 µm thickness) and plays a
pivotal role in attaching principal fibers (Sharpey’s fibers) onto tooth-root dentin surfaces [14,28]. It has
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limited cementogenic potential and receives biological supplements through the PDL interfaces due to
the absence of vasculatures in the cementum [14,28–30]. Hence, acellular cementum–PDL integration
can systematically transmit mechanical forces by mastication or occlusion [3]. Cellular cementum is
made up of cementocyte-embedded mineralized layers on the apical portion of the tooth-root surfaces
with various thicknesses in different teeth, such as incisors (400–600 µm), canines (approximately
500 µm), premolars (300–1000 µm), and molars (700–1500 µm) [25,31,32]. Because of cementogenesis,
cementoblasts are considered to be a unique phenotype, whereas positional osteoblasts are not [33].

1.2. Periodontal Destruction by Periodontitis and Therapeutic Strategies

Periodontitis (or periodontal disease) is one of the most common inflammatory infectious diseases
affecting humans [34,35] and severe forms lead to tooth loss [13,36,37]. Fundamentally, periodontal
disease is initially triggered by bacteria or bacterial metabolic products; however, the results are
mainly inflammatory responses and the subsequent destruction of the systematically interconnected
tooth-supporting structure, i.e., alveolar bone–PDL–cementum [36,38–40]. In addition to progressive
loss of periodontal complexes, periodontal disease is suspected as a co-factor in systemic diseases,
such as diabetes mellitus, cardiovascular, liver, or lung disease [40,41].

Conventional therapeutic approaches have focused on eliminating inflammatory sources,
preventing disease progression, and regenerating periodontia using osteoconductive or osteoinductive
biopolymeric materials, which commonly contain bioactive signaling molecules [42–46]. However,
periodontal tissue formations are extremely limited and unpredictable in terms of the regeneration
process due to structural complications, hierarchical constructs with micron-scaled dimensions,
and elaborate tissue integrations for a functioning restoration [3,47]. To overcome these limitations,
various biologically achievable strategies in the regenerative medicine of periodontal tissues have
recently been proposed for the restoration of lost tooth-supporting structures and multiple tissue
integrations [21,48–52]. Moreover, computer-aided-design (CAD) technology has been utilized to
design and manufacture biopolymeric scaffolding systems to attempt the spatiotemporal regeneration of
periodontal tissues with structural integrations for tooth-supporting function restorations in preclinical
situations [53,54]. Although the study outcomes of periodontal tissue engineering treatments have been
tremendously promising for novel therapeutic developments, such as mineralized tissue formations
with dimensional controls for spatial compartmentalization, and complete integrations of hard and
soft tissues like alveolar bone–PDL or PDL–cementum for functioning restorations in periodontal
complexes, many challenges remain. In this review, we outline the recently proposed biomaterial
fabrication techniques for tooth-supporting hard tissue regeneration, such as the alveolar bone and the
cementum surrounding the teeth.

2. Natural Biopolymers for Periodontal Hard Tissue Regeneration

2.1. Collagen and Denatured-Collagen (Gelatin) Matrices

Collagen, as a natural polymer, is the most abundant extracellular matrix (ECM) protein;
it is present within mineralized tissues, connective fibrous tissues, and various organs [55–57]
and provides essential structures to support cell–tissue morphogenesis [58–60]. The interaction
between collagen matrices and cells–tissues can produce various signaling molecules to regulate
cell adhesion, proliferation, differentiation, and migration [61] and physiologically promote tissue
development [58,62]. The collagen has typical triple-helical structures of three polypeptide chains,
and their supramolecular organization can be characterized by its extreme complexity and the various
functions with tissue-adaptable forms [63,64]. Of the many different types of collagen, type-I collagen
is the most abundant and forms the main structures of mineralized tissues as well as soft tissues such as
ligaments, including PDLs or gingiva fibrous tissues in dental and craniofacial tissue complexes [2,38,65].
In particular, the formation of calcium-phosphate crystals within the collagen fibrils, as the mineralized
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tissue develops, endows them with mechanical properties such as load bearing ability, tensile strength,
and torsional stiffness [66–68].

Regarding their biological aspects, low antigenicity and high biocompatibility are extremely
important for implantable biomaterials [69–71], and the biodegradability of type-I collagen matrices
(or fibril structures) facilitates the bone remodeling process by osteoblastic and osteoclastic cells [72,73].
Moreover, collagen matrices can incorporate various growth factors or biologics [74,75] and so can
be fabricated to deliver bioactive molecules for mineralized tissue regeneration in the form of gels,
nanofibrous membranes, and scaffolds [58,76–78]. The denatured collagen matrix gelatin has been
widely utilized as a drug delivery system [79,80] and in craniofacial bone tissue engineering in preclinical
or clinical scenarios [81,82]. Compared with collagen, the biodegradability and mechanical properties
of gelatin materials can easily be controlled using various cross-linking methods [83–85], and for this
reason, different types of gelatin matrices have been developed as carriers for biomolecule-release
systems [86,87] and in bone tissue regeneration scaffolds [88,89].

2.2. Fibrin Matrices

The fibrin matrix (or fibrin) is a typical natural biopolymer, which can be formed by fibrinogen
polymerization with thrombin for blood coagulation [90,91]. Briefly, fibrin can be created by the
polymerization of soluble fibrinogen monomers, which are formed after the specific cleavage of
fibrinogen by the serine protease thrombin [92]. Interestingly, the concentration of thrombin is the
key parameter to provide various physical properties, such as stiffness or plasticity with structural
specifications, in the fibrin matrix with an insoluble 3D network [91]. The concentration of thrombin
and fibrinogen can act to model fibrin filament networks and fiber densities to modify matrix elasticity
and pore geometries [90,91,93,94].

Moreover, fibrin matrices can easily be fabricated by controlling the concentration of thrombin
molecules, which can regulate interactions of the cell/tissue–fibrin matrix for enzymatic biodegradability
or tissue regeneration as well as the main functions of fibrin matrices, such as physiological hemostasis
and initial tissue wound sealing [90,91]. Fibrin degradation (fibrinolysis) is mainly regulated by
the cell surface-associated plasmin, which is a complex of soluble plasminogen and plasminogen
activators [90,95]. On the basis of the degradation mechanism, fibrinolysis may be the key player in
the temporal and spatial arrangement to promote bone tissue regeneration and tissue infiltration into
defects [96–98]. Therefore, controllable biodegradability and biological compatibility have practical
potential for both 3D scaffolds and the characterization biopolymers for drug delivery systems
with additional biologics, such as cells, enzymes, and growth factors, in order to promote hard
tissue regeneration [99–101]. As a result of their relatively poor mechanical properties, and despite
their excellent biological potential, composite biomaterials like fibrin-synthetic polymer materials
or fibrin-inorganic materials have been recently developed for use in 3D architectures and have
been investigated to improve their biomechanical strength for musculoskeletal and dental tissue
engineering [102,103]. In addition to scaffolding systems, fibrin can be manipulated in the form of
fibrin microbeads to encapsulate stem cells [104,105] and be used in fibrin-coating applications on
more mechanical-stable materials [106,107] and injectable fibrin hydrogels [92,103,107–109].

3. Synthetic Biopolymers for Periodontal Hard Tissue Regeneration

3.1. Poly Lactic-co-glycolic Acid (PLGA)

Regarding the synthetic biopolymers, poly lactic-co-glycolic acid (PLGA) has been approved by
the US Food and Drug Administration (US-FDA) and is widely utilized in various clinical applications
in tissue engineering and regenerative medicine due to its biocompatibility, nontoxicity, mechanical
properties, and fabricable biodegradability [110–112]. On the basis of its properties, many applications
have been investigated, such as resorbable sutures, wound healing materials, 3D scaffolds for tissue
engineering, and drug delivery systems with controlled release mechanisms [69,113]. PLGA is an
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aliphatic degradable biopolymer and random copolymer of poly lactic acid (PLA) and poly glycolic acid
(PGA) with lactic acid/glycolic acid (LA/GA) ratios [111,114]. Theoretically, PGA has more crystalline
structures with a higher hydrophilicity than PLA, which has the methyl group on a backbone chain.
Therefore, the molecular ratio of monomers (LA/GA) is one of the major parameters to critically
determine the biodegradation rates and characterize the mechanical properties of copolymerized
PLGAs [115]. For example, the PLGA 75:25 (75% LA and 25% GA) demonstrated more amorphous
structures, a lower hydrophilicity, and slower degradation than PLGA 50:50 [116,117]. As a result of
the higher hydrophilicity of the amorphous PLGA copolymer with a higher ratio of PGA (e.g., PLGA
50:50), more water absorption is possible which results in faster hydrolytic degradation rates [116,118].
Therefore, the hydrolysis rates may be dependent on different ratios of LA/GA during fabrication,
and the copolymerization process could be used to manufacture optimal drug delivery systems with
degradation kinetics [119,120]. In addition, highly crystalline PGA has greater mechanical properties
than PLA, including strength, toughness, and elasticity, so copolymer PLGA could also be modified to
obtain the required mechanical or physical properties [119,121].

Rather than 3D scaffolding architectures for bone regeneration, the PLGA biopolymer has
been mainly considered and utilized to create nano-/micro-particles to deliver biologics such as
growth factors, proteins, drugs, or cells to target tissues [78,111,122–126]. Moreover, PLGA-based,
resorbable barrier membranes have been manufactured for guided bone regeneration (GBR) techniques,
which prevent soft tissue infiltration and induce bone formation in defect sites in periodontal tissue
engineering [118,127–130].

3.2. Poly-ε-caprolactone (PCL)

Poly-ε-caprolactone (PCL) has been extensively investigated for medical applications in
mineralized tissue and soft tissue engineering, because it is biocompatible and biodegradable
(or hydrolytic-degradable) [131–133]. Since its approval by the US-FDA, PCL has been utilized
for urgent specific applications in clinical situations, for example, as an additive manufacturing
material for periodontal scaffolds or tracheal splints [134–136]. PCL is a semi-crystalline biopolymer
and has a lower melting temperature (Tm = ~60 ◦C) than PLA (Tm = 130~180 ◦C), PGA (Tm = ~230 ◦C),
or PLGA (depending on copolymerization with specific ratio of LA/GA) and a higher solubility to
various organic solvents [131,133,137]. On the basis of its molecular characteristics, PCL is easily
processible to achieve the required properties for various pharmaceutical or medical applications,
such as great elasticity, viscoelasticity, ductility, and elongation at break, even though it has relatively
poor mechanical stiffness [138–140]. In particular, as a result of the low glass transition temperature
(Tg = −60 ◦C), the ductility of PCL (in contrast to the brittleness of PLA, PGA, and PLGA) can be
complemented with a similar viscoelasticity to bone and a high compressive strength for load-bearing
applications in musculoskeletal tissue engineering [141–144]. Therefore, PCL is more adoptable as a
bone substitute biomaterial in tissue engineering and regenerative medicine [145–147].

In addition to the mechanical characteristics, PCL has a slower biodegradation rate than other
polyester materials due to hydrolytic chain cleavage (hydrolysis) of the aliphatic ester backbone in
physiological environments because of the hydrophobic nature by the 5-CH2 moieties in the repeat
units (Figure 2) [131,139]. The longer biodegradation rate of PCL scaffolds could make spatiotemporal
microenvironments during osteogenesis and tissue maturation at defect sites possible within a few
years [131].
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4. Alveolar Bone Regeneration Using the Scaffold Fabrication Technique

4.1. Electrospinning for Alveolar Bone Tissue Regeneration

The electrospinning technique creates nano-/microfibrous constructs, which mimic ECMs in
terms of their structural and morphological properties and so are able to modulate cell-to-material
interactions and generate efficient biological responses for tissue morphogenesis [148,149]. Regarding
the spatiotemporal arrangements for tissue regeneration using electrospun constructs, the parameters
are adjusted to control fiber sizes, porosity, pore interconnectivity, and the surface area of the structures.
In Table 1, the typical parameters used in the electrospinning technique are categorized and described,
including the environment, the material solution or melt electrospinning, and electrospinning process
parameters [149–153]. In spite of such advantages as structure control, ease of fabrication, and the
relatively low cost, this technique is limited to manufacturing 3D structures with various micron-scaled
fiber dimensions [149,154]. Recently, melt electrospinning fabrication has been developed which avoids
using various toxic organic solvents, overcomes the significant dimensional limitations, and allows
for the creation of a spatial microstructure with nanofibers and macroscopic pores for bone tissue
formation (Figure 3) [155–159].

Table 1. Various electrospinning parameters were described. The parameters should be significantly
considered because they could affect electrospun fibrous product qualities.

Environment Parameters Material (Polymer Solution or Melt)
Parameters

Electrospinning Process
Parameters

• Humidity
• Temperature

• Concentration of
polymer solution

• Properties of polymer solution
or melt

• Molecular characters
� Molecular weight
� Polymer conductivity

• Distance of needle-collector
• Needle diameters
• Electric field by voltage
• Flow rate
• Collectors

� Plate type
� Drum (rotating) type

Vaquette et al. investigated a multiphasic architecture, which was assembled with a solution
electrospun membrane, a melt electrospun 3D scaffold, and a multilayered cell sheet construct
for hierarchical periodontal complex regeneration [159,160]. The study demonstrated that melt
electrospun architectures could provide high porosity with significant interconnectivity [160]. Briefly,
two compartmentalized, biphasic PCL scaffolds were manufactured using solution electrospinning
with biopolymeric materials in organic solvent for PDL and melt electrospinning for alveolar bone
regeneration [160]. After the surgical creation of a periodontal defect to expose tooth-root surfaces in an
ovine model, the multilayered scaffolds were transplanted for periodontal complex regeneration [160].
In particular, the melt electrospun fibrous scaffolds had the flexibility to allow high geometric
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adaptation to periodontal defects and optimize tooth-supporting bone structure formation with specific
fibrous connective tissue interfaces [160]. Although cell sheet constructs played a biological role in the
periodontal regeneration, the melt electrospun scaffolds allowed osteogenesis and bone ingrowth due to
their large interconnective pores, 3D geometries, and nanofibrous topographies [160]. Digital micro-CT
and histology images showed that alveolar bone structures were adaptively regenerated on tooth-root
surface geometries with a specific thickness for the fibrous connective tissues, i.e., PDLs (Figure 4B,C).
In other words, multiphasic nanofibrous scaffolds, which were manufactured and assembled by two
different electrospinning methods, significantly contributed to the compartmentalization of multiple
tissue formations and controlled, spatiotemporally, the hierarchical architecture dimensions of alveolar
bone formation (Figure 4) [160].
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electrospinning membranes were shown with optical images and scanning electron microscopic (SEM)
images (A). After assembled two different membranes (B), the multiphasic scaffolds were transplanted
to the periodontal defect sites in the ovine model. (C) The micro-computed tomographic (micro-CT)
demonstrated the alveolar bone formation with the different time-points (5 weeks and 10 weeks) and
(D) hematoxylin and eosin (H&E) stained histology showed the mineralized tissue neogenesis around
tooth-root surfaces; alveolar bone and cementum. (nb: new bone, tn: top notch, bn: bottom notch, bv:
blood vessels, nc: new cementum, MES: melt electrospun scaffold, black arrow: solution electrospun
membrane, black square arrowheads: stacked melt electrospun fibers, #: periodontal attachment on
newly formed bone, black round arrowhead: oblique PDL fiber insertion, white stars: periodontal
regeneration). Adapted with permission from the reference [160].

4.2. 3D Printing Techniques for Alveolar Bone Tissue Regeneration

Regarding bone tissue engineering and regenerative medicine, 3D printing techniques have
been actively investigated and 3D structures have been manufactured using various methods,
such as fused deposition modeling (FDM) through the extrusion of molten synthetic thermoplastic
biomaterials, selective laser sintering (SLS) through the recrystallization of biopolymeric powders
using a scanning laser beam, and bioprinting by fabrication with bioink materials including cells, drugs,
or biologics [134,161–164]. After computer-aided design (CAD)-based 3D architectures or medical
image-based datasets are created in the stereolithography (STL) file format, which is easily adoptable
for different 3D printing systems, selected biopolymeric materials could be printed using layer-by-layer
manufacturing systems, and selected with the required parameters, e.g., resolution, feature dimension,
biomaterial properties, and regeneration target tissue specificity [13,134,165,166]. Compared with
other craniomaxillofacial bone constructs, alveolar bone scaffold design and manufacture as a
tooth-supporting tissue remains a challenge due to the structural complexity and geometric adaptability
of tooth-root surfaces [2,3,38]. In addition, fibrous connective tissue regions (PDL interfaces with a size
of approximately 250–300µm) should be secured between the alveolar bone and teeth to avoid ankylosis,
i.e., the fusion of the bone to the tooth-root surface during alveolar bone regeneration. Therefore,
compartmentalized structures for a single scaffold system in the alveolar bone and PDL regions should
be designed and manufactured with certain critical requirements, including a manufacturing accuracy
and printing resolution appropriate for periodontal hierarchical architectures [1,13,167].

FDM has been simply utilized for microchannel fabrications with dimensional controls, but the
low resolution and accuracy limit it with regard to micron-scaled architecture designs for bone tissues
as well as angularly organized PDL regeneration [168]. In 2012, a medical image-based periodontal
defect-fit scaffolding system was investigated to promote periodontal tissue infiltration and ingrowth
to support tooth structures using the 3D wax printing technique [54,166]. Although there were more
steps for scaffold fabrication due to casting the PCL biopolymer with sacrificial wax molds, the 3D
wax printer provided a high accuracy and resolution for microarchitectures to modulate periodontal
tissues. On the basis of this approach, Park recently developed a prototype of a periodontal complex
scaffold to be used as the spatial platform for bone–PDL–cementum formation [13]. Using the 3D
reconstructed tooth image which was generated using microcomputed tomography (micro-CT) and
created in the STL file format, a bone scaffold with a bioactive factor loading space and cementum
layer was designed; it also incorporated a PDL-guiding surface with microtopographies and was
manufactured using the 3D wax printing system and the PCL solution casting method [6,13,54,166].

Rasperini et al. adopted a preclinical concept involving structural compartmentalization for
periodontal complex neogenesis using the fenestration defect in a rodent model [166] for clinical
applications [134]. On the basis of the cone-beam CT image dataset of a labial periodontal
defect, the customized fiber-guiding scaffold was designed and manufactured using the SLS
system [134]. Although the preclinical study demonstrated that the 3D wax printing system could
create microstructure details in small features, the organic solvents used to remove wax molds
(the polymer solution casting method) are not allowed in clinical situations, so the SLS system
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with the US-FDA-approved PCL biomaterial was exploited for this clinical situation (Figure 5) [134].
Approximately 82% adaptation of the scaffold to the defect geometrywas clinically transplanted,
and the site showed no severe clinical findings, such as acute or chronic inflammation, infection,
or dehiscence for over 1 year [134,168]. After 14 months, the fragments of the transplanted scaffold
were removed and analyzed for mineralized tissue healing and biodegradation by analyzing the
molecular weight difference between baseline and at 14-month [134]. Hematoxylin and eosin (H&E)
and Masson’s trichrome staining were performed to show tissue attachment to the scaffold matrices
and new bone formation within a milieu of primarily granulomatous tissues [134,168].
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Figure 5. The clinical application for periodontal tissue regeneration using 3D printing system, selective
laser sintering (SLS) technique. The scanning the labial defect image in a mandible was utilized to
design a periodontal defect-fit scaffold and created by SLS 3D printing system. After sterilizing the
scaffold, it was transplanted to the defect sites in the human patient. Adapted with permission from
the reference [134].

4.3. Biologic Immobilization to Localize Bone Tissue Formation Using the Chemical Vapor Deposition (CVD)
Polymerization Technique

As a result of effective tissue regeneration, US-FDA-approved growth factors have been featured
as biological factors, such as bone morphogenetic proteins (BMPs) for mineralized tissue formation
(BMP-2 and BMP-7) and platelet-derived growth factor (PDGF) for multiple periodontal tissue
neogenesis [78,169]. In particular, growth factors can recruit endogenous stem cells, which originate
from the tissues around transplanted scaffolds and regulate to directly promote osteogenic differentiation
in stem cells [170,171]. Therefore, growth factor (especially, BMPs for bone tissue formation) localization
and immobilization with scaffolds have been recently investigated in techniques such as the physical
encapsulation/immobilization of growth factors, the absorption of growth factors into scaffolds,
and layer-by-layer self-assembly [75,78,169]. Although many studies have reported the efficacy of
their growth factor delivery systems in preclinical and clinical situations, the delivery methods are still
limited by the potential toxicity of the high doses, the high doses required to overcome biologic loss,
and their short half-lives [78,172]. Moreover, they are unpredictable in delivering growth factors for
target tissue regeneration at an optimal concentration, and it is still a challenge for various biologics to
promote multiple tissue regeneration within complicated microenvironments.

Instead of rapidly degradable growth factors, gene therapies have been recently investigated to
immobilize viral vectors on polymeric scaffold surfaces for alveolar bone tissue formation [173–175].
In particular, the chemical vapor deposition (CVD) technique can modify FDA-approved biopolymeric
material surfaces with chemical conjugations of antibodies, which mediate in the immobilization of viral
vectors on the scaffold surfaces [169,173,174,176]. Hao et al. treated three different biomaterial surfaces
using the CVD technique to immobilize adenoviral vectors of PDGF-BB (AdPDGF-BB) and BMP-7
(AdBMP-7) for spatially compartmentalized tissue formations [174]. For the covalent immobilization
of viral vectors, after a thin polymer layer including pentafluorophenol (PFP)-ester groups was
coated on the surfaces of disc-shaped biomaterial substrates using the CVD polymerization technique,
an anti-adenovirus antibody was chemically tethered to the coated surfaces (Figure 6) [174,177,178].
The chemically modified substrate surfaces had adenovirus-binding specificity for an antigen–antibody
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interaction, and covalent immobilization of AdBMP-7, and AdPDGF-BB was successfully verified
using X-ray photoelectron spectroscopy (XPS) and immunofluorescence analysis (Figure 6) [174].
To validate the bioactivity of tethered AdBMP-7 and AdPDGF-BB for periodontal tissue engineering,
human PDL progenitor cells were seeded onto three different materials. In the results, the transduction
efficiency of viral vectors to PDL cells was analyzed by protein expression levels from cell proliferation
by AdPDGF-BB and osteogenic differentiation by AdBMP-7 (Figure 6) [174]. Hao et al. demonstrated
that fabrication could become the potential candidate method for selecting the bioactivities of different
regions in a single scaffold with sustained protein production, more localized target tissue formation,
and optimal protein expression in regeneration-required sites [174].
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Figure 6. Immobilization of viral vectors for periodontal tissue regeneration. The schematic illustration
showed the process of viral vector (adenovirus) attachments on biomaterial surfaces (A). Immobilized
gene therapy technique promoted alveolar bone formation in the fenestration periodontal defect
sites compared with untreated scaffolds. The 3D micro-computed tomography (micro-CT) images
could be quantitatively and qualitatively analyzed for the mineralized tissues regeneration with
cementum-denuded root coverage (B). The hematoxylin & eosin staining histology demonstrated
alveolar bone formation around tooth-root surfaces with the secureness of PDL regions (C). (B: bone,
TR: tooth root, S: scaffold, arrow: orientation of cell nuclei to tooth-root). Adapted with permission
from the reference [173,174].

On the basis of the viral vector immobilization technique using the CVD method [174],
Pilipchuk et al. developed the customized scaffolding system to induce bone formation at the
periodontal fenestration defect, which involved the dimensional complication of controlling the
regeneration of the alveolar bone, the tooth-supporting bone structure [173]. After manufacturing
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random-porous scaffolds, adenoviruses encoding genes for BMP-7 (AdBMP-7) and PDGF (AdPDGF-BB)
were chemically tethered onto scaffold surfaces [173]. The microcomputed tomographic images were
analyzed for mineralized tissues at the defect sites and adenovirus-immobilized scaffolds significantly
promoted newly formed alveolar bone tissues with or without PDL-guiding patterns (Figure 6) [173].
Although there was a limitation regarding optimizing the required concentration of viral vectors for
bone regeneration within the rodent fenestration defect of 2 mm × 3 mm for the CVD immobilization
technique, the single (AdBMP-7) and dual (AdBMP-7 and AdPDGF-BB) biologic treatment groups
interestingly showed the acceleration of bone tissue formation filling defects around tooth structures
at 3 weeks (Figure 6) [173]. Using the histological images, the regeneration of tooth-supporting
mineralized tissues was assessed and the interfacial tissues (the fibrous connective tissues) were
qualitatively analyzed between the bone and tooth surfaces (Figure 6) [173]. In this study, the CVD
method provided the selective bioactive surfaces for regionally compartmentalized scaffolds and
immobilized the required gene-encoded viral vectors to induce various tissue formations with tissue
integration through mineralized tissue formation and deposition.

5. Cementum Regeneration Using Scaffold Fabrication

5.1. Chemical Fabrications of Fibrin Scaffolds

Cementum of the periodontal complex is the interfacial mineralized tissue between tooth dentin
and PDL tissues and plays a pivotal role in facilitating the attachment of PDL fibrous tissue bundles
to the tooth-root surface [14,179]. Therefore, cementogenesis (cementum formation) surrounding the
tooth surfaces is one of key procedures in periodontal regeneration for the systematic restoration
of tooth-supporting structures [180]. Although numerous animal studies using various periodontal
regenerative techniques have shown that cementum regeneration is feasible, it is still a challenge
to control and predict the spatiotemporal cementum deposition on tooth-root surfaces for the PDL
anchorage and Sharpey’s fiber insertion [1,38]. As a result of this complication, some investigations
currently use periodontal stem cells to promote cementogenesis by cementogenic differentiations with
physiological or pathological responses rather than using developed biomaterial-based engineered
platforms [1,181].

Recently, Park et al. recognized that the control of fibrinolysis can regulate and enhance
cementogenesis in vitro and in vivo, including functioning restorations of new cementum [14,179].
Because cementoblastic cells in natural fibrin matrices demonstrate higher expression levels of the
plasminogen activator, which contributes to fibrinolysis more than osteoblastic cells, cementoblast
apoptosis is more rapidly induced by the loss of cementoblast–fibrin (or cell–material) interaction [14].
To improve cementoblast viability in fibrin matrices, the plasminogen inhibitor (ε-aminocaproic
acid; ACA) was added to matrices in order to slow down fibrinolysis, which is the process of
substrate destruction for cell survival and maintains the polymerized fibrin structures for cementogenic
differentiation by cementoblasts [14]. In the results, the chemically modified fibrin (ACA-fibrin)
matrices promoted cementogenic differentiation for mineralization and higher expression levels of
mineralization-associated molecules in in vitro studies without fibrinolysis [14]. On the basis of this
modification, cementum regeneration around the tooth-root surfaces in a canine model was performed
with: (1) traditional fibrin; (2) ACA-fibrin; and (3) enamel matrix derivative (EMD) [14]. Immature
porcine tooth enamel protein (EMD) is generally known to promote various activities involving
periodontal hard tissue formation from preclinical and clinical studies [182,183]. Therefore, EMD has
been clinically approved by the US-FDA and is currently commercially available under the name
Emdogain® by Institut Straumann AG, Switzerland [184]. In quantification assessments of alveolar
bone formations using micro-CT, there was no statistical difference between ACA-fibrin and EMD
groups in defect sites (Figure 7); however, ACA-fibrin matrices promoted cementogenesis around the
tooth-root surface with histological and morphological differences compared with two other groups
(Figure 7) [14]. In particular, anchored Sharpey’s fiber bundles in the PDL interfaces were found around
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newly formed mineralized tissue surfaces (the alveolar bone and cementum). The connective fibrous
tissue insertion between mineralized tissues is typically important to form structural integrations and
compartmentalized multiple tissue complexes [14]. Therefore, the chemical control of biomaterial
degradation could regulate the formation of the micron-scaled mineralized layer (cementogenesis) and
spatially facilitate specific multiple periodontal tissue formations without ankylosis [14].Molecules 2020, 25, x 13 of 24 
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Figure 7. Fibrin fabrication to promote periodontal mineralized tissue formations; osteogenesis and
cementogenesis. Using the canine model, the periodontal defects around the tooth-root surfaces
were surgically created and biomaterials were transplanted (traditional fibrin, ε-aminocaproic acid
(ACA) modified fibrin (ACA-fibrin), and enamel matrix derivative (EMD)) (A). For morphological
analyses with Sharpey’s fiber insertion, hematoxylin and eosin (H&E) staining and periostin staining
methods were utilized (B). In particular, cementum regeneration with Sharpey’s fiber anchorages
could be significantly found in the ACA-fibrin group even though the alveolar bone formation
showed in both ACA-fibrin and EMD groups (B). (black dash arrow: surgically created defect, yellow
triangle: cementum layer, white arrow: Sharpey’s fiber, d: dentin, b: bone, LD: linear distance of
bone regeneration (root coverage), CEJ: cementoenamel junction). Adapted with permission from the
reference [14].
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5.2. Biomimetic Cementum Fabrication Using Collagen Lamella Constructs

In contrast to other mineralized tissues, cementum has a high concentration of fluoride, which is a
great potential candidate as a catalysis to contribute to tissue mineralization and to accelerate cementum
regeneration through mineral deposition on tooth-root surfaces [185]. Recently, Yang et al. developed
collagen scaffolds with fluorine-contained amorphous calcium phosphates (FACP) to promote
mineralized tissue formation on tooth-root surfaces with specific micron-scaled dimensions [185].
To create similar hierarchical constructs to cementum with unique alternating collagen lamella (ACL)
structures, the FACP–collagen scaffold was fabricated using the Bioskiving process, which is a newly
developed method for the 3D scaffolding system using decellularized tendon tissues [185]. In particular,
the technique can three-dimensionally organize the nano-/microstructures of collagen constructs
through a combination of processes, such as sectioning tendon-derived (tenton-decellularized)
structures and stacking sheets with alternating orientations of collagen lamellae (Figure 8) [185,186].
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Figure 8. The biomimetic cementum construction with fluorine, which could catalyzed biomineral
formation in in-vitro and in-vivo. The schematic illustration demonstrated Bioskiving process with
fluorine containment for biomineralization and the constructs of biomimetic cementum were examined
in in-vitro and in-vivo (A). In in-vitro experiments, two different constructs (biomimetic cementum and
decellularized human cementum) had similar expression levels of CEMP-1 after seeding periodontal
ligament (PDL) cells (B). In-vivo study showed that biomimetic cementum structure could stimulate
cementogenic differentiation of PDL cells and promote cementogenesis to form mineralized layer
formation (C-d,D-d). Hematoxylin and eosin (H&E) staining analyzed tissue morphologies with two
different magnifications (low magnification (C-a,D-a) and high magnifications (C-b,D-b)). Masson
trichrome staining was used for collagen and bone ((C-c,D-c)). Immunohistochemical analysis was
qualitatively analyzed for cementogenesis using CEMP-1 (C-d,D-d). Scale bar: 100 µm. Adapted with
permission from the reference [185].
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The Bioskiving process fabricates ACL microarchitectures to mimic the hierarchical twisted
structures of the collagen matrix in cementum [25,187] by controlling the thickness of the constructs
with specifically rotated collagen lamellae [185]. In one study, after ACL scaffolds were immersed
in FACP solution to form biomimetic cementum constructs, biological examinations were designed
and performed to validate various cell activities, such as attachment, proliferation, differentiation in
in-vitro and cementum-like formation, with a high expression level of CEMP-1, the cementogenic
differentiation marker in in vivo (Figure 8) [185]. Because this study showed that biomimetic cementum
structures with human PDL cells were found subcutaneously in immunodeficient mice, it was not
demonstrated that the biomineralized collagen scaffold fabricated using the Bioskiving method was
able to create a cementum layer on the tooth-root surface and tissue integration with the tooth dentin
surface. However, the technique was able to mimic sophisticated hierarchies of human cementum with
rotated-stacked angular microstructures and promoted mineralized tissue formation in physiological
microenvironments [185].

6. Prospective Strategies for Periodontal Hard Tissue Formations

To date, many studies in periodontal tissue engineering have focused on compartmentalizing
and regenerating individual periodontal tissues (alveolar bone, PDL, or cementum) for the specific
dimensions of spatial interfaces using biopolymeric materials. In particular, the biopolymer fabrication
techniques described in this review can promote mineralized tissue formation with the spatiotemporal
regulation of tissue ingrowth into periodontal defects using their geometries, biologic immobilization,
degradation controls by chemical modification, and manufacturing methods for 3D architectures.
Nevertheless, it remains a challenge to achieve multiple tissue integration between mineralized tissue
and fibrous connective tissue bundles, which is the ultimate goal of interfacial periodontal tissue
formation. For the restoration of the regenerated periodontal complex, fibrous tissue calcification
and its neogenic regulation within the specific zone is important as to enhance biomechanical
integration for the hard-to-soft tissue complex, with engineered Sharpey’s fibers acting as the
tooth-supporting structure. In addition to multiple tissue integration, understanding the relationship
between reconstructed hierarchical structures and integrated tissue, functioning with the biomechanical
properties of the alveolar bone–PDL–cementum complexes, is of vital importance. Therefore, the future
strategies of interest are multidisciplinary in nature and involve approaches such as the regulation of
calcified interfacial tissue morphogenesis, the biochemical interactions of cell–tissue materials, scaffold
architecture designs for spatiotemporal arrangements of multiple tissue growth, and the functioning
restoration of the engineered periodontium tooth with integration.
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Abbreviations

PDL Periodontal ligament
CEJ Cementoenamel junction
3D 3-dimensional
CAD Computer-aided design
ECM Extracellular matrix
3D Three-dimensional
US-FDA US Food and Drug Administration
PGA Poly glycolic acid
PLA Poly lactic acid
PLGA Poly lactic-co-glycolic acid
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GBR Guided bone regeneration
PCL Poly-ε-caprolactone
FDM Fused deposition modeling
SLS Selective laser sintering
STL Stereolithography
H&E Hematoxylin and eosin
BMP Bone morphogenetic proteins
PDGF Platelet-derived growth factor
CVD Chemical vapor deposition
AdPDGF-BB Adenoviral vectors of PDGF-BB
AdBMP-7 Adenoviral vectors of BMP-7
PFP Pentafluorophenol
XPS X-ray photoelectron spectroscopy
ACA ε-aminocaproic acid
EMD Enamel matrix derivative
FACP Fluorine-contained amorphous calcium phosphates
ACL Alternating collagen lamella
CEMP-1 Cementoblastoma-derived protein 1
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