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Abstract
Despite the high prevalence of liver disease globally, there are currently no
approved anti-fibrotic therapies to treat patients with liver fibrosis. A major goal
in anti-fibrotic therapy is the development of drug delivery systems that allow
direct targeting of the major pro-scarring cell populations within the liver
(hepatic myofibroblasts) whilst not perturbing the homeostatic functions of other
mesenchymal cell types present within both the liver and other organ systems.
In this review we will outline some of the recent advances in our understanding
of myofibroblast biology, discussing both the origin of myofibroblasts and
possible myofibroblast fates during hepatic fibrosis progression and resolution.
We will then discuss the various strategies currently being employed to
increase the precision with which we deliver potential anti-fibrotic therapies to
patients with liver fibrosis.
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Introduction
Liver disease is an increasing cause of morbidity and mortality  
worldwide. Recent data show that approximately 29 million  
people in the European Union suffer from a chronic liver  
condition1. Regardless of aetiology, all chronic liver diseases, if left 
untreated, can result in hepatic fibrosis and eventually cirrhosis. 
This accumulation of extracellular matrix (ECM) in response to 
repetitive injury is part of a basic wound healing process; however, 
if left unchecked, increasingly severe fibrosis results in disordered 
tissue architecture and ultimately organ failure. Currently, there are 
no European Medicines Agency (EMEA)- or US Food and Drug 
Administration (FDA)-approved anti-fibrotic therapies available to 
treat patients with liver fibrosis. It is therefore imperative that we 
continue to gain a better understanding of the mechanisms driving 
hepatic fibrosis in order to facilitate and accelerate the development 
of new rational, highly targeted therapies.

Over the past 30 years, there has been a significant increase in 
our understanding of the cellular and molecular mechanisms driv-
ing liver fibrosis. It is universally accepted that myofibroblasts 
are the primary source of ECM proteins during hepatic fibrosis. 
Furthermore, rapid evolution in transgenic mouse technology has 
allowed the origin of the hepatic myofibroblast to be extensively 
investigated, with the resident hepatic stellate cell (HSC) consid-
ered to be a major source2,3. Hepatic fibrosis is also now recog-
nised as a dynamic and potentially reversible process4,5. The highly 
successful antiviral therapies for hepatitis B and C have further  
highlighted fibrosis reversibility and the potential regenerative 
capacity of the human liver4. This review will highlight some of 

the most recent advances in our understanding of hepatic fibrosis 
and how basic science research in this area is beginning to drive  
translation towards novel targeted therapies.

Myofibroblasts: major therapeutic targets in liver 
fibrosis
Myofibroblasts are a key source of pathologic ECM in multiple 
organs and disease states, and the liver is no exception2,6. As a 
result, a considerable amount of research has focused on trying to 
delineate the origin of myofibroblasts in hepatic fibrosis, as well 
as deciphering the key signalling pathways responsible for myofi-
broblast activation, deactivation, and elimination in a bid to identify 
potential anti-fibrotic therapeutic targets.

During hepatic fibrosis, a number of different cellular popula-
tions may contribute to the myofibroblast pool. These include 
HSCs, portal fibroblasts (PFs), mesothelial cells, and bone  
marrow-derived mesenchymal cells and fibrocytes7–10 (Figure 1). 
Activation of HSCs to matrix-secreting myofibroblasts is a key 
process in the development of hepatic scar tissue. Recent studies 
have suggested that HSCs are the dominant mesenchymal con-
tributor to the myofibroblast pool independent of the aetiology 
of liver disease7. Using lecithin-retinol acyltransferase (Lrat)-Cre 
mice (labels 99% of HSCs), Mederacke and colleagues found that 
HSCs contribute significantly to the myofibroblast pool in models 
of toxic, cholestatic, and fatty liver disease7. Interestingly, in stud-
ies of cholestatic liver injury, a distinct population of PF-like cells 
that may have a specialised function in periportal liver fibrosis 
were identified7.

Figure 1. Possible origins and fates of hepatic myofibroblasts.

Page 3 of 9

F1000Research 2016, 5(F1000 Faculty Rev):1749 Last updated: 19 JUL 2016



The identification and contribution of PFs to the hepatic  
myofibroblast pool remains less clear and is an area of active 
study. Given their periportal location, it is plausible that PFs may 
be major contributors to the myofibroblast pool associated with 
periportal fibrosis, and a number of studies have suggested that 
PFs are a major source of myofibroblasts during early cholestatic 
injury8,11,12. Iwaisako et al. report that PFs contribute to >70% of  
myofibroblasts at the onset of biliary injury8. This work and other 
studies will serve as a useful platform for the identification of 
PF-specific markers, facilitating the development of transgenic  
systems for lineage tracing and in-depth interrogation of PF function 
in a broad range of mouse models of liver disease. In addition, the 
generation of tools such as flow cytometry antibodies should allow  
cell-specific sorting of PFs from fibrotic human liver tissue.

More recently, a third resident mesenchymal population in the 
liver has attracted interest as a potential source of myofibroblasts.  
Li et al. found that following liver injury, mesothelial cells can 
give rise to HSCs and myofibroblasts via mesothelial to mesen-
chymal transition, termed MMT9. Fate tracing studies using induc-
ible Wilms Tumour 1 Cre mice (labels 14.5% of mesothelial cells) 
revealed that during fibrosis a number of HSCs and myofibroblasts 
near the  liver surface derive from this subset of mesothelial cells9.

In addition to studies aimed at identifying the origin of hepatic 
myofibroblasts and myofibroblast activation mechanisms13,14, recent 
work has also focused on the pathways involved in myofibroblast 
deactivation and elimination. Possible fates of hepatic myofibrob-
lasts include apoptosis, senescence, and reprogramming to a deac-
tivated state (Figure 1)15–18. Recent data examining reprogramming 
of hepatic myofibroblasts found that 40–50% of myofibroblasts 
escape apoptosis and revert to a quiescent-like state, downregulat-
ing fibrotic genes15,16. Interestingly, both studies highlighted that 
reverted HSCs were distinct from quiescent HSCs and were primed, 
with higher responsiveness to further fibrogenic stimuli compared 
to quiescent HSCs15,16. The possibility of targeting and promoting 
myofibroblast reversion is an exciting prospect, as it could allow 
treatment of liver fibrosis with potentially minimal disruption to 
mesenchymal cell-regulated homeostasis and normal tissue repair.

Drug targeting in the context of hepatic fibrosis
Of prime importance in the development of effective treatments for 
liver fibrosis, and indeed any form of organ fibrosis, is the ability 
to specifically target the diseased organ and pro-scarring effector 
cells. Therefore, over the past few years an increasing amount of 
research within the fibrosis arena has been aimed at the develop-
ment of organ- and/or cell-specific therapy for hepatic fibrosis.

There is a long history of drug targeting to the liver, which has 
focused primarily on the targeting of drugs to hepatocytes. 
Methods include attachment of ursodeoxycholic acid (almost 
exclusively metabolised by hepatocytes) and asialoglycoprotein  
receptor-mediated targeting (primarily expressed on hepatocytes 
and minimally on extra-hepatic cells)19,20. Coupling of a nitric  
oxide- releasing derivative to ursodeoxycholic acid allows for tar-
geted release within the liver but does not specifically target the 
cells primarily responsible for increased portal pressure19. Other 
approaches have involved the use of small lipid-like nanoparticles, 

which are preferentially taken up by the liver. Lipid-like nano-
particles have been used successfully to deliver small interfering  
RNA (siRNA) against the procollagen α1 (I) gene in the liver, ulti-
mately leading to a decrease in collagen deposition21. Again, this 
method is not effector cell specific, as the nanoparticles are engulfed 
more by Kupffer cells than HSCs21. Therefore, a major goal in tai-
lored anti-fibrotic therapy involves the discovery of organ-specific 
and cell-specific myofibroblast markers, which would allow tar-
geted delivery of anti-fibrotic therapies to the major pro-scarring  
cell population in the diseased organ.

Recently, there have been significant advances in identifying tar-
getable markers on HSCs. Ideally, a marker would be upregulated 
only upon activation of HSCs to the myofibroblast phenotype. One 
marker that has been extensively studied in this context is platelet-
derived growth factor receptor β (PDGFRβ). During hepatic fibro-
genesis, HSCs transdifferentiate to myofibroblasts and upregulate 
PDGFRβ expression, making it an attractive candidate to allow  
preferential targeting of mesenchymal scar-forming cells13. Har-
nessing PDGFRβ as a potential means of delivering anti-fibrotic 
treatments directly to the pool of scar-forming cells may allow a 
much more refined and targeted approach to the treatment of liver 
fibrosis. It must, however, also be considered that PDGFRβ is a 
broad marker of mesenchymal cells, encompassing pericytes, vas-
cular smooth muscle cells, and resident fibroblasts in multiple 
organs. Therefore, the fibrosis research community must strive hard 
to discover myofibroblast markers and therapeutic targets that are 
unique to each different organ and disease state. A recent elegant 
study further defined which of the mesenchymal cellular popu-
lations may be responsible for myofibroblast formation and scar 
formation. Kramann et al. studied Gli1-positive cells in multiple 
models of organ fibrosis and found that these cells are a subset 
of perivascular cells committed to the myofibroblast lineage after 
injury22. These perivascular and peribiliary Gli1-positive cells con-
stitute only a small fraction of the PDGFRβ-positive cells in the 
liver but contribute to ~39% of interstitial α-smooth muscle anti-
body (α-SMA)-positive cells in liver fibrosis22. Furthermore, Gli1-
positive cells have a key role in fibrosis of other organs. Ablation 
of these cells reduced fibrosis by 50% in kidney and heart injury  
models22. An informatics-based approach has also been used to 
identify uniquely expressed HSC genes23. Included in the genes 
identified was protocadherin 7, which is a very promising candidate 
marker for HSC tracking, targeting, and isolation. Interestingly,  
the study also demonstrated that increased expression of HSC sig-
nature genes in patients is predictive of clinical outcomes, includ-
ing decompensation, progression of Child–Pugh class, and over-
all survival. Combining these predictions with clinical factors led 
to more accurate predictions than using clinical factors alone23. 
Ideally, anti-fibrotic therapies of the future will target the most  
pro-fibrotic subpopulations of the mesenchymal lineages and it is 
likely that identifying ‘pro-scarring’ subpopulations will become a 
major focus of fibrosis research in the coming years.

Current drug delivery approaches for hepatic fibrosis
A number of different drug delivery approaches have been reported 
to specifically target HSCs, such as viral vectors, liposomes, 
and protein-based strategies (Table 1). The first documented  
carrier to selectively target HSCs, mannose 6-phosphate modified  
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albumin, was initially described over 16 years ago24. Characterisa-
tion of this carrier revealed preferential binding to activated HSCs 
and receptor-mediated endocytosis, making it an attractive option 
for drug delivery25. A number of studies have utilised this system to  
successfully target kinase inhibitors, receptor blockers, and lipo-
somes to animal and human HSCs26–28. Targeted delivery of Rho-
kinase inhibitors using this system reduced collagen deposition and 
lowered portal hypertension during liver fibrosis without causing 
the severe hypotension associated with systemic inhibition26,29. Also, 
short-term treatment with angiotensin type 1 receptor blockers was 
reported to be more efficacious in inhibiting advanced fibrosis when 
targeted using this carrier27. Although promising, the translational 
potential of the mannose 6-phosphate modified albumin system 
may be limited by the complex processes required to synthesise 
these proteins, making them potentially less feasible for clinical 
consideration30. Furthermore, long-term delivery of oligonucle-
otides using a mannose 6-phosphate bovine serum albumin (BSA) 
carrier has been associated with potential immune reactions owing 
to the high molecular weight of BSA31. This led to the replacement 
of BSA with a co-polymer that negates the immunogenic response31. 

There are reports that mannose 6-phosphate carriers are not  
completely HSC specific28,32. Given the negative charge associated 
with the mannose 6-phosphate carrier, it has been suggested that 
they could also be a target for scavenger receptors such as those 
found on Kupffer cells and endothelial cells28.

Another approach to HSC-specific drug delivery has involved the 
coupling of peptide-modified proteins designed to recognise spe-
cific receptors on the target cells. These are generally considered 
easier to produce and to be less immunogenic, making them a more 
attractive drug targeting option30. However, poor systemic stability 
associated with peptide-modified proteins is a potential hurdle that 
needs to be addressed30. Initial studies successfully modified human 
serum albumin with multiple amino acid sequence Arg-Gly-Asp  
(RGD)-containing cyclic peptides to target collagen type VI  
receptor-expressing HSCs33. Peptides containing RGD attach-
ment sites that recognise collagen type VI receptor have since been  
successfully used in liver fibrosis models to deliver interferon-
α1b-loaded liposomes to HSCs, with limited extra-hepatic uptake.  
Furthermore, targeted delivery of interferon-α1b significantly  

Table 1. Current drug targeting approaches in hepatic fibrosis.

                Target                              Carrier +/- agent delivered

M6P-IGF2R M6P-HSA (used to deliver Rho-kinase inhibitor [Y26732], 
angiotensin type 1 receptor blocker [losartan])24,26,27,29

M6P-BSA24,25

M6P-HSA liposomes28

M6P-HPMA (used to deliver triplex forming oligonucleotides)31

M6P (used to deliver IL-10)32

Collagen type VI R pCVI-HSA33

cRGD-SSL (used to deliver IFN-α1b)34

PDGFRβ PPB-HSA35

BiPPB (used to deliver IFNγ peptidomimetic)36

PPB (used to deliver IFNγ)37

PDGFR-recognising peptide adenovirus42

Vitamin A storing cells Vitamin A liposomes (used to deliver siRNA)38

Synaptophysin R Single chain antibody (termed C1–3) (used to deliver 
gliotoxin)40,41

p75 neurotrophin R p75NTRp-adenovirus (used to deliver transcription factors)43

NGFp–vector particles44

Myofibroblasts Adeno-associated virus vectors (used to deliver transcription 
factors)45

Abbreviations: BiPPB, bicyclic peptide that recognises the PDGFRβ; BSA, bovine serum 
albumin; cRGD, cyclic peptide containing Arg-Gly-Asp; IFN, interferon; IGF2R, insulin-
like growth factor 2 receptor; IL, interleukin; HPMA, N-(2-hydroxypropyl) methacrylamide 
copolymer; HSA, human serum albumin; M6P, mannose 6-phosphate; NGFp, nerve growth 
factor peptide; pCVI, cyclic peptide that recognizes the collagen type VI receptor; PDGFRβ, 
platelet-derived growth factor receptor β; PPB, cyclic peptide that recognises the PDGFRβ; 
p75NTRp, p75 neurotrophin receptor peptide; R, receptor; siRNA, small interfering RNA; SSL, 
sterically stable liposomes.
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reduced liver fibrosis compared to non-targeted treatment34.  
HSCs have also been successfully targeted through the generation 
of PDGFRβ-recognising peptides35. As the amino acid sequences 
responsible for receptor binding are identical in rats and humans, 
this newly designed carrier may also have translational poten-
tial35. This carrier has been used to deliver interferon-γ signalling  
peptide, resulting in marked inhibition of both early and established 
hepatic fibrosis without exhibiting any off-target effects36,37. Since 
its initial development, alterations to the PDGFRβ-recognising 
peptide delivery molecule have been made. Bansal and colleagues 
demonstrated that by switching from monocyclic binding peptides 
to bicyclic peptides, a more fitted interaction with the dimeric 
PDGFRβ is possible. This also reduced carrier size and complex-
ity, making it potentially more feasible for clinical administration36. 
Furthermore, addition of a PEG linker was used to prolong plasma 
half-life and stability as well as provide conformational flexibility  
for appropriate interaction with PDGFRβ36.

A further approach to specific targeting of HSCs involves cou-
pling liposomes to vitamin A, which is actively taken up by quies-
cent and activated HSCs38. Sato et al. reported that siRNA-loaded  
liposomes could be targeted to HSCs using this approach and  
inhibited collagen deposition by myofibroblasts38. Additionally, 
they report that activated HSCs, which reduce their vitamin A con-
tent during the activation process, take up vitamin A as effectively 
as resting HSCs38,39. A monoclonal human single-chain antibody 
fragment has also been generated that targets human HSCs via 
binding to the synaptophysin receptor40. Follow-up studies revealed 
that the antibody specifically targets liver myofibroblasts, and not  
monocytes/macrophages during fibrosis, and was successfully 
used as a drug carrier41. While the results are promising, there are a 
number of potential limitations associated with a monoclonal anti-
body drug carrier approach, including half-life, payload, and endo-
cytotic potential30.

Research has now also started to focus on the targeted delivery of 
therapeutic genes by adenovirus using the peptide-modified pro-
tein approach. Development of a fusion protein with affinity to 
adenovirus and PDGF peptide increased adenovirus gene trans-
fer in isolated HSCs, whilst reducing tropism for hepatocytes42. 
A more recent study has coupled adenovirus with a peptide show-
ing affinity to the p75 neurotrophin receptor, which is present on 
HSCs and myofibroblasts43,44. Using this construct, the authors were 
able to show that in vivo expression of certain transcription factors  
enabled the re-programming of myofibroblasts to hepatocyte-like 
cells in fibrotic mouse livers and reduced liver fibrosis43. Targeted 
delivery of transcription factors to myofibroblasts has also been 
achieved using adeno-associated virus vectors, which preferentially 
transduce myofibroblasts to generate hepatocytes that replicate 
function and proliferation of primary hepatocytes, and reduces liver  
fibrosis45. The ability to specifically target scar-producing cells 
within the liver and reprogramme them to become cells with a posi-
tive functional benefit has massive therapeutic potential.

Conclusion and future challenges
Recent advances in our basic understanding of hepatic myofi-
broblast biology have uncovered numerous potential therapeutic 
targets. Although it is likely that HSCs are a major contributor to 
the myofibroblast population, it is important that we continue to 
delve into the pool of cells giving rise to hepatic myofibroblasts, 
as further increasing our knowledge of the cellular and molecular 
mechanisms driving both hepatic fibrosis evolution and resolution 
will undoubtedly allow us to increase the potency and precision 
of new anti-fibrotic therapies. It also has to be borne in mind that 
most of the data regarding hepatic myofibroblast biology have been 
derived from pre-clinical animal models and there continues to be 
a significant lack of human data in this area. In the coming years, 
driven by the huge advances in ‘omics’ technologies, we should 
harness these powerful new methodologies to study human fibrotic 
liver tissue directly, to greatly increase our understanding of the 
cellular and molecular mechanisms driving human liver fibrosis, 
across the various aetiologies and stages of human chronic liver 
disease. The data accrued from these types of human studies can 
then be used to inform, guide, and focus our pre-clinical studies 
and increase the precision with which we can identify relevant, 
new anti-fibrotic therapeutic targets. Furthermore, given the het-
erogeneity of the myofibroblast response to different forms of liver 
injury, it is likely that future therapies will need to be tailored in 
a disease-specific manner. In the coming years, the identification 
of specific pro-scarring subpopulations within the liver’s mesen-
chymal cellular populations will hopefully facilitate and accelerate 
the discovery of effective, targeted anti-fibrotic therapies with the 
ultimate goal being the identification of specific markers that allow 
subpopulation-specific drug delivery to the scar-producing cells 
within the liver, with minimal effects on normal organ homeostasis. 
We are not there yet with regard to this degree of fidelity in treat-
ing patients with liver fibrosis; however, identification of organ-
specific myofibroblast markers has the potential to open up a new  
era in precision medicine for liver fibrosis.

Abbreviations
BSA, bovine serum albumin; ECM, extracellular matrix; 
EMEA, European Medicines Agency; FDA, US Food and Drug 
Administration; HSC, hepatic stellate cell; Lrat, lecithin-retinol  
acyltransferase; MMT, mesothelial to mesenchymal transi-
tion; PDGFRβ, platelet-derived growth factor receptor β; PF,  
portal  fibroblast; RGD, Arg-Gly-Asp; siRNA, small interfering 
RNA.
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