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Abstract

MicroRNAs (miRNAs) are promising biomarkers in cancer research. Quantitative PCR

(qPCR), also known as real-time PCR, is the most frequently used technique for measuring

miRNA expression levels. The use of this technique, however, requires that expression data

be normalized against reference genes. The problem is that a universal internal control for

quantitative analysis of miRNA expression by qPCR has yet to be known. The aim of this

work was to find the miRNAs with stable expression in the thyroid gland, brain and bone

marrow according to NanoString nCounter miRNA quantification data. As a results, the

most stably expressed miRNAs were as follows: miR-361-3p, -151a-3p and -29b-3p in the

thyroid gland; miR-15a-5p, -194-5p and -532-5p in the brain; miR-140-5p, -148b-3p and

-362-5p in bone marrow; and miR-423-5p, -28-5p and -532-5p, no matter what tissue type.

These miRNAs represent promising reference genes for miRNA quantification by qPCR.

Introduction

The discovery of the small non-coding RNA lin-4 in Caenorhabditis elegans in 1993 estab-

lished a base for a new line of research in molecular biology [1]. 2,654 human miRNA genes

are currently deposited in the miRBase database [2]. However, some of them are false-positive

entries [3]. This led to the need of alternative databases that could give a true view of all miR-

NAs in existence. One of such databases is MirGeneDB 2.0: in 2020, it contained 556 validated

human miRNAs [4]. MicroRNAs play an important regulatory role in many organisms in

many biological processes. There is little doubt that aberrant miRNA expression may entail

disease initiation and progression [5].
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To date, a large number of works showing how miRNAs are distributed in healthy and dis-

eased human tissues have been published [6, 7]. These studies normally seek to identify

human disease-specific miRNAs that have promise for personalized medicine, hence the need

to have accurate miRNA profiling data on the study samples. The most commonly used

approach to addressing this problem is through analysis of miRNA expression levels by qPCR

[8]. This technique is highly sensitive, reproducible and relatively cheap. The main problem

with qPCR-based protocols is one of the choice of an optimum reference gene. Normalization

compensates for variations in the amounts of miRNA following RNA extraction, reverse tran-

scription or that are due to variations in amplification efficiency. A reference gene should have

stable expression in all samples, be expressed together with its target in the study cells and have

a similar stability with target miRNAs, no matter what sample storage conditions. However,

we have yet to know a universal reference gene meeting all these criteria [9]. It has been argued

that normalization is the most accurate, if the reference genes used are in the same class of

RNA as the study targets [10]. Nevertheless, miRNA expression studies most commonly use

non-coding RNAs (U6, U48, U44 etc.). However, non-coding RNAs are not in the same class

of RNA as miRNAs and, therefore, the properties of the former are not the same as those of

the latter, which may results in different efficiencies of extraction, reverse transcription and

PCR amplification. Various authors have demonstrated that, along with miRNAs, small

nuclear RNAs are highly variable in expression, too [11–13]. Multiple studies have demon-

strated that the best choice of reference gene in the analysis of the relative miRNA expression

level is either a miRNA or the geometric mean of several stably expressed miRNAs. Addition-

ally, it is recommended that a reference gene be searched for in each experimental system [9].

The most popular algorithms used for expression stability assessment are geNorm, NormFin-

der and Best Keeper [14–16].

Although qPCR is the most popular technique for measuring miRNA expression levels, it is

not the only one: other molecular genetic methods that can assess the absolute number of

miRNA molecules from one to hundreds at once are in use, too, for example, digital PCR,

NanoString nCounter and sequencing [17–19]. One of the most popular multiplexed systems

used for measuring gene expression is NanoString nCounter. This technique relies on digital

barcoding, requires neither mRNA-to-cDNA conversion by reverse transcription nor cDNA

amplification by PCR [20]. One experimental session included analysis of about 800 miRNAs

in 12 study samples, showing that some miRNAs have variable expression, while the others,

stable. Apparently, the miRNA identified by this technique as being stably expressed may fur-

ther be used as reference genes for qPCR.

The aim of this work was to find the miRNAs that could be used as potential reference

genes from among those miRNAs that are stably represented in the thyroid gland, brain and

bone marrow, according to nCounter miRNA Assay data.

Materials and methods

Clinical samples

1. Thyroid tissue. All biological material was obtained in compliance with the legislation

of the Russian Federation, and written informed consent was provided by all the patients, all

the data were depersonalized. This study was approved by the ethics committee of the Institute

of Molecular Biology and Biophysics of the Siberian Branch of the Russian Academy of Medi-

cal Sciences. We used samples of thyroid tumor tissue surgically removed from 32 patients and

representing different neoplasm histotypes and normal tissue: normal tissue, 16; hyperplastic

nodule, 5; papillary thyroid carcinoma, 2; follicular variant of papillary thyroid carcinoma, 2;

follicular thyroid adenoma, 6; and follicular thyroid carcinoma, 1. Sample collection and
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histology analysis were controlled by a qualified oncologist (Novosibirsk Municipal Clinical

Hospital #1, Oncology Department VI). Detailed clinical information of the patients is given

in S1 Table.

2. Brain tissue. Surgery material was two 1-mm3 bioptic samples from each patient’s

brain: tumoral tissue and non-tumoral tissue taken farther than 2 cm away from the tumor

margin, in a functionally insignificant location. Tumor samples were examined by histology

and assigned to groups according to the 2007 WHO grading system of gliomas: Grade I

(n = 1), Grade II (n = 2), Grade II (n = 2) and Grade IV (n = 1). Detailed clinical information

of the patients is given in S2 Table.

3. Bone marrow tissue. We used 12 cytological specimens obtained by bone marrow aspi-

ration in the Municipal Hematological Center of the Ministry of Health of the Novosibirsk

Region. The study groups were patients with myelodysplastic syndrome (MDS) (n = 3), non-

Hodgkin’s lymphoma without myelodysplasia ((NHL(−MD)) (n = 3) and NHL with myelo-

dysplasia ((NHL(+MD)) (n = 3); the control group consisted of patients with non-cancerous

blood diseases (NCBD) (n = 3). Work with healthy bone marrow donors for allogeneic trans-

plantation is beyond the competence of our clinic. Taken together, we decided to go with a

control group composed of people who had no hematologic cancer, but had indications for

bone marrow examination to exclude one. They were people with secondary anemic and cyto-

penic conditions, in whom leukemias were not confirmed by myelography. Detailed clinical

information of the patients is given in S3 Table.

Isolation of total RNA

Total RNA was extracted using the RNeasy Mini kit (QIAGEN, Valencia, CA, USA) according

to the manufacture’s recommendations.

NanoString nCounter miRNA Expression Assay for miRNA profiling

The expression of 800 miRNAs in tumoral and normal thyroid and brain tissues was evaluated

using the nCounter Human v2 miRNA Expression Assay Kit (NanoString Technologies, Seat-

tle, WA, USA); and that in bone-marrow tissue, using the nCounter Human v3 miRNA

Expression Assay Kit (NanoString Technologies, Inc., Seattle, WA, USA). These procedures

were carried out in accordance with the manufacturer’s protocol. For the NanoString assay,

100 ng of total RNA was isolated from bone-marrow aspiration material. The RNA concentra-

tion was measured by a NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific, Inc.,

Waltham, MA, USA). According to NanoString recommendations, the 260/280 ratio should

be not less than 1.9 and the 260/230 ratio, not less than 1.8, and so were our figures. The data

were analyzed using the nSolver v4 package (NanoString Technologies, Inc., Seattle, WA,

USA). The nCounter assay for each sample consisted of six positive controls, eight negative

controls and five control mRNAs (ACTB, B2M, GAPDH, RPL19, RPLP0). Probes that recog-

nize synthetic mRNA targets were included in the CodeSet at specified concentrations.

Statistical analysis

The following groups of samples were considered for analysis of miRNA expression: ‘thyroid

gland’, ‘gliomas’, ‘bone marrow’, and ‘pooled’. In each group, the miRNAs that revealed less

than 50 molecules in more than 50% of the samples were excluded from analysis. After nor-

malization, the within-group variation of the binary logarithm of the normalized miRNA con-

centration was analyzed.

For each group, the following normalization strategies were considered: normalization

using housekeeping genes; normalization using all miRNAs found; normalization using 75
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most represented miRNAs; and normalization using the positive control. Normalized data

were calculated as the difference between the binary logarithm of the registered number of

miRNA molecules and the binary logarithm of the total number of normalizing molecules.

We used the following measures of variability for the normalized observation data: standard

deviation, range (the difference between the maximum and the minimum), interquartile range

(the difference between the third quartile and the first quartile) and the mean absolute devia-

tion from the median. For each normalization strategy and each measure of variability, 10 least

variable miRNAs are presented in S4–S7 Tables.

Additionally, we determined the most stable miRNAs according to all these measures of

variability and two normalization strategies: one to housekeeping genes and one to the total

miRNA content. Because we were not aware whether some of the measures of variability or

some of the normalization strategies might be more important than some others, we consid-

ered them all equally important. To this end, we determined the rank of miRNAs for each

measure of variability and each of these two normalization strategies: the least variable miR-

NAs were ranked 1, the next least variable miRNAs were ranked 2 and so on.

Additionally, for the ‘pooled’ group, we compared the mean of the logarithms of five least

variable miRNAs based on the sum of the ranks and the logarithms of five next least variable

miRNAs. (Recall that the mean of the logarithms is equal to the logarithm of the geometric

mean.) The comparison was performed using the paired Grambsch test which tests difference

between variances, and the paired Bonett-Seier test which tests difference between mean abso-

lute deviations from median.

Next, we compared the results of the different normalization strategies within the ‘pooled’

group. We compared the ranking orders of five best miRNAs for each pair of normalization

strategies. Five best miRNAs were selected as the miRNAs with the least variances. The com-

parison was performed using the following permutation test. For each pair of normalization

strategies, five best miRNAs were put on a list. The list could have less than ten entries, if some

of the five best miRNAs were indicated by both normalization strategies. Next, each miRNA

was ranked (that is, was assigned its serial number in the sequence arranged in ascending

order of variance) for each normalization strategy. The ranks of the miRNA in this list were

compared between two normalization strategies using the permutation test. The p value was

the probability of obtaining a permutation “as or more extreme” than the permutation corre-

sponding to the difference between these two normalization strategies, assuming all the per-

mutations are of equal probability. “As or more extreme” meant that the sum of the absolute

differences between the ranks is not less than the observed sum of the absolute differences

between the ranks for this pair of normalization strategies. (For each miRNA, the absolute dif-

ference of its ranks under two normalization strategies is found and then all the absolute differ-

ences so found are summed for all miRNAs in the considered sequence.)

Results

Table 1 presents ten most stable miRNAs in the samples: miR-361-3p, miR-151a-3p and miR-

29b-3p in thyroid tissue; miR-140-5p, miR-148b-3p and miR-362-5p in bone marrow tissue;

and miR-15a-5p, miR-194-5p and miR-532-5p in brain gliomas and surrounding normal tis-

sue. Additionally, miR-423-5p, miR-28-5p and miR-532-5p are the most stable miRNAs in

any of these tissues.

For all patients, we compared the mean of the logarithms of the concentrations of five least

variable miRNAs based on the sum of the ranks and the mean of the logarithms of five next

least variable miRNAs. The results of the comparison are presented in S4–S7 Tables. When we

normalized miRNAs to housekeeping genes, p was less than 0.001 for both the paired
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Grambsch test and the paired Bonett-Seier test, which confirmed the assumption of different

variances (the paired Grambsch test) and the assumption of different mean absolute deviations

from the median (the paired Bonett-Seier test). However, when we normalized the same miR-

NAs to the total miRNA content, p was equal to 0.13 for the paired Grambsch test and 0.70 for

the paired Bonett-Seier test.

We performed six pair-wise comparisons of four normalization strategies with the permu-

tation test applied to five (for each group) microRNAs with least variances (for results, see

Table 2). Each p-value is reported as adjusted p-value and unadjusted p-value. The Benjamini-

Hochberg adjustment was used.

As we can see, the different normalization strategies lead to different ‘least variable’ miR-

NAs. The difference between the normalization to the total miRNA content and the normali-

zation to 75 most highly expressed miRNAs failed to reach significance, as was expected.

Discussion

MicroRNAs are biomarkers, which show promise for diagnosis of tumors of various origins,

assessment of antitumor therapy efficacy, survival prognosis and appear to be potential targets

for new antitumor drugs [6]. The most frequently used technique for analysis of miRNA

expression levels is real-time RT-PCR [21]. The main problem with qPCR-based protocols is

one of the choice of an optimum reference gene.

To quantify miRNAs, researchers often use the NanoString system, which directly counts

RNA or DNA molecules without amplification, thus preventing PCR-related errors [20]. In

this work, we used NanoString to quantify miRNAs in three tissue types: tumoral and normal

Table 1. MicroRNAs with the most stable expression in different tissues according to NanoString data.

All tumors Thyroid gland Bone marrow Gliomas

Best variables by

combined rank

Rank

sum

Most stable miRNAs by

combined rank

Rank

sum

Most stable miRNAs by

combined rank

Rank

sum

Most stable miRNAs by

combined rank

Rank

sum

miR-423-5p 64 miR-361-3p 27 miR-140-5p 77 miR-15a-5p 125

miR-28-5p 65 miR-151a-3p 122 miR-148b-3p 112 miR-194-5p 153

miR-532-5p 66 miR-29b-3p 126 miR-362-5p 143 miR-532-5p 155

miR-362-5p 70 miR-425-5p 129 miR-191-5p 153 miR-500a-5p + miR-501-5p 173

miR-425-5p 72 miR-361-5p 135 miR-378i 154 miR-660-5p 193

miR-361-3p 110 let-7b-5p 137 miR-98-5p 174 miR-185-5p 201

miR-191-5p 110 miR-423-5p 145 miR-374b-5p 192 miR-99b-5p 234

miR-140-5p 114 miR-330-3p 154 miR-423-5p 194 let-7d-5p 235

let-7a-5p 125 miR-28-5p 154 miR-29b-3p 215 miR-19a-3p 249

miR-106b-5p 131 miR-301a-3p 169 miR-107 227 miR-140-3p 251

https://doi.org/10.1371/journal.pone.0254304.t001

Table 2. A comparison of various normalization strategies.

Normalization to Adjusted p-value (unadjusted p-value)

Housekeeping genes Total miRNA content 75 most highly expressed miRNAs Positive control

Housekeeping genes 1 0.195 (0.13) 0.028 (0.014) 0.77 (0.77)

Total miRNA content 0.195 (0.13) 1 0.77 (0.77) 0.028 (0.014)

75 most highly expressed miRNAs 0.028 (0.014) 0.77 (0.77) 1 0.028 (0.014)

Positive control 0.77 (0.77) 0.028 (0.014) 0.028 (0.014) 1

Statistically significant differences are in bold (adjusted p < 0.05).

https://doi.org/10.1371/journal.pone.0254304.t002
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thyroid tissue; brain gliomas and adjacent morphologically normal tissue; and bone marrow

tissue with tumoral and non-malignant bone marrow pathologies.

NanoString detect the expression of up to 800 miRNAs in a sample. Normally, only about

200 miRNAs are expressed at sufficiently high levels, with some of them varying between the

samples and the others being invariant. The authors of all publications about NanoString-

based miRNA quantification data are largely interested in finding the most significant differ-

ences in miRNA expression levels between the groups [22, 23]. By contrast, we wanted to find

those miRNAs that have stable expression in all groups. These miRNAs could further be used

as reference genes in an analysis of miRNA expression levels by real-time RT-PCR.

We found that ten most stable miRNAs in the thyroid gland are (in descending order)

miR-361-3p, -151a-3p, -29b-3p, -425-5p, -361-5p, let-7b-5p, -423-5p -330-3p, -28-5p and

-301a-3p. Therefore, any alone or their combinations may be used as a reference gene for anal-

ysis of miRNA expression levels in the thyroid gland by real-time RT-PCR.

In practice, analyses of thyroid tissue by qPCR most frequently involve U6, U44 or U48 as

reference genes [24–26]. However, some authors prefer miRNAs. Mohamad Yusof et al. used

miR-10b-5p and miR-191-5p [27]. Santos et al. proposed a combination of let-7a, miR-103,

miR-125a-5p, let-7b, miR-145 and RNU48 for work with cytological specimens of thyroid tis-

sue [28]. Titov et al. used the geometric mean of miR-197, -99a, -151a and -214 for work with

cytological specimens of FNA-biopsied thyroid material and, to make their choice of reference

genes, relied on NanoString-based miRNA counts [29]. As can be seen, only miRNA-151a

appears in that and the present study. This could be due to the difference in the number of

study specimens: Titov et al. used 12 and we used 36. Apparently, an increase in sample size

may have led to a shift in statistically significant results. However, in a later work, Titov et al.

used the geometric mean of miR-197-3p, -23a-3p, and -29b-3p for work with the same mate-

rial [30]. In the present work, we found one them, miRNA-29b, to be the most adequate refer-

ence gene for analysis of miRNA expression levels in thyroid tissue.

We found that ten most stable miRNAs in brain tissue are (in descending order) miR-15a-

5p, -194-5p, -532-5p, -500a-5p + -501-5p, -660-5p, -185-5p, -99b-5p, let-7d-5p, -19a-3p and

-140-3p. Analysis of literature data showed that U6, U48 or a combination of several small

nuclear RNAs are most frequently used as reference genes [31–34]. Thus, the results of this

work allow a complex normalizer to be formed, consisting of the geometric mean of miRNAs

stably expressed in brain tissue. The use of a complex normalizing factor as a reference gene

will increase the accuracy of analysis of miRNA expression variation.

We found that ten most stable miRNAs in the bone marrow were (in descending order)

miR-140-5p, -148b-3p, -362-5p, -191-5p, -378i, -98-5p, -374b-5p, -423-5p, -29b-3p and -107.

In practice, the researchers tend to give more preference to the use of small nuclear RNAs as

reference genes for qPCR in bone marrow tissues [35–37]. However, some authors are confi-

dent with miRNAs. Morenos et al. used a combination of miR-16 and miR-26b for work with

archived bone marrow specimens [38]. Drobna et al. used a combination of miR-16-5p, -25-

3p and let-7a-5p for work with bone marrow samples from patients with acute leukemia [39].

Costé et al. used miR-191-5p for analysis of miRNA expression levels in human multipotent

stromal cells [40]. Kovynev et al. used a combination of miR-103a, -191 and -378 for work

with bone marrow samples from AML and ALL patients [41]. In our previous work, when we

were deciding on the reference gene for analysis of miRNA expression levels in bone marrow

samples, we used NanoString nCounter and chose the geometric mean of the expression levels

of miR-378 and miR-191. Analysis of miRNA quantification data obtained with NanoString

nCounter showed that the abundance of these miRNAs in the samples was well above back-

ground values, but these miRNAs had the least variable expression across the groups [22].
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In addition to the list of tissue-specific reference genes, we composed a list of miRNAs that

can be used as reference genes, no matter which tissue type they were expressed in (10 most

stable, in descending order): miR-423-5p, -28-5p, -532-5p, -362-5p, -425-5p, -361-3p, -191-5p,

-140-5p, let-7a-5p and -106b-5p.

In this work, miRNA-423 has the least variable expression across the study tissue types, and

so it is the best candidate for a universal reference gene. To date, several works with miRNA-

423 used as a reference gene have been published. Costa-Pinheiro et al. opine that miR-423-5p

is an optimal reference gene for analysis of prostate cancer tissue [42]. Yanokura et al. used

miRNA-423-5p as a reference gene for analysis of endometrial cancer tissue [43]. Babion et al.

used miRNA-423-5p for analysis of cervical cancer tissue [44].

Analysis of literature data shows small nuclear RNAs are most frequently used as reference

genes; however, their expression stability varies. Masè et al. demonstrated that, in atrial tissue

samples, the most stable reference gene was SNORD48 and the least stable reference gene was

U6 [45]. However, miRNAs are now being used as reference genes increasingly frequently.

Remarkably, some of the miRNAs that we have chosen had already been used as reference

genes for analysis of miRNA expression levels in tumors of various origins. In particular, Pel-

tier et al., who used geNorm and NormFinder for choosing an optimal reference gene, showed

that miRNA-191 and miRNA-103 were the most stable RNAs no matter which tissue type or

which storage conditions (frozen specimens/FFPE) [46]. In studies about miRNA expression

in renal cell adenocarcinoma, miR-28, -103, -106a and RNU48 were found to be the most sta-

bly expressed genes. If it is possible to use a single gene as a reference gene, miR-28 is recom-

mended; otherwise a combination of miR-28 and -103 or a combination of miR-28, -103 and

-106a is preferable [47]. Shen et al. and Leitão Mda et al. used a combination of miR-23a and

miR-191 as a reference gene for analysis of cervical cancer tissue [48, 49]. When working with

lung cancer tissue, a combination of miR-26a, -140-5p, -195 and -30b can be an option [50].

Zhang et al. showed that it is possible to use combinations of miRNA-191 and -103 as a refer-

ence gene for analysis of lung cancer FFPE tissue samples [51]. Fochi et al.’ choice of reference

gene in melanoma cells was miR-191-5p [52]. Zhu et al. proposed a combination of miR-103

and miR-191 for analysis of hepatocellular carcinoma FFPE samples [53]. Rohan et al. chose

miR-191 and RNU6b as reference genes for analysis of cervical cancer FFPE samples [54].

Bignotti et al. used miRNA -191-5p for analysis of ovarian cancer samples [55]. Anauate et al.

demonstrated that a combination of miR-101-3p and miR-140-3p was the best reference gene

for analysis of stomach cancer samples [56]. As a reference gene, Jacobsen et al. use a combina-

tion of miR-24-3p, miR-151a-5p and miR-425-5p for analysis of hepatocytes [12].

Noteworthy, the miRNA most frequently used as a reference gene in work with tumors of

various origins is miRNA-191. It is possible that this could is a promising universal reference

gene for analysis of miRNA gene expression. However, about two hundred published works

indicate that miRNA-191 is associated with various diseases [57]. This is a reminder that a par-

ticular reference gene -either as a single miRNA or, to keep the effect of the variable expression

of the reference gene on the results to a minimum, as a combination of miRNAs—should be

chosen for each experimental system.

To date, a large number of works attempting to find both tissue-specific and universal refer-

ence genes have been published, but the problem still persists. Research to uncover the role of

miRNA in various diseases has been under way for 20 years. To be sure, much progress has

been made in the development of qPCR data normalization strategies in an analysis of miRNA

expression levels–from choosing suitable small nuclear RNAs to the development of mathe-

matical approaches minimizing the interference of a reference gene with the end result. In the

current work, we have identified the most stable miRNAs by a NanoString-enabled analysis of

miRNA expression levels: miR-361-3p, -151a-3p and -29b-3p for thyroid tissue; miR-15a-5p,
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-194-5p and -532-5p for brain tissue; miR-140-5p, -148b-3p and -362-5p for bone marrow tis-

sue; and miR-423-5p, -28-5p and -532-5p for any of the tissues. The study included very few

tissue samples, but even so results of several comparisons were statistically significant. It is

deemed logical to further validate these results on larger sample sizes using qPCR followed by

analysis of the most stable miRNAs by GeNorm, NormFinder or Best Keeper.
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