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Purpose: To develop and validate a preliminary machine learning (ML) model aiding in the
selection of intracavitary (IC) versus hybrid interstitial (IS) applicators for high-dose-rate
(HDR) cervical brachytherapy.

Methods: From a dataset of 233 treatments using IC or IS applicators, a set of geometric
features of the structure set were extracted, including the volumes of OARs (bladder,
rectum, sigmoid colon) and HR-CTV, proximity of OARs to the HR-CTV, mean and
maximum lateral and vertical HR-CTV extent, and offset of the HR-CTV centre-of-mass
from the applicator tandem axis. Feature selection using an ANOVA F-test and mutual
information removed uninformative features from this set. Twelve classification algorithms
were trained and tested over 100 iterations to determine the highest performing individual
models through nested 5-fold cross-validation. Three models with the highest accuracy
were combined using soft voting to form the final model. This model was trained and
tested over 1,000 iterations, during which the relative importance of each feature in the
applicator selection process was determined.

Results: Feature selection indicated that the mean and maximum lateral and vertical
extent, volume, and axis offset of the HR-CTV were the most informative features and
were thus provided to the ML models. Relative feature importances indicated that the HR-
CTV volume and mean lateral extent were most important for applicator selection. From
the comparison of the individual classification algorithms, it was found that the highest
performing algorithms were tree-based ensemble methods – AdaBoost Classifier (ABC),
Gradient Boosting Classifier (GBC), and Random Forest Classifier (RFC). The accuracy of
the individual models was compared to the voting model for 100 iterations (ABC = 91.6 ±
3.1%, GBC = 90.4 ± 4.1%, RFC = 89.5 ± 4.0%, Voting Model = 92.2 ± 1.8%) and the
voting model was found to have superior accuracy. Over the final 1,000 evaluation
iterations, the final voting model demonstrated a high predictive accuracy (91.5 ± 0.9%)
and F1 Score (90.6 ± 1.1%).
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Conclusion: The presented model demonstrates high discriminative performance,
highlighting the potential for utilization in informing applicator selection prospectively
following further clinical validation.
Keywords: gynecologic brachytherapy, intracavitary brachytherapy (ICBT), high-dose-rate brachytherapy,
radiation oncology, machine learning, decision-support tools
INTRODUCTION

Globally, cervical cancer is the fourth most commonly diagnosed
cancer and the fourth leading cause of cancer death in women (1,
2). For patients with locally advanced disease - International
Federation of Gynecology and Obstetrics (FIGO) stage IB2-IVA -
the current standard of care includes pelvic external beam
radiotherapy (EBRT) with concurrent chemotherapy plus a
brachytherapy boost (2–6). High-dose-rate (HDR) brachytherapy
is crucial in the treatment of locally advanced cervical cancer
(LACC). Due to its high dose conformity and rapid dose fall-off
outside of the target region, brachytherapy is able to deliver a higher
dose of radiation to the tumour volume while providing superior
normal tissue sparing when compared to external beam techniques
(7–9). Several studies have shown that utilizing brachytherapy in
addition to EBRT improves survival rates and local control in
patients with LACC (4, 8, 10).

HDR brachytherapy treatments use an applicator, placed
through the vaginal cavity that treats the upper vagina, cervix,
and uterus (3). The most commonly used intracavitary (IC)
applicators are the tandem and ovoid and ring and tandem (3).
Additionally, hybrid intracavitary-interstitial (IS) applicators
have been developed that allow for the use of interstitial
catheters that are guided by the ring or ovoid, once positioned
in the patient (6, 11, 12).

One challenge inherent to this procedure is the selection of
the applicator, as different applicator geometries result in a
different dose distribution (11). Some recommendations exist
to guide applicator selection – current literature identifies a
lateral extent of the high-risk clinical target volume (HR-CTV)
> 25 mm and an HR-CTV volume > 30 cm3 as indicators for the
use of interstitial needles (13, 14). However, the decision is still
largely dependent on the physician’s judgement and experience (3).
Sub-optimal applicator selectionmay arise, resulting in sub-par dose
distributions. This can decrease the probability of providing local
control to the tumour as well as delivering unwanted dose to
surrounding healthy organs, leading to less-desirable patient
outcomes (15–17).

Machine learning (ML) has been applied in radiotherapy to
act as an expert decision-support tool which has seen increased
attention in medical physics in recent years (18). ML techniques
have seen considerable interest in radiation oncology, with
applications in brachytherapy ranging from treatment planning
to automatic low-dose-rate (LDR) seed detection (19–22). In
recent years, there has been an increased focus on utilizing ML to
improve HDR cervical brachytherapy. Recent work has included
predicting fistula formation for patients receiving interstitial
gynecologic brachytherapy (23), ML-aided automatic
2

digitization of interstitial needles and applicators (24, 25), and
reinforcement-learning based inverse treatment planning for
tandem-and-ovoid brachytherapy (26). Despite this research,
the extent to which ML can be used to support the applicator
selection process for cervical HDR brachytherapy has not
been explored.

The ability of ML models to mimic human modes of thinking
in highly complex reasoning tasks makes them well suited to
provide decision-support for the applicator selection process (27).
Additionally, ML models are able to identify features important
for applicator selection and weigh their contributions to make
an informed applicator selection, while accounting for historical
physician experience in the form of training data. This could
provide planning assistance to brachytherapy departments by
increasing the uniformity in applicator selection and providing
support to less experienced clinicians. This work describes a
rigorous methodology used in the development of an ML
model, including algorithm selection, model optimization,
feature selection, and model performance evaluation using
clinical patient data. The work presented is a necessary
validation step demonstrating the ability for ML to be used as
a decision-support tool in the applicator selection process. In
its current state, the model can provide external validation for
a physician’s selection of applicator post-insertion. This
preliminary validation will allow for future expansion of the
model to include predictions for optimal needle arrangements
for treatments requiring interstitial needles and for future
use in prospective applicator selection for HDR cervical
brachytherapy following clinical validation. A prospective study
utilizing the presented ML model on pre-insertion geometry
metrics has been approved to evaluate true prospective
applicator selection.
MATERIALS AND METHODS

Patient Cohort
Data for the ML model was extracted from our institutional
cervical HDR brachytherapy patient database. Treatment data
for patients treated between 2015 and 2020 was compiled, which
included 233 treatment fractions (147 IC, 86 IS) for 83 patients.
The patients in this cohort were treated with one of three
applicator types: (i) tandem and ovoid (IC), (ii) ring and
tandem (IC), or (iii) ring and tandem with the additional of
interstitial needles (IS). In this work, the two intracavitary
applicator types were grouped to form one class (IC), with the
hybrid interstitial applicator forming the other class (IS).
Oncentra® Brachy TPS version 3.3 (Nucletron, Elekta AB,
March 2021 | Volume 11 | Article 611437
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Stockholm, Sweden) was used for treatment planning for all
cases to deliver a prescription dose of 8 Gy x 3 fractions to the
HR-CTV with each fraction separated by a week. The separation
of treatments allows for the independent selection of applicator
for each fraction. For patients prescribed 8 Gy x 3 fractions who
were unable to complete the treatment course, any completed
fractions were included in the data set.

Model Framework
Figure 1 illustrates the workflow used to develop the applicator
prediction ML model, broken down into six major
development steps.

Data Preprocessing and
Training Database
For each fraction, structure, plan, and dose data files were
extracted from the Oncentra® Brachy TPS in Digital Imaging
and Communications in Medicine (DICOM) format. Applicator
type, interstitial needle patterns, and relevant structure contours
(HR-CTV, intermediate-risk clinical target volume (IR-CTV),
gross tumour volume (GTV), bladder, rectum, sigmoid) were
extracted and stored within the training database. For the first
treatment fraction, contours were derived from post-insertion
MR images. Subsequent treatment fractions derived contours
from post-insertion CT images, using previous MR images to aid
in the delineation of the HR-CTV. To account for class
imbalance in the dataset (147 IC fractions, 86 IS fractions),
random oversampling from the minority applicator class was
employed to balance the classes. In consultation with a clinical
brachytherapy team, the features extracted for this investigation
were those expressing the geometric characteristics and
relationships between the target volume, organs-at-risk
(OARs), and the applicator.

From the structure contours, a series of lower-dimensional
geometry metrics were calculated, which were expected to
indicate how well an applicator type would be able to achieve
Frontiers in Oncology | www.frontiersin.org 3
optimal dosimetry. The geometry metrics were structure
volumes, proximity of the OARs to the HR-CTV, and
geometric characteristics of the HR-CTV. Structure volumes
were extracted for the bladder, rectum, sigmoid colon, and
HR-CTV. The proximity of the OARs to the HR-CTV was
defined as the mean distance between the voxels of the HR-
CTV and the nearest 1.5 cc of the respective OARs (bladder,
rectum, and sigmoid colon). The geometric characteristics of the
HR-CTV were the mean and maximum lateral extent of the HR-
CTV (orthogonal to the tandem axis), the mean and maximum
vertical extent of the HR-CTV (orthogonal to the ring or ovoid
plane), and the axis offset between the centre-of-mass of the HR-
CTV and the tandem axis of the applicator, which is an indicator
of asymmetry in the HR-CTV geometry. These HR-CTV
geometry metrics are illustrated in Figure 2.

Each treatment fraction was assigned a weighting – to be
utilized during the training of the ML model – according to the
fraction’s adherence to EMBRACE dosimetric quality metrics
(D90 HR-CTV, D98 HR-CTV, D98 GTV, D98 IR-CTV, Point A
EQD2, Bladder D2cc, Rectum D2cc, Sigmoid D2cc) (28). This
was implemented to account for possible sub-optimal applicator
selection in the training data. A fraction with poor dosimetric
outcomes would thus be used less strongly in the training of the
ML model. The decimal weighting assigned to each treatment
fraction based on its dosimetric quality is outlined in Table 1.

Feature Selection
To select important features for use in model training and
evaluation, a series of univariate feature selection tests were
performed. This was employed to prevent overwhelming the
model with redundant or unimportant information that would
reduce predictive capabilities First, the mutual information
between the features and the target variable (i.e., the applicator
class, IC or IS) was calculated. A higher mutual information
score indicates that there is information about the target variable
that can be obtained by knowing the feature. Second, an ANOVA
FIGURE 1 | Model development workflow. (1) Data collection and DICOM extraction. (2) Data pre-processing and feature engineering. (3) Training and optimization
of a set of classification algorithms for comparison. (4) Selection of subset of trained and optimized individual models. (5) Individual model combination through
voting. (6) Evaluation of final ML voting model. DICOM, Digital Imaging and Communications in Medicine.
March 2021 | Volume 11 | Article 611437
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F-test was performed. The F-test was used to determine the
correlation between the input features and the output
classification. A higher F-score indicates that there is a
relationship between the value of a given feature and
applicator choice. In both cases, features that will have the
largest contribution to model performance can be selected by
ranking mutual information and F-scores.

Classification Algorithm Selection and
Individual Model Optimization
Classification algorithm selection and model training,
optimization and testing utilized the Scikit-Learn package for
Python (29). Each of the 233 fractions was labelled with the use
of either IC or IS applicators. Since the desired output of the
model is a prediction of class (i.e., IS or IC applicator type), a
series of supervised classification ML algorithms were
Frontiers in Oncology | www.frontiersin.org 4
investigated. In this work, the classification algorithms
investigated were intended to be interpretable compared to
more complex ML algorithms that act as a “black box”, which
is important when dealing with limited data and models that can
have potentially high variance (18, 30).

The initial subset of classification algorithms selected for
training individual models are listed in Table 2 with their
utilized abbreviations and compatibility with using weighted
samples during the training process. For classification
algorithms that supported training with sample weights (see
Table 2), the trained individual model performance was
evaluated using both weighted and unweighted samples. To
tune the individual models and compare performance, a
FIGURE 2 | A diagram illustrating the selected high-risk clinical target volume (HR-CTV) spread metrics, as defined relative to the applicator geometry. The illustrated
metrics are (a) axis offset between the centre-of-mass of the HR-CTV and the applicator tandem axis, (b) mean and (c) maximum lateral extent of the HR-CTV
orthogonal to the applicator tandem axis, and (d) mean and (e) maximum vertical extent of the HR-CTV orthogonal to the ring/ovoid plane.
TABLE 1 | Treatment fraction data weighting regime utilized in the model training
process and the number of data points belonging to each category.

Weighting Assigned # Planning Aim
Violations

# Dose Constraint
Violations

# Fractions

1.0 ≤2 None 134
0.5 >2 None 32
0.25 Any Number ≥1 67
Weights were assigned on a per-fraction basis based on adherence to EMBRACE
dosimetric quality metrics (D90 HR-CTV, D98 HR-CTV, D98 GTV, D98 IR-CTV, Point A
EQD2, Bladder D2cc, Rectum D2cc, Sigmoid D2cc) (28). The highest quality plans are
assigned full weight, moderate quality plans are assigned half weight, and the lowest
quality plans are assigned quarter weight.
TABLE 2 | List of compared classification algorithms, their utilized abbreviation, and
compatability with using weighted samples when training the individual model.

Classification Algorithm Abbreviation Weighted Samples?

AdaBoost Classifier ABC Yes
Gaussian Naïve Bayes Classifier GNB Yes
Gaussian Process Classifier GPC No
Gradient Boosting Classifier GBC Yes
K-Nearest Neighbours Classifier KNN No
Linear Discriminant Analysis LDA No
Logistic Regression Classifier LRC Yes
Multi-layer Perceptron Classifier MLPC No
Nearest Centroid Classifier NCC No
Nu-Support Vector Classifier NuSVC Yes
Quadratic Discriminant Analysis QDA No
Random Forest Classifier RFC Yes
March 2021 | Volum
e 11 | Article 611437

https://www.frontiersin.org/journals/oncology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/oncology#articles


Stenhouse et al. AI-Based Applicator Selection in Brachytherapy
process of nested 5-fold cross-validation and hyperparameter
optimization was performed. This methodology is similar to that
performed by Deist et al. (31).

The process of hyperparameter tuning and individual model
optimization is depicted in Figure 3. For 100 evaluation iterations
of each individual model (Table 2), the full dataset was randomly
split into five subsamples using the KFold function in Scikit-Learn
(Step 1). Each subsample acted once as the test set and the
remaining four times as a component of the training set.
Following common practice, five folds were used for the inner
and outer cross-validation (32). The individual models were
trained on the training set and out-of-sample performance
metrics were calculated on the test set, including accuracy,
precision, recall, F1 score, and ROC – AUC (Receiver Operating
Characteristics – Area Under the Curve). The use of five folds
resulted in five estimates per performance metric, which were then
averaged to assess the performance for each of the 100 iterations.
While training using each outer fold, optimal hyperparameters
were selected using a rigorous grid search using the GridSearchCV
function in Scikit-Learn to maximize the accuracy of an inner five-
fold cross-validation (Steps 3-6). For this inner cross-validation,
the outer training set was again split into five random subsamples
used to compare models with different hyperparameters using the
KFold function. Classification algorithm selection and individual
model optimization without this nested cross-validation uses the
same data to tune the model parameters and evaluate model
performance, causing information to leak into the model and
cause overfitting of the data (33). A list of the hyperparameters
that were optimized and their final optimized values for each
classification algorithm is provided in Supporting Information
Table S1.

Once the subset of individual models was trained, the top three
highest performing were used to form the voting model. Accuracy -
the ratio of correct classifications - was the metric selected for
Frontiers in Oncology | www.frontiersin.org 5
model comparison due to its interpretability and widespread use in
performance evaluation. Three individual models were chosen to
ensure that if volatility was present in one, two well-calibrated
models would be in place to counteract it.

Voting Model
The top three individual models selected during the model
optimization process were then compiled into a voting model.
The voting model works by placing equal weight on each of the
three chosen individual models. Each model individually makes
a class prediction of IC or IS and the final voted classification
result is determined through a soft voting process. Soft voting
predicts the class label based on the weighted average of the
predicted probabilities, which is recommended for an ensemble
of well-calibrated classifiers (34).

Feature Importance for Individual Models
in Voting Model
Feature importance was investigated for the individual models
used in the final voting model. The relative importance of a
feature is indicative of how often the model uses this feature to
make key decisions. For the selected tree-based classification
algorithms, the relative importance of a feature is a measure of
how a given feature-based split point improves the classification
accuracy. The importance of a feature is determined by the
model during the training process.

Voting Model Evaluation
The final voting model was assessed over 1,000 iterations of
different stratified train (85%) and test (15%) data subsets. For
each iteration, the random state was set to the iteration number.
Additionally, a Leave-One-Out Cross-Validation (LOOCV) was
performed wherein the test dataset contains only one data point,
with the remaining data being used to train the model. LOOCV
FIGURE 3 | A diagram illustrating the process of tuning hyperparameters and determining individual model performance using nested 5-fold cross-validation. The
dataset is first split into five outer folds (Step 1), each acting once as the test set and the remaining four times as a component of the training set. The training set is then
split into five inner folds (Steps 2 and 3, repeated for each of the outer folds), on which the hyperparameters are tuned (Step 4). Both inner and outer 5-fold cross-
validation utilized the KFold function in Scikit-Learn (parameters were set to n_splits = 5, shuffle = True, random_state = iteration number). The optimal hyperparameteres
are then set (Step 5) and the individual model is trained on the outer training set (Step 6) and performance is evaluated on the outer test set (Step 7).
March 2021 | Volume 11 | Article 611437
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is a more practical estimate of model performance as it mimics
how the model will perform when applied in a practical setting,
as it will be provided with only one sample in the test set after
training on the full training dataset. Additionally, in situations
where model performance is limited by a small dataset, LOOCV
can provide a better estimation of model performance as K-fold
cross-validation may provide an overly pessimistic estimate (32).
RESULTS

Feature Selection
The ANOVA F-score and mutual information were calculated for
the full set of features, which are shown in Table 3. Both tests
indicated that the three most informative features were the
HR-CTV volume, and the mean and maximum lateral extent of
Frontiers in Oncology | www.frontiersin.org 6
the HR-CTV. Both tests also identified the proximity of the HR-
CTV to the OARs were noisy, uninformative features. Based on
these results, the set of features provided to the classification
algorithms was halved to include only the geometric
characteristics of the HR-CTV to reduce model complexity and
remove features that did not demonstrate a strong correlation with
applicator selection.

Classification Algorithm Selection and
Individual Model Optimization
The accuracy of each trained individual model is shown in
Figure 4. In general, individual models that utilized weighted
sample points to account for dosimetric plan quality (Table 1)
were more accurate than those that did not. The highest
performing classification algorithms were tree-based ensemble
methods – AdaBoost (ABC), Gradient Boosting (GBC), and
Random Forest (RFC) classifiers. These classification
algorithms were used to train the individual models used in
the subsequent voting model evaluation.

Voting Model
A comparison between the performance of the individual models
and the compiled voting model was performed to ensure that
there was an improvement in performance when using the
voting model. The top three weighted individual models, in
terms of mean classification accuracy over the 100 iterations,
were the AdaBoost Classifier (ABC), Gradient Boosting Classifier
(GBC), and Random Forest Classifier (RFC). The results of the
comparison are shown in Table 4. For all performance metrics
there was an improved standard deviation for the voting model,
illustrating more consistent model performance when using
voting as opposed to the individual models. Additionally, for
all metrics the voting model was as good or better than the results
achieved when using only the individual model. This supports
the use of the voting model over the individual models.
TABLE 3 | ANOVA F-Score and mutual information metrics calculated for each
of the extracted geometric features.

Feature Type Feature F-Score Mutual
Information

HR-CTV Geometry Metric Axis Offset 49.47 0.19
Lateral Mean Extent 161.01 0.35
Lateral Maximum Extent 219.92 0.32
Vertical Mean Extent 27.73 0.26
Vertical Maximum Extent 61.44 0.24
Volume 120.46 0.35

OAR Volume Rectum Volume 3.60 0.05
Bladder Volume 0.44 0.13
Sigmoid Volume 1.04 0.07

OAR Proximity to HR-CTV Rectum Proximity 12.67 0.10
Bladder Proximity 16.48 0.19
Sigmoid Proximity 0.08 0.08
These values were used to reduce the number of features used in the model by selecting
only those thank ranked the highest under both metrics. The top three features for each
test have been bolded for reference.
FIGURE 4 | Individual model accuracy over 100 random training/testing iterations. For classification algorithms compatible with using weighted samples, both
weighted and unweighted tests were performed. Final selected individual models are indicated with an *. NW, No Weight, W, Weighted, ABC, AdaBoost Classifier,
GNB, Gaussian Naïve Bayes Classifier, GPC, Gaussian Process Classifier, GBC, Gradient Boosting Classifier, KNN, K-Nearest Neighbours Classifier, LDA, Linear
Discriminant Analysis, LRC, Logistic Regression Classifier, MLPC, Multi-layer Perceptron Classifier, NCC, Nearest Centroid Classifier, NuSVC, Nu-Support Vector
Classifier, QDA, Quadratic Discriminant Analysis, RFC, Random Forest Classifier.
March 2021 | Volume 11 | Article 611437
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Feature Importance for Individual Models
in Voting Model
Figure 5 shows the relative feature importance of the subset of
six HR-CTV features selected. For all individual models, the HR-
CTV volume is the most important feature for the applicator
selection process. For two of the three individual models the
lateral mean extent of the HR-CTV the second most
important feature.

Voting Model Performance
Over the 1,000 test iterations, the voting model resulted in high
scores for all metrics, which are reported in Table 5.
Additionally, the LOOCV test resulted in an accuracy of
89.80% which is more reflective of true model performance
when applied to a new sample.
DISCUSSION

In this work, we validated a voting ML model based on three
classification algorithms with high predictive accuracy to be used
as a preliminary decision-support tool validating applicator
selection post-insertion in LACC brachytherapy treatments.
Frontiers in Oncology | www.frontiersin.org 7
An ML-based decision-support tool can provide planning
assistance towards improving applicator selection quality and
uniformity. The GEC-ESTRO group has identified the need for
appropriate applicator and needle selection to deliver optimal
dose distributions to the HR-CTV and normal tissues, which has
been correlated with local recurrence and toxicity, respectively
(35, 36). This work is the foundation of a prospective study that
will evaluate the improvement in delivered dosimetry when
using the software tool to support applicator selection

Feature selection methods were employed to identify the
specific clinical features that contributed the most to the
applicator selection process (Table 3). The identification of
the HR-CTV lateral extent and volume as informative features
supports the current applicator selection recommendations from
the GEC-ESTRO group and the ABS, which confirm that HR-
CTV geometry characteristics are a primary driver in needing
hybrid interstitial needles (13, 14). During the feature
importance investigation, it was also found that the HR-CTV
lateral extent and volume held high feature importance for each
of the individual models, further supporting the importance of
these metrics in the applicator selection process.

The use of accuracy as a metric to compare models resulted in
creating a voting model with high predictive capabilities. Using
TABLE 4 | Performance metrics for the top three weighted individual models (1st =
Gradient Boosting Classifier [GBC], 2nd = Random Forest Classifier [RFC], 3rd =
AdaBoost Classifier [ABC]) and the voting model.

Performance Metric GBC RFC ABC Voting

Accuracy 91.6 ± 3.1% 90.4 ± 4.1% 89.5 ± 4.0% 92.2 ± 1.8%
Precision 88.0 ± 2.9% 84.8 ± 5.5% 86.6 ± 5.3% 87.8 ± 2.9%
Recall 93.4 ± 6.2% 95.5 ± 4.6% 89.9 ± 9.1% 95.5 ± 3.7%
F1 Score 90.6 ± 3.8% 89.7 ± 4.2% 88.0 ± 5.3% 91.4 ± 2.4%
Soft voting that predicts the class label based on the sums of the predicted probabilities
was utilized.
FIGURE 5 | Feature importance for the six geometric features used in the three individual models selected for the final voting model. The more an attribute is used
to make key decisions, the higher its relative importance. Importance is calculated by the amount that each attribute split point improves the performance measure
(accuracy) of the algorithm.
TABLE 5 | Performance metrics for voting model, calculated over 1,000 test iterations.

Performance Metric

Accuracy 91.5 ± 0.9%
Precision 87.3 ± 1.1%
Recall 94.5 ± 1.7%
F1 Score 90.6 ± 1.1%
ROC-AUC 91.8 ± 1.0%
Leave-One-Out Accuracy (LOOCV) 89.80%
March 2021 | Volume 11 | A
For each iteration, the KFold random state was set to the iteration number. The LOOCV
accuracy is not calculated over these 1,000 test iterations as every data point acts as the
test set once, meaning there are no random seeds that can be implemented.
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accuracy also provided the benefit of having an easily interpretable
metric to express model performance. The use of a voting model
was shown to increase model stability and provided a slight
increase in performance above using the best performing
individual model (Table 4). Additionally, the voting model
displays a high recall (i.e., true positive rate) of 94.5%, indicating
the model’s ability to identify the use of IS needles correctly. This
shows that the model is less likely to incorrectly label a case where
hybrid interstitial needles were required, minimizing the
likelihood of the model suggesting an applicator that may lead
to an underdosing of the target volume. Additionally, once trained
the ML model is capable of predicting an applicator for an unseen
patient in fewer than 10 s, making it a time-efficient process.

ML model performance can be limited by both poor-quality
data as well as limited size of dataset, which will be a persistent
issue in brachytherapy utilization. However, this was mitigated
in this study by incorporating the dosimetric-based weighting
factor to ensure the model was preferentially learning from the
highest quality plans (Table 1). The performance metrics of the
voting model demonstrate relative robustness and as a support
tool, may be used in combination with clinical judgement to
provide certainty when determining the need for interstitial
needles. In the future, incorporating data from other cancer
centres with large cervical HDR case volumes could increase the
scope of the dataset, improving the quality of the decision-
support tool by expanding the level of included expertise.

In its current form, the ML model utilizes post-insertion
contours to extract the geometric features used by the model.
This allows the model to act as a quality assurance (QA) tool,
validating or contradicting the selection of applicator that was used
clinically. For true prospective applicator prediction, an ethics-
approved study will be conducted to apply this ML model to a
dataset of contours extracted from pre-insertion diagnostic MR
images. In this prospective study, the MLmodel will predict the use
of an IC or IS applicator for a new patient based on the pre-
insertion geometry metrics. The model prediction will then be
compared to an expert’s prediction to test agreement and a
consensus decision on which applicator to use for treatment will
be made. This study will use simulated treatment plans to evaluate
differences in dosimetric plan quality between the two applicators to
assess the quality of decisions made by experts and the ML model.
To effectively switch from post-insertion to pre-insertion images,
the impact of the brachytherapy applicator on the deformation
and displacement of the high-risk clinical target volume (HR-CTV)
and other soft tissues must be evaluated. Previous research
has investigated the impact of the brachytherapy applicator
on soft tissue deformation, investigating both the volumetric
variation and centroid displacement between pre-insertion and
post-insertion brachytherapy CT images. Results indicated that
although volumetric differences of the cervix-uterus were minor,
displacements and deformations were observed (37).
CONCLUSION

Using the open source Python ML package Scikit-Learn, this
work establishes a framework for designing, training, and
Frontiers in Oncology | www.frontiersin.org 8
validating a preliminary ML-based tool to provide insight into
the applicator selection process based on clinically relevant
geometric features. Our results provide evidence that easily
interpretable tree-based classification methods yield high
discriminative performance. This work presents the first step
in developing a comprehensive applicator selection tool and
provides preliminary validation for the use of machine learning
in the applicator selection process. Currently, the model can be
used to validate a physician’s applicator choice post-insertion
as a QA tool. Future work will extend this ML model for use
in prospectively selecting brachytherapy applicators for
the treatment of cervical cancer as well as optimal needle
arrangements for treatment volumes that require interstitial
needles. This prospective study has received ethics approval
and utilizes the presented ML model trained on a dataset of
pre-insertion geometry metrics. Improvement in the applicator
selection process is expected to result in improved dose
distributions that may yield improved treatment outcomes.
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