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Syntactic priming (SP) is the effect by which, in a dialogue, the current speaker tends

to re-use the syntactic constructs of the previous speakers. SP has been used as

a window into the nature of syntactic representations within and across languages.

Because of its importance, it is crucial to understand themechanisms behind it. Currently,

two competing theories exist. According to the transient activation account, SP is

driven by the re-activation of declarative memory structures that encode structures.

According to the error-based implicit learning account, SP is driven by prediction errors

while processing sentences. By integrating both transient activation and associative

learning, Reitter et al.’s hybrid model 2011 assumes that SP is achieved by both

mechanisms, and predicts a priming enhancement for rare or unusual constructions.

Finally, a recently proposed account, the reinforcement learning account, claims that

SP driven by the successful application of procedural knowledge will be reversed

when the prime sentence includes grammatical errors. These theories make different

assumptions about the representation of syntactic rules (declarative vs. procedural) and

the nature of the mechanism that drives priming (frequency and repetition, attention,

and feedback signals, respectively). To distinguish between these theories, they were

all implemented as computational models in the ACT-R cognitive architecture, and

their specific predictions were examined through grid-search computer simulations. Two

experiments were then carried out to empirically test the central prediction of each theory

as well as the individual fits of each participant’s responses to different parameterizations

of each model. The first experiment produced results that were best explained by the

associative account, but could also be accounted for by a modified reinforcement model

with a different parsing algorithm. The second experiment, whose stimuli were designed

to avoid the parsing ambiguity of the first, produced somewhat weaker effects. Its results,

however, were also best predicted by the model implementing the associative account.

We conclude that the data overall points to SP being due to prediction violations that

direct attentional resources, in turn suggesting a declarative rather than a RL based

procedural representation of syntactic rules.

Keywords: syntactic priming, declarative knowledge, procedural knowledge, reinforcement learning,

computational modeling
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INTRODUCTION

Syntactic Priming (SP, also known as “Structure Priming”) is
the linguistic phenomenon by which speakers tend to reuse
syntactic structures across utterances (Bock, 1996). Its existence
is often touted as the strongest evidence that the same syntactic
mechanisms are used in both language comprehension and
language production. As such, manipulations that affect SP can
be used to gather insight into how the brain perceives, represents,
and applies syntactic structures. For example, two notable studies
(Loebell and Bock, 2003; Hartsuiker et al., 2004) have shown that
SP effects occur across languages, demonstrating that syntactic
structure is represented in a way that is language independent.

In this study, we use the syntactic priming paradigm to
better understand the possible cognitive mechanisms underlying
syntactic representation. Consistent with an emergentist
approach to language (Hernandez et al., 2019), we hypothesized
that the syntactic operations are not modular and encapsulated
but depend on general-purpose cognitive mechanisms, such as
procedural learning or working memory [“a new machine built
out of old parts,” as Bates and Benigni (1979), famously put it].

To identify which cognitive functions, specifically, support
syntax in SP effects, we devised a variation of the SP paradigm
that includes a new critical manipulation, that is, the presence
of syntactically incorrect priming sentences. As it will be shown,
different existing theories of SP and different. These predictions
were tested in two different experiments.

Existing Theories of Syntactic Priming
In the past few decades, many researchers have attempted
to determine the most likely mechanistic explanation for SP
(Hartsuiker et al., 2004; Chang et al., 2006; Reitter et al., 2011).
Experimental studies showed that a range of factors could
impact the strength of priming. For example, the priming effect
is enhanced by the presentation of multiple primes, which is
referred to as the cumulativity of SP (Jaeger and Snider, 2008). In
addition, the lexical overlapping between prime and target also
enhances priming, which is known as the lexical boosting effect
(Pickering and Branigan, 1998). Moreover, there is evidence for
an inverse frequency interaction, showing that the less frequently
used syntactic structures are associated with stronger priming
effects (Bock, 1986; Jaeger and Snider, 2008; Kaschak et al., 2011).

Several competing accounts have been put forward to explain
these effects. A group of researchers, for example, advocated
a transient short-term residual activation account relying on a
declarative system (Pickering and Branigan, 1998; Branigan et al.,
2000; Pickering and Garrod, 2004; Kaschak, 2007), which argues
that the increased probability of using a syntactic construction
depends on how frequently it has been retrieved from the
memory. Another group of influential accounts are built upon
implicit learning theory, assuming the processing of a syntactic
structure affects the structure’s probability distribution (Bock and
Griffin, 2000; Chang et al., 2006).

A syntactic structure’s probability distribution can be learned
in multiple ways. For example, Chang et al. (2006) presented
a connectionist model in which syntactic acquisition is a
consequence of error-based implicit learning. In language

processing, the deviation between one’s prediction and observed
information (that is, the prediction error) serves as a learning
signal, and the weights in the network are updated in order
to minimize the prediction error. Because the prediction error
naturally leads to implicitly learning the statistics of occurrence of
different syntactic structures, it provides an elegant explanation
for the cumulative effect.

Jaeger and Snider (2008) built upon this idea and proposed
a surprise-sensitive persistence account, which is able to
explain the inverse frequency effect. Their account assumes that
syntactic priming is caused by updating and maintaining the
probability distribution of syntactic information. Specifically,
this account predicts that more surprising syntactic structures
(lower frequency), lead to greater change of the prior probability
distribution, and thus lead to activation boosts of this particular
structure, enhancing the priming effect by increasing the
probability of reusing this construction.

Reitter et al. (2011) presented a hybrid model, in which
syntactic priming is achieved through a combination of
frequency-driven boosts of activation from transient processing
(Pickering and Branigan, 1998) and contextual associations
that drive predictions (Chang et al., 2006). In Reitter’s et al.
hybrid model, the probability of certain syntactic structures
being produced depends on its activation relative to other
syntactic structures in memory. A structure’s activation follows
the rules of memory decay, thus exhibiting frequency and
recency. Contextual associations further boost a structure’s base
activation. Reitter’s et al. model predicts inverse frequency effect
by arguing that most recent exposure of syntactic structure
increases its base activation, leading to higher probability of
being retrieved with retrieval cue. Specifically, less frequent
constructions have relatively lower base activation compared to
more frequent ones and thus leads to a larger relative increase in
activation boost caused by processing prime construction.

Connecting Syntactic Priming to Core
Cognitive Mechanisms
The goal of this paper is to connect these possible accounts of SP
to existing and general mechanisms that might exist in the brain
(Hasson et al., 2018). For example, there aremultiplemechanisms
that could be used to implement a prediction error or surprise-
based learning of probability distributions about syntactic
structures. Ultimately, the choice of the specific mechanisms is
tied to the specific way in which syntactic knowledge is believed
to be represented and its putative neural substrate.

Perhaps the most general distinction that can be made
is between declarative and procedural knowledge (Knowlton
and Squire, 1994; Squire, 2004). Declarative knowledge, which
encompasses episodic and semantic memory, possesses many
of the properties that are assumed to be shared by syntactic
structures. In particular, its availability reflects the frequency
with which a particular item has been processed. It also decays
over time, with the transient boost of activation giving rise to
priming effects. Note that, although declarative knowledge is
typically explicit, the mechanisms that regulate its availability
(frequency, recency, spacing, and priming) remain implicit and
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thus compatible with the assumptions of existing models. A
declarative account is also compatible with the findings of
Ivanova et al. (2012), which ultimately point to a lexicon-based
nature of syntactic priming effects—the mental lexicon is vastly
believed to be represented in declarative (semantic) memory.
Reitter et al. influential model 2011 of syntactic priming, for
example, relies entirely on declarative representations.

However, syntactic structures could also be potentially
represented as procedural knowledge. In Ullman’s declarative-
procedural model (2004), for example, syntactic structures are
explicitly identified with procedural knowledge. Procedural
knowledge is considered intrinsically implicit and non-
verbalizable, making it naturally compatible with implicit
learning accounts. Since procedural knowledge is used to
represent “how-to” information, it naturally leads to the complex
operations of syntactic rules. Unlike declarative knowledge,
which is known to be reflect frequency and recency, procedural
knowledge is thought to be refined through reinforcement,
and specifically by reward prediction errors (Sutton and Barto,
1998). Rules and operations that are most commonly successful
are believed to be applied more frequency; violations of these
expectations are known to drive learning. Thus, the learning
mechanisms of procedural knowledge also rely on frequency
and prediction violations, and are in principle compatible with
syntactic priming effects.

Despite their similarity, it is possible, albeit difficult, to
distinguish between declarative and procedural representations.
For example, Anderson et al. (1997) relied on the fact
that procedural knowledge, being habitual, is less flexible
and more difficult to apply in uncommon orders. Jacoby
(1991) also demonstrated that, since procedural knowledge is
implicit, participants cannot successfully control or prevent its
application. Stocco and Fum (2008) showed that, since the use of
procedural knowledge is shaped by previous rewards, it is difficult
to prevent its application in circumstances where it would lead to
negative outcomes.

Most psycholinguistic studies investigated syntactic priming
effects using carefully controlled experimental items, ensuring
that the linguistic stimuli have no mistakes and are produced
flawlessly. However, in natural conversation, disfluencies
and errors are very common when people are speaking.
Usually, speech errors (which might include ungrammatical
constructions, inappropriate word choices, ambiguous meaning,
or absolute non-sense) are considered as interference that
either slows down the processing or impedes comprehension.
Even though people may ignore minor speech errors in daily
conversation, there is evidence that erroneous information does
affect language processing, and might provide a further cue to
the underlying representation of syntax. For example, people
often change their mind and correct themselves mid-sentence
while speaking. Slevc and Ferreira (2013) examined the priming
effect in the context of correcting speech errors. They found that
SP is significantly reduced when primes were corrected to the
alternative syntactic structure.

Another study by Ivanova et al. (2012) investigated whether
people tend to orally produce ungrammatical utterances by
immediate exposure to ungrammatical primes—that is, if

syntactic priming extends to ungrammatical constructs as
well. They compared two competing accounts of syntactic
priming, abstract structural persistence account, which argues
that structural priming occurs because of the availability of an
abstract rule; and a lexically driven persistence account, which
argues that only the exposure to the exact same lexical elements
leads to ungrammatical priming. They specifically looked at
when the target ungrammatical verb-construction would occur
in participants’ speech by manipulating the syntactic structure
of primes. For example, the sentence “The dancer donates the
soldier the apple” is a grammatically incorrect sentence because
in standard English, the verb “donate” does not permit the dative
alternation. According to the abstract structural persistence
account, reading the same double-object constructions, such as
“The waitress gives the monk the book” would lead participants
to produce the same verb-construction combinations even
though the utterances tend to be ungrammatical. On the
contrary, the lexically driven persistence account predicts that
the priming only occurred if the lexically-specific syntactic
information, the exact verb “donate” is repeated in both prime
and targets. Their findings supported lexically-driven persistence
account, against abstract structural persistence account, showing
that no structural priming effect of ungrammatical double object
responses was found when the prime shared similar structure but
not exact lexical information.

This raises a question related to our research interests, in
written production, whether the SP effects would be different
if the prime contains grammatical errors and which account,
activation boosts, associative learning, or reinforcement learning,
is the best to account for our findings. In this study, we proposed
three hypothetical models depending on three accounts discussed
above, and attempted to account for an ungrammatical priming
pattern by comparing them. First, an transient activation account
assumes that the SP is the result of memory retrieval. The error
which violates the grammatical rules is not expected to be parsed
in the priming process, thus according to this account, there
should be no change in SP effects by introducing grammar
errors. The second account is based on Reitter et al. model 2011,
which argues that SP involves both transient activation boosts
and associative learning. Like error-based implicit learning, this
account consistently predicts that the rare a construction is, the
stronger the priming is (Jaeger and Snider, 2008, 2013; Reitter
et al., 2011). Given that the ungrammatical constructions are
less commonly seen, we assume that there is a possibility that
the SP could be enhanced by grammar errors. In addition, the
role played by errors in SP introduces a third point of view
on the nature of SP, which can be cataloged under the RL
account. According to this point of view, syntactic structures are
represented procedurally and their selection is guided by their
perceived utility in terms of Reinforcement Learning, i.e., their
estimated future amount of “rewards” or positive feedback signals
(Sutton and Barto, 1998). It is widely accepted that procedural
knowledge, in general, is refined in a Reinforcement Learning-
like manner through the backpropagation of reward or feedback
signals. In fact, procedural knowledge and reward signals
share the same computational substrate, in the dopaminergic
basal ganglia (Schultz et al., 1997; Yin and Knowlton, 2006).
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Furthermore, although the basal ganglia are not considered part
of the cortical language network, an increasing number of studies
have shown their involvement in language processing (Friederici,
2006; Stocco et al., 2014).

Present Study
In this study, we set forward to test different accounts
for syntactic priming, and to answer the question of
whether perceiving incorrect linguistic information such as
ungrammatical syntactic constructions would affect people’s
subsequent language representation, particularly in syntactic
choices of production. In Experiment 1, we used Active/Passive
primes with grammar errors to examine the change of syntactic
production preferences. Then we attempted to explain the
observed patterns by fitting the empirical results in the
ACT-R model simulations. In Experiment 2 we changed
to another extensively studied syntactic structure, double-
object dative(DO)/prepositional-dative(PD) constructions,
and manipulated the position of grammar error to investigate
whether the priming pattern could be accounted for by
three models.

Theoretical Hypothesis
Based on discussed theories of SP, we apply similar principles
to compare three hypothetical models that account for priming
effects using different combinations of declarative and procedural
mechanisms. Specifically, we argue that procedural vs. declarative
accounts of syntax can be distinguished by how syntactic priming
is modulated by ungrammatical prime sentences.

Across all predictions, we expected that syntactic priming
effects would occur regardless of syntactic correctness.
Specifically, the proportion of producing the same construction
was expected to be higher than producing alternative
construction. We also expected that the priming effect would be
different depending on whether the syntactic structure of prime
was correct or not.

The Activation model assumes that the syntactic structures
are represented in declarative knowledge, and that syntactic
priming effects depend on the frequency and recency of syntactic
structures that are encountered. This model implements the
majority of mechanics of Reitter et al. model 2011 except the
associative spreading component. In this model, the error which
violates the grammatical rules is not expected to be parsed in the
priming process, thus according to this account, there should be
no change in SP effects by introducing grammar errors.

The Associative model is based on Reitter et al. hybrid model
2011, in which syntactic structures are also represented
declaratively, but additional activation is also provided
during processing through associative links. In this model,
ungrammatical primes require additional processing and,
because of these additional resource demands, gather additional
boost of spreading activation. In this model, thus, ungrammatical
sentences further amplify the syntactic priming effect.

Finally, In the Reinforcement model, syntactic structures
are represented procedurally and their selection is guided
by their perceived value in terms of reinforcement learning,
i.e., their predicted future positive feedback signals (Sutton

TABLE 1 | Overview of the differences between models.

Models Rule representation Priming mechanisms

Activation model Declarative memory Recency

Associative model Base-Level learning

and associative

learning

Spreading activation

Reinforcement model Procedural memory Feedback signal

and Barto, 1998). In this model, procedural rules compete to
process sentences, and are reinforced by successes. As discussed,
reinforcement learning mechanisms also reflect frequency and
expectations, and are thus capable of replicating the main
syntactic priming findings. Since ungrammatical sentences do
not match the expected syntax, however, they are likely to
result in a negative rather than a positive feedback signal. Thus,
according to the model, ungrammatical sentences would dampen
or reverse, rather than amplify, the syntactic priming effect.

COMPUTATIONAL MODELING IN ACT-R

To explicitly formulate the three hypotheses, we implemented
them as three different computational models. Each model
performs a simplified version of a canonical SP task, first
comprehending a sentence (in either active or passive form)
and then producing a sentence to describe a picture. Both
comprehension and production depend on the use of two rules
that implement the active and the passive sentence structures.
In comprehension, these rules are used to mediate from the
underlying sentence to its higher-level semantic representation.
In language production, these rules are used to create a mental
plan of the sequence of words to produce a description of the
picture. The crucial difference among three models is how the
rules are represented and what is the cause of the priming, that is,
the transient increase in probability of using a particular syntactic
rule after encountering it. A summary of these differences is given
in Table 1.

All three models were implemented in ACT-R (Anderson
et al., 2004), which is the dominant cognitive architecture in
psychology and neuroscience (Kotseruba and Tsotsos, 2020). As a
cognitive architecture, ACT-R provides a series of basic cognitive
functions that synthesize that current understanding of cognitive
and neural computations. By implementing all three models in
the same architecture, we are ensuring that the three models
reflect the exact mechanisms and that parameters that occur in
more than one model have the same effect and interpretation.

Although a full overview of ACT-R is beyond the scope of this
study, it is important to highlight some general characteristics
of ACT-R that are important for our models. ACT-R models
have two types of long-termmemory representations, declarative
and procedural. Declarative memory is stored in vector-like
structures called chunks, which are used to represent semantic
and episodic memories (“Paris is the capital of France”),
perceptual inputs (“A black triangle is on the screen”), or motor
commands (“Press the spacebar”). Chunks have an associated
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scalar quantity, activation, that represents the probability of a
chunk to be retrieved at any given time; this probability decays
exponentially over time and increments after every retrieval of
the chunk, capturing both recency and frequency effects. Thus,
activation reflects the transient increases in the availability of a
piece of information as it is processed again.

Procedural knowledge is stored in conditional state–action
rules, called production rules or productions, that encode basic
stimulus-response associations (“if you hear the bell, prepare for
food”), habits (“if you go out, pick up an umbrella”), and minimal
mental steps (“if you attend to something, place it in working
memory”). At any time, multiple productions might be available
and competing for execution; the winning one is determined
on the basis of their utility, a scalar quantity that reflects the
probability of a particular rule to generate rewards and is learned
through a temporal-difference reinforcement learning algorithm
(Sutton and Barto, 1998), implemented as in Equation (3). Just
like reprocessing of information causes a transient surge in
the availability of the corresponding chunks, so the successful
application of a rule causes a transient increase in its utility of
the corresponding production.

Chunks are accessible to production rules via a set of
dedicated, limited-capacity buffers. Buffers represent functionally
specific cortical regions; for example, the retrieval buffer holds
chunks retrieved from long-term memory and represents the
function of the lateral prefrontal cortex (Anderson et al., 2008).
Buffers also have an associated scalar value, spreading activation,
which is thought to reflect the deployment of attentional
resources (Daily et al., 2001). Activation spreads from chunks
in buffers through all chunks in long-term memory that are
associated (or share features) with them. These associations can
be learned in a way that resembles Hebbian learning and provide
another means to temporarily alter the probability that a chunk
will be retrieved. The effect of spreading activation is modeled as
an additional term added to each chunk’s base-level association.

In summary, in the ACT-R modeling framework, cognition
unfolds as productions respond to stimuli and changing mental
states by retrieving, placing, and modifying chunks in the buffers,
which in turns alterns both the probability of chunks to be
retrieved and which production will be firing next.

Model Design
Although ACT-R provides a general framework for modeling
cognition, when modeling specific processes researchers often
make different assumptions about the format of the underlying
representations. For example, interference in the Stroop task can
be modeled using either declarative (van Maanen et al., 2009) or
procedural knowledge (Lovett, 2005). The same principle holds
for language processes, with some authors representing syntactic
structure as procedural rules (Lewis and Vasishth, 2005) and
others representing them in declarative memory chunks (Stocco
and Crescentini, 2005; Reitter et al., 2011). This grants us the
possibility to explore syntactic priming as either a procedural or
a declarative phenomenon.

To generate three different models of SP, each of which
captures one proposed explanation of the SP effect and each of
which depends on a single mechanism. All of these models can

perform a rudimentary and highly stylized version of language
understanding and production, and thus can perform the basic
two steps of a SP task, that is, understanding a sentence describing
a picture and composing a sentence to describe one.

The Activation Model relies on a declarative module to
retrieve memory of syntactic structure. First, the model parses
in a prime sentence from the visual buffer, and requests a
retrieval of a syntactic structure based on what has been parsed
in the imaginal buffer. After successfully retrieving the syntactic
structure (or failing to retrieve), the model proceeds to the
language production task, harvesting the target picture from the
visual buffer and encoding it in the imaginal buffer. Then the
model requests a retrieval of any available syntactic structure.
ACT-R uses a base-level learning function to calculate the
activation of chunks when a retrieval request is made (Equation
1). The activation of the syntactic structure chunk reflects the
degree to which prior experiences and current context, and
determines whether it will be retrieved or not. The chunk with
the greatest activation will be placed into the retrieval buffer.
Given the retrieval outcomes, the model produces the sentence
by applying the corresponding syntactic structure to the outcome
sentence. If it fails to retrieve any syntactic structure from the
declarative module, an “unknown” output will be generated.

Ai = Bi + ε = ln (

n∑

j=1

tj
−d) + ε

Equation 1. Base-learning activation. Activation Ai consists of two main

components: base-level activation Bi which reflects the recency and

frequency of practice of chunk i; and a noise component ε. n indicates the

number of presentations for chunk i, tj is the time since jth presentation, d is

the decay parameter.

The Associative Model implements associative learning in ACT-
R, which accounts for the ungrammatical priming effects by
including a context component in chunk activation (Equation
2). As a grammar error is parsed in, the chunk carrying this
specific syntax information will be placed in the imaginal buffer,
becoming the source of activation. This chunk can spread an
amount of activations to chunks in declarative memory, resulting
in higher likelihood of this syntactic structure being retrieved in
the future (Equation 2).

Ai = Bi +
∑

k

∑

j

WkjSji + ε = ln (

n∑

j=1

tj
−d)

+
∑

j

Wj(S− ln( fanj))+ ε

Equation 2. Activation Ai consists of three main components: base-level

activationBi , context component, and a noise component ε.Wkj indicates the

amount of activation from source j in buffer k, Sji is the strength of association

from source j to chunk i, fanj is the number of chunks in declarative memory

in which j is the value of a slot plus one for chunk j being associated with

itself.
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The Reinforcement Model uses procedural knowledge to
represent grammatical rules, and reinforcement learning
to select between competing rules. It first parses in a
prime sentence from the visual buffer and creates a mental
representation in the imaginal buffer. Feedback signals
are generated by detecting whether the comprehended
sentence is grammatically correct or not and are delivered
at the end of the comprehension process. When the model
proceeds to picture description tasks, two productions
of syntactic structure compete with each other. The
one with higher utility is chosen by the model to apply
corresponding syntax. Equation (3) demonstrates the utility
calculation equation.

Ut = Ut−1 + α(Rt − Ut−1)

Equation 3. Utility Learning in Reinforcement Learning. Ut represents the

utility U of the production p at time point t, α indicates the learning rate, Rt is

the reward the production received for at time t.

Model Evaluation
In model selection, it is common to use likelihood-based
measures. The likelihood function of a particular model with
parameters θ , L(m, θ | x), is the probability that, given the
parameterized model and set of observed data to fit, the
model would produce that data = L(m, θ | x) = P(x|m, θ).
Here, mand θrefers to the model and its parameters, and
x refers to the observations. Common comparison metrics,
such as the Akaike Information Criterion (AIC) and the
Bayesian Information Criterion (BIC), are both based on
likelihood. The problem is that, while closed-form likelihood
functions have been derived for simple models (such as logistic
models or linear models), they can be incredibly difficult
to derive for relatively complex models and impossible for
arbitrarily complex models based on the ACT-R architectures.
In turn, this discourages the use of modern model selection
procedures. Some attempts have been made. For example,
both Stocco (2018) and Haile et al. (2020) used BIC to
compare competing ACT-R models. However, the equation
used to estimate BIC is a closed-form approximation that
is based on Residual Sum of Squares and was originally
derived for linear models; as such, it does not necessarily hold
for ACT-R.

In this paper, we followed the computationally expensive
but more accurate solution of empirically calculating the
likelihood function but simulating each model and set of
parameters multiple times, and calculating the empirical
probability distribution of each results. Knowing the mean
and standard deviation of this distribution, the value of
P(x| m, θ) can then be calculated directly. If a model
is designed to predict n data points (corresponding, for
instance, to different experimental conditions), its likelihood
can be expressed as the joint probability that any of those

data points can be produced. For simplicity, and assuming
independence, this can be expressed as the product of the
probability of observing each individual data point in the
empirical data, i.e., L(m, θ | x1, x„ . . . xn) = 5i L(m, θ | xi,).
Finally, to avoid computational problems with vanishing small
probabilities, it is common the express this value in terms of
log likelihood:

log L = log P(x |m, θ) =
∑

i

log z(xi − xi,m) / σi,m

Equation 4. Log-likelihood of model selection. log L refers to the log of

probability of observation x given model, m and parameters θ . z indicates

the z-transformation, xm indicates model outputs, σm indicates the standard

deviation of model outputs.

Model Fitting
To examine the predictions of our model, we use a grid-
search approach to find the best possible parameters and the
parameter space for each model is displayed in Table 2 (as in
Haile et al., 2020). Each model simulates 40 independent trials
the same as the experimental paradigm used for participants,
running repeatedly for 50 times. Following the four different
prime sentences, the mean proportion of each syntactic
construction and their standard deviations are computed. We
find that, across parameters, the three models reliably produce
the qualitative pattern of our three hypotheses (Figure 1).
Specifically, the simulations show that, in the Activation
Model, the proportion of Active constructions does not
change with respect to the grammar error in primes; that,
in the Associative Model we observed a diminished SP effect
after grammatically in correct constructions; and that in the
Reinforcement Model the incorrect primes generate an enhanced
SP effect.

In order to evaluate the three models for each participant,
we used the Bayesian Information Criterion (BIC; Schwarz,
1978). The BIC balances fit and complexity by a penalty
to the likelihood that is proportional to the number of
parameters in a model. The relative value of BIC is more
important than absolute BIC in interpreting the model
performance. Low BIC indicates high likelihood of the model
being able to fit participant data compared to other models,
when a model’s inherent complexity is taken into account.
Specifically, the BIC can be calculated for each model as
such (Equation 5):

BIC = − 2 log L + k log(n)

Equation 5. BIC estimation equation. LogL is the log-likelihood of model, k

is the number of parameters, n is the number of observations.
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Model Comparison
Finally, to make group-level inferences from this pattern of
variability, we used a Group Bayes Factor (GBF) approach (see,
for example, Stephan et al., 2007). Group-level likelihood values
for a modelm can then expressed as the product of the likelihood
of that model fitting the specific results xof each participant p,
i.e., 5p L(m, θ | xp). When using log-likelihood, this translates to
the sum of all of the participant’s log-likelihoods

∑
p log L(m,

TABLE 2 | Model parameters manipulated in the simulations.

Models Parameter Value Meaning

Declarative

model

:ans 0.1, 0.25, 0.5, 0.75, 1, 1.5 Instantaneous noise

:bll 0.1, 0.3, 0.5, 0.7, 0.9 Decay parameter in

base-level learning

:lf 0.1, 0.3, 0.5, 0.7, 0.9 Latency factor

Spreading

model

:ans 0.1, 0.25, 0.5, 0.75, 1, 1.5 Instantaneous noise

:bll 0.1, 0.3, 0.5, 0.7, 0.9 Decay parameter in

base-level learning

:lf 0.5, 0.7, 0.9, 1 Latency factor

:ga 0.5, 1, 1.5, 2 Spreading activation

parameter for goal buffer

:mas 2.8, 3.2, 3.6 Maximum associative

strength

Reinforcement

model

:egs 0.01, 0.1, 0.5, 0.9, 1.3 Utility noise

:alpha 0.1, 0.3, 0.5, 0.7, 0.9 Learning rate

:r+ 0, 0.1, 0.5, 1, 5, 10 Positive reward

:r- −10, −5, −1, −0.5, −0.1, 0 Punishment (negative

reward)

θ | xp). The GBF is then computed as the ratio of the group
likelihoods of two models, L(m1, θ | xp )/L(m2, θ | xp). In terms of

log-likelihood, the GBF can be expressed as ed, with d being the
difference in log-likelihoods between the two models. Kass and
Raftery (1995) provide guidelines to interpret these values.

EXPERIMENT 1

In Experiment 1, participants completed a picture verification
task and a picture description task online (Figure 2). The
prime sentences were either correct or containing grammar
errors, and participants’ responses were analyzed to see if
their production preferences were changed by the error. The
purpose of this experiment was to test three hypotheses,
investigating whether ungrammatical sentences would change
the production preferences.

Participants
Ninety participants (35 females, 54 males, 1 did not disclose)
were recruited online through Amazon Mechanical Turk,
and performed the experiment in exchange for monetary
compensation ($15 per hour). Only subjects who identified
themselves as native English speakers were allowed to provide
norming data. In addition, to obtain high quality data, only
MTurk workers with at least a 95% approval rating from
previous jobs were included. Ethnicity included 51.1% White,
36.7% Asian, 6.7% African American, 3.3% Latino or Hispanic
American, and 2.2% Others. All participants were screened
through a pre-experimental survey that gathered information
about their language experience and background; only native
English speakers without any history of brain damage, reading
problems, nor language-related disorder were allowed to proceed
to the experiment. One subject was excluded for more than half
incomplete or random responses in the language production

FIGURE 1 | Averaged simulation results from three hypothetical models of SP effect across all parameter sets, with error bars representing the SD of simulation

outputs. (A) The Activation Model (Model 1). (B) The Associative Model (Model 2). (C) The Reinforcement Learning model (Model 3).
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FIGURE 2 | An example trial of Experiment 1, including a verification task and a description task. Verification task: an online “partner” (confederate) was typing a

sentence to describe the picture shown below. Participants needed to verify whether the sentence and the picture matches. Picture description task: participants

typed a sentence to describe the picture and waited for the “partner” to verify the response. The picture stimulus is only for demonstration purpose, not the real ones

used in the study.

task. The experimental protocol and inclusion criteria were
approved by the Institutional Review Board at the University
of Washington.

Materials
This picture description task was modified based on Hardy et al.
(2017)’s experiment. A total of 36 trials with prime target pairs
were created. Each picture depicted a transitive action involving
an agent and a patient. The verb of the action was printed under
each picture. The prime sentence was either active-tense form
grammatically correct (AC), passive-tense form grammatically
correct (PC), active-tense form grammatically incorrect (AI) or
passive-tense form grammatically incorrect (PI). In the total of
36 trials, half (N = 18) were Active (A) and the other half were
Passive (P); one third of trials (N = 12) were grammatically
incorrect(I) and two third (N = 24) of trials were grammatically
correct(I) primes. Because subjects were led to believe that the
primes they read were written by the other real participant
synchronically, we decided to create less ungrammatical primes
than grammatical primes. The order effect was controlled by
counterbalancing four prime conditions across lists such that
each condition appeared an equal number of times across the
experiment, and each item was shown only once.

Ungrammatical prime sentences in the Passive Incorrect
syntax condition (PI) were generated using seemingly correct but
non-existing past participles modeled after existing verbs, such
as “chasen” instead of “chased,” “slapt” instead of “slapped,” and
“shooted” instead of “shot.” The ungrammatical verb form was

created based on irregular past tense forms; thus, although non-
existent, these forms were created using morphosyntactic rules
that exist in English. In half of the trials within each condition, the
prime picture and prime sentence were perfectly matched, while
in the other half, the prime sentence was modified as semantically
incorrect by which the identity of either agent or patient is
wrong. This manipulation was designed to both make sure that
participants were performing the task correctly and to separately
measure the effect of syntactic errors from semantic errors.

This study was a 2×2×2 within-subject design, with three of
the factors being prime syntax (active vs. passive), grammatical
correctness (correct vs. incorrect), and semantic correctness
(correct vs. incorrect). In our notation, 4 syntax conditions: AC,
AI, PC, PI × 2 semantic conditions: SC (semantically correct)
and SI (semantically incorrect). Given that previous studies have
demonstrated a stronger syntactic priming effect as prime and
target are overlapping (Pickering and Branigan, 1998), in this
study, the prime and the target always shared the same action
verb. The combination of three independent variable pairs were
pseudo-randomized so in each syntax condition (AC, AI, PC, PI),
each verb only occurred once, and each verb wasmodified as both
semantic-correct and semantic-incorrect form.

Procedure
Most SP experiments make use of realistic, in person dialogue
between two participants, one of which is a confederate. The
confederate verbally utters the primes and the participants’
responses are recorded for transcription. To simulate this
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seemingly realistic dialog situation online, the study described
here used deception to convince participants that they were
paired with another online “partner” and they were to take turns
providing a description for a sentence and verifying the accuracy
of their partner’s description. In fact, there was no paired partner
and all sentences typed by the partner were decided beforehand.
At the end of the study, participants were fully debriefed about
the use of deception.

In the online task, participants saw a prime picture and were
asked to verify whether the sentence constructed by the partner
was correctly describing the picture or not. This simple true/false
task was created (half true and half false) for two purposes:
First, participants were encouraged to attend to the primes;
Second, half misplaced trials were used to see whether semantic
confusion confounded the syntactic priming effects. Followed
by the verification task, there was a picture description task.
In the picture description phase, a picture and an appropriate
verb were given, and participants needed to type a sentence to
describe the picture using the given verb. Participants were told
that the game was proceeding in which the partner and the
participant alternated between verifying if a sentence-picture pair
was matching and constructing a sentence to describe a new
picture to the other. The game set a randomly generated waiting
time to simulate the amount of time needed by the fictional
partner to type their own description.

The participant needed to complete a pre-screen survey
that only eligible ones can continue. After giving consent,
participants started with a three-trial practice phase to familiarize

themselves with the procedure. Between verification task and
picture description task, the game set a randomly generated
waiting time to simulate the verifying period of the “partner.”
At the end of the study, participants were given the debrief
about the deception involved and were asked to complete a
post-experiment survey.

Results
The syntactic structure of responses typed by participants were
first automatically coded with the Natural Language Toolkit
package (NLTK; Bird et al., 2009), as Active, Passive or
N/A, and the double-checked manually. The total of 3,241
responses yielded 78.74% active-voice and 19.84% passive-
voice descriptions. The remaining 1.42% responses, coded as
neither active nor passive descriptions, were excluded for further
analysis. Small grammar errors and typos (e.g., “A painter
punch the monk.”) were included in the analysis as long as
their syntactic structure was clearly recognizable, and their
grammaticality was coded as either 1 (has error) or 0 (no error).
The analysis was conducted with logistic mixed-effects models
using orthogonal contrast coding as implemented in the lme4
package in R (as Slevc and Ferreira, 2013). Because the proportion
of Active and Passive descriptions are complementary, we only
analyzed the proportion of Active sentences produced by each
participant in each condition. Syntactic Structure (Active or
Passive) and Syntactic correctness (Correct or Incorrect) were
treated as fixed effects, and individual subjects were treated
as random effects. The parameters were estimated based on

FIGURE 3 | Experiment 1: Mean proportion of producing active constructions as a function of prime grammaticality (Correct vs. Incorrect), syntactic voice (Active vs.

Passive). The bar graph and the numbers within each bar represent the mean proportion of produced descriptions across participants, with error bars representing

95% confidence interval. The dot plot represents the estimated proportion transformed by mixed effect logistic model outputs. Asterisk indicates significance level (***

means p < 0.001, * indicates p < 0.05), and n.s. indicates non-significant results. No interaction between Syntactic Structure and Syntactic Correctness was found, z

= −0.6, p > 0.1. Significant priming effects were found controlling for syntactic correctness and semantic correctness, p < 0.01, and there were robust significant

effects of grammaticality on the preferences of syntactic constructions, regardless of semantic correctness, p <= 0.05.
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TABLE 3.1 | Experiment 1 proportion results.

Prime condition Proportion (Active) Priming effect

Overall Active 0.883 0.167

Passive 0.716

Overall Grammatical 0.787

Ungrammatical 0.824

Two-way interaction comparison

Grammatical Active 0.872 0.170

Passive 0.702

Ungrammatical Active 0.904 0.159

Passive 0.745

1 subject was removed, NA responses were excluded in proportions.

the maximum likelihood. Figure 3 demonstrates the mean
proportion of active production as a function of prime syntactic
structure (Active vs. Passive), prime syntactic correctness
(Correct vs. Incorrect). No significant semantic effect was found;
thus it is not plotted. For the ease of understanding, the
analysis focused on raw proportions rather than log-odds ratios.
Following Ivanova et al. (2012), the priming effect was calculated
as the proportion of active responses following active primes
minus the proportion of active responses following passive
primes. Table 3.1 showed the proportion of active responses
under various priming conditions. The full statistical results of
the logistic mixed effects models were reported in Table 4.1 (as
in Slevc and Ferreira, 2013).

Overall, syntactic priming effects were observed in written
productions. Participants tended to produce 16.7% more
active constructions after active than passive prime sentences,
regardless of grammaticality, z = 8.29, SE = 1.43, p < 0.001.
Specifically, the priming effect of grammatical constructions is
17.0%, z = 11.4, SE = 0.85, p < 0.01, and that of ungrammatical
constructions is 15.9%, z = 7.61, SE = 1.34, p < 0.01. There
was a significant effect of grammaticality on the preference
of syntactic productions. Participants produced 3.7% more
active constructions after primed with ungrammatical than
grammatical sentences, regardless of syntactic structure, z =

−2.2, SE= 0.11, p= 0.028. No significant interaction of syntactic
structure and grammaticality was found, p > 0.1, suggesting that
the SP effect was not mediated by the grammaticality of primes.
Moreover, no significant effect of semantics on the preference
of syntactic production, p > 0.1, eliminating the possible
confounding effect of semantic confusions in the tendency of
producing particular syntactic structure.

Of interest to our research question, the interaction analyses
of grammaticality indicated that specifically for active primes,
participants produced 3.2% more active constructions after
primed with ungrammatical than grammatical sentences, z =

−2.30, SE = 0.13, p < 0.05, while the pattern was reversed
for passive primes, which participants produced 4.3% less
passive constructions after primed with ungrammatical than
grammatical sentences, z =−2.34, SE= 0.11, p < 0.05.

Overall in this written production task, 8.61% responses
were coded as ungrammatical responses. As found in Ivanova
et al. (2012), participants tended to make more grammar errors
following the ungrammatical primes (M = 0.257, SD = 0.437)
than grammatical primes (M = 0.204, SD = 0.403), regardless
of syntactic structure, z = −3.98, p < 0.001. No significant
effect of semantics was found in the grammaticality of written
responses, p > 0.1, suggesting that the tendency of making
more grammar errors was not enhanced by priming semantic
confusions, but enhanced by priming ungrammatical sentences.
As for the performance in the semantic verification task, the
overall correct verification rate was 79.92%. There was significant
effect of semantics on verification rate, with lower verification
rate following semantically incorrect primes (M = 0.783, SD =

0.412) than semantically correct primes (M= 0.845, SD= 0.362),
z = −9.09, p < 0.001. Moreover, the effect of grammaticality
was significant as well, with lower verification rate was found
for ungrammatical primes (M = 0.720, SD = 0.449) than
grammatical primes (M = 0.860, SD = 0.347), z = −2.14,
p < 0.05, Finally, there was a significant effect of syntactic
structure on the verification rate, with lower verification rate
after passive primes (M = 0.791, SD = 0.407) than active primes
(M = 0.837, SD = 0.370), z = −2.52, p < 0.005. These results
suggest that sentences that were, for any reason, slightly more
difficult to parse (because of passive voice or ungrammatical
construction) were also harder to verify. The interaction between
semantics, syntactic structure and syntactic correctness was also
found significant, p < 0.001, suggesting that the performance
of verifying semantics was mediated by grammaticality and
syntactic structure of the prime.

Computational Model Analysis
To examine which model accounts for the observed SP pattern
better, each model was fit to each participant independently.
The log-likelihood of each combination of parameters of each
model was calculated by summing up the log-likelihood of
obtaining the predicted responses to each of the four types
of prime sentences; then, the BIC values of each model
parametrization was calculated using (Equation 4). The BIC of
each possible parametrization of each model was computed and
compared. Given the best fit parameters set for each model,
we compared the BIC among three models and the one with
minimum BIC has the highest likelihood of fitting empirical data.
Although the syntactic priming effect reveals high variability
across participants, our models greatly capture the individual
differences in Experiment 1.

Following the GBF approach, the group-level likelihood value
was calculated for each model by summing up the individual
likelihoods of the best-fitting parametrization of the model for
each participant. The ratio of likelihoods was then compared to
yield a Bayes factor as relative-likelihood. Figure 4 shows the
BIC distribution across three models and the relative likelihood
of three models. Note that the BIC distribution is calculated
from the results of each run of the simulations; thus, the
Activation model, having a smaller number of parameters, also
has a smaller number of observations and a lower distribution
which suggests that compared to Reinforcement Model (m3),

Frontiers in Psychology | www.frontiersin.org 10 June 2021 | Volume 12 | Article 662345

https://www.frontiersin.org/journals/psychology
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychology#articles


Yang et al. Cognitive Mechanisms Underlying Syntactic Priming

TABLE 3.2 | Logistic fixed effects model coefficients and statistical tests from experiment 2.

Statistical test Odds ratios SE z p

Syntactic priming

(Intercept) 1.80*** 0.26 4.07 <0.001

Syntactic Structure[DO] 2.90*** 0.42 7.29 <0.001

Syntactic Correctness[C] 1.17 0.16 1.2 0.229

Syntactic Structure[DO]: Syntactic Correctness [C] 0.86 0.17 −0.76 0.447

Random Effects

R2 3.29

ICC 0.31

N surveyID 125

Observations 2,429

Marginal R2/Conditional R2 0.049/0.345

log-Likelihood −1274.984

Simple main effects, where prime condition = grammatical

(Intercept) 2.15*** 0.34 4.86 <0.001

Syntactic Structure[DO] 2.57*** 0.38 6.33 <0.001

Simple main effects, where prime condition = ungrammatical

(Intercept) 1.77*** 0.24 4.27 <0.001

Syntactic Structure[A] 2.76*** 0.40 7.06 <0.001

Interaction analysis of grammaticality

prime condition = DO

(Intercept) 5.38*** 0.93 9.75 <0.001

Syntactic Correctness[C] 1.01 0.16 0.07 0.944

prime condition = PD

(Intercept) 1.86*** 1.38–2.50 4.05 <0.001

Syntactic Correctness[C] 1.18 0.16 1.23 0.217

Analysis of production error

(Intercept) 154.21*** 64.33 12.08 <0.001

Syntactic Structure[DO] 0.62 0.22 −1.35 0.178

Syntactic Correctness[C] 0.56 0.19 −1.66 0.097

Syntactic Structure[DO]: Syntactic Correctness[C] 3.83** 1.96 2.62 0.009

NA responses were excluded in analysis. *p < 0.05; **p < 0.01; ***p < 0.001.

Associative Model (m2) has a higher likelihood of fitting the
empirical pattern. According to the Kass and Raftery (1995)’s
Bayes Factor interpretation reference, 3.2 < BF < 10 means
“Substantial” evidence of supporting one model over the base
model, 10 < BF < 100 means “Strong” evidence, and BF >

100 means “Decisive” evidence. As shown in Table 5.1, the
Bayes Factor between Associative Model vs. Activation Model
(BF[m2:m1] = 7.99e+25) was > 100, suggesting “decisive”
evidence of supporting the Spreading Model over the Declarative
Model. Moreover, the Bayes Factor between Associative Model
vs. Reinforcement Model (BF[m2:m3] = 1.98e+16) was also >

100, and greater than other BFs. Thus, the group likelihood
analysis strongly supported the Associative Model being the best
explanation of the behavioral results.

Discussion
Taken together, the results of our experiment provided a picture
that was not entirely consistent with any of the previously
discussed models, while the SP was present and robust (albeit less
dramatic that in previous studies). Contrary to the predictions

of the Activation Model, there was a robust effect of syntactic
grammaticality. These effects, however, did not comply precisely
with either of the two competing accounts, that is, the Associative
and the RL account. In the passive sentences, an ungrammatical
prime increased the likelihood of producing another active
sentence, consistently. However, the data also showed that
semantic errors did not produce any effect, and, therefore,
that the effect of errors can be localized to the processes of
syntactic parsing.

One possible explanation for the lack of correspondence
between the experimental results and our model is that our three
models failed to take into account the different ways in which
active and passive sentences are parsed. The empirical pattern
could be explained by the mixture of base level learning and
associative learning accounts. The pattern of Active prime follows
hybrid account while the pattern of Passive prime follows the
Procedural/RL account. In AI prime, the error was reflected
in missing the s in the third person singular verb, while in
PI prime, the error was reflected in adding seemingly correct
but non-existing past participles modeled after existing verbs.
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TABLE 4.1 | Logistic fixed effects model coefficients and statistical tests from experiment 1.

Statistical test Odds ratios SE z p

Syntactic priming

(Intercept) 5.71*** 1.62 6.16 <0.001

Syntactic Structure[A] 6.40*** 1.43 8.29 <0.001

Syntactic Correctness[C] 0.72* 0.11 −2.2 0.028

Semantic Correctness[C] 1.18 0.13 1.47 0.142

Syntactic Structure Syntactic Correctness 0.86 0.22 −0.6 0.547

Random effects

R2 3.29

ICC 0.6

N subjID 89

Observations 3,179

Marginal R2/Conditional R2 0.090/0.638

log-Likelihood −1070.286

Simple main effects, where prime condition = grammatical

(Intercept) 4.24*** 1.1 5.59 <0.001

Syntactic Structure[A] 5.60*** 0.85 11.4 <0.001

Simple main effects, where prime condition = ungrammatical

(Intercept) 6.11*** 1.79 6.17 <0.001

Syntactic Structure[A] 5.80*** 1.34 7.61 <0.001

Interaction analysis of grammaticality

prime condition = Active

(Intercept) 45.89*** 18.42 9.53 <0.001

Syntactic Correctness[C] 0.61* 0.13 −2.3 0.022

prime condition = Passive

(Intercept) 6.51*** 1.9 6.43 <0.001

Syntactic Correctness[C] 0.70* 0.11 −2.34 0.019

Analysis of verification rate

(Intercept) 8.10*** 2.07 8.18 <0.001

Syntactic Structure[A] 0.54* 0.13 −2.52 0.012

Syntactic Correctness[C] 0.62* 0.14 −2.14 0.032

Semantic Correctness[C] 0.11*** 0.03 −9.09 <0.001

Syntactic Structure[A]: Syntactic Correctness[C] 1.90* 0.57 2.15 0.032

Syntactic Structure[A]: Semantic Correctness[C] 12.42*** 4.21 7.43 <0.001

Syntactic Correctness[C]: Semantic Correctness[C] 55.92*** 18.95 11.87 <0.001

Syntactic Structure[A]: Syntactic Correctness[C]: Semantic Correctness[C] 0.19*** 0.09 −3.31 0.001

Analysis of production error

(Intercept) 0.00*** 0 −5.43 <0.001

Syntactic Structure[A] 1.14 0.3 0.51 0.609

Syntactic Correctness[C] 0.40*** 0.09 −3.98 <0.001

Semantic Correctness[C] 0.92 0.14 −0.5 0.615

Syntactic Structure[A]: Syntactic Correctness[C] 0.91 0.3 −0.29 0.773

NA responses were excluded in analysis. *p < 0.05; **p < 0.01; ***p < 0.001.

Another possible explanation is that our Procedural/RL models
are too naive and did not take into account the sequential
and incremental nature of error detecting and reward granting.
In a previous study (Yang and Stocco, 2019), we proposed a
more complex version of the RL-based sequential procedural
account, which takes the sequence of parsing into account.
In particular, while the naive Procedural/RL model assumed
that subjects immediately detected the structure of the sentence

(active vs. passive) and generated all feedback signals at the
very end of the comprehension process, empirical data suggested
that subjects might delay the choice of the correct syntactic
form until the first key word was encountered, and generated
feedback signals both the end (when all sentences are successfully
understood) and as soon as the first incorrect word was found
(for ungrammatical ones). This creates a novel asymmetry
between the ungrammatical, active (AI) and ungrammatical,
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TABLE 4.2 | Experiment 2 proportion results.

Prime condition Proportion

(DO)

Priming effect

Overall DO 0.787 0.159

PD 0.628

Overall Grammatical 0.715

Ungrammatical 0.698

Two-way interaction comparison

Grammatical DO 0.788 0.145

PD 0.643

Ungrammatical DO 0.786 0.173

PD 0.614

17 subjects were removed, NA responses were excluded in proportions.

passive (PI) sentences. In the case of passive sentences, the firstly
encountered verb form is the word “is” [as in “the robber is
chased (...)”]; when the word “is” is encountered, under this
binary syntactic condition, passive structure is selected with no
doubt. The grammatical mistake is then detected immediately
thereafter [as in “the robber is chasen (...)”], thus generating
a negative feedback that decreases the utility of the passive
form. In this condition, therefore, the effect of grammaticality
is identical to what was predicted by the previous model. In the
case of ungrammatical active sentences, the first verb form is
also the first word for which a negative feedback signal can be
generated [as in “the robber chase (...)”]. In this case, the negative
feedback is generated at the same time or before the active
sentence structure is selected, and, thus, does not affect the utility
of the corresponding production. When the model successfully
completes the sentence comprehension goal, a positive feedback
signal is generated that propagates back to active form, thus
increasing its utility even if the sentence was ungrammatical.

While the solution proposed in Yang and Stocco (2019) does
produce a pattern of results consistent with the observed data, it
does so at the expense of adding additional assumptions to the
model, which are not easily captured in the complexity penalty of
the BIC. Furthermore, it leaves open the question of whether the
other twomodels could also account for the grammaticality effect
once their parsing mechanisms are modified.

To avoid these pitfalls, a second experiment was conducted.
This experiment was designed so that, in the incorrect sentences,
the error would not occur before the syntactic structure could be
detected, ruling out the explanation proposed by Yang and Stocco
(2019). Second, all of the grammatical errors were created by
manipulating the argument structure of the verb, thus avoiding
the use of non-words.

EXPERIMENT 2

The purpose of Experiment 2 was to examine the SP pattern
with a different syntactic structure alternative. Specifically, we
chose the double object construction (DO: “Mary gave John the
book”) and the prepositional dative construction (PD: “Mary
gave the book to John”). We decided to use DO/PD structure as

prime stimulus because unlike the Active/Passive constructions
where the grammar error is always attached to the verb, we could
manipulate the position of grammar error by introducing the
error before the syntactic structure is determined. This avoids the
potential confounds of Experiment 1, in which ungrammatical
sentences contained morphological violations and non-existing
word forms. It also rules out the alternative explanation put
forward by Yang and Stocco (2019).

Participants
One hundred and forty-two University of Washington
undergraduates participated in this experiment (84 females,
55 males, 3 did not disclose; mean age 18.8 with SD 1.15).
Seventeen participants were excluded in statistical analysis for
having more than 4 void responses. Same pre-screen survey was
used to collect participant’s language background. Only native
English speakers were able to proceed. Similar to Experiment
1, ethnicity includes 47.5% White, 41% Asian, 1.44% African
American, 0.72% Latino or Hispanic American, and 7.91%
Others. The experimental protocol and inclusion criteria were
approved by the Institutional Review Board at the University
of Washington.

Materials and Procedure
The paradigm was largely identical to the one used in
Experiment 1, but the experiment design was a 2×2 within-
subject design, with the factors being prime syntax (double object
vs. prepositional dative object), and grammatical correctness
(correct vs. incorrect). Because Semantic manipulation had no
significant effect in Experiment 1, this factor was not included
in this experiment. The stimuli included 20 prime trials and 10
fillers, where one third of trials (N = 10) were Dative Object
(DO) and one third (N = 10) were Prepositional Dative(PD); of
the prime trials, half within each condition (N = 5, in total N =

10) were grammatically correct (C) and the other half of them
were grammatically incorrect (I). The prime sentence depicted a
transitive action involving an agent and a patient such as hand,
give, show. The filler trial depicted intransitive actions such as
nap, brush, wash (e.g., The cat is napping on the windowsill). The
verb of the action was printed under each target picture. The
prime sentence was either grammatically correct DO form (DOC:
e.g., The man handed the clown a hat), grammatically correct
prepositional-dative form (PDC: e.g., The swimmer handed the
towel to the driver), grammatically incorrect double-object-dative
form (DOI: e.g., The captain gave the old sailor they spare life
jacket) or grammatically incorrect PD form (PDI: e.g., The builder
showed the blueprints to them new client). The order of trials was
pseudorandomized so that each filler was between a block of 4
different prime conditions.

In order to have valid and natural ungrammatical sentences,
we pretested the stimuli by inserting different grammar errors
into sentences in a pilot study. Another group of subjects
were recruited to rate the sentence errors. Grammar errors
that elicited both semantic and syntactic confusions were not
used in Experiment 2. Pilot study revealed that whether it was
realistic, in person dialogue did not greatly change the way people
produce sentences in this scenario, thus in Experiment 2, we
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FIGURE 4 | (A) The distribution of BIC for three models fit by Experiment 1. (B) The relative log-likelihood of three models fit by Experiment 1 data. The

relative-likelihood is the ratio of the group-level likelihood to the minimum log-likelihood of three models. Consistent with statistical analysis, one subject was excluded

from simulation data analysis as well.

TABLE 5.1 | Summary of log-likelihood and BF statistics for experiment 1.

Group Log-Likelihood BF[m: m1] BF[m: m2] BF[m: m3]

Activation

Model (m1)

−1277.305 1 1.25E−26 2.48E−10

Associative

Model (m2)

−1217.662 7.99E+25 1 1.98E+16

Reinforcement

Model (m3)

−1255.188 4.03E+09 5.04E−17 1

TABLE 5.2 | Summary of log-likelihood and BF statistics for experiment 2.

Group Log-Likelihood BF[m: m1] BF[m: m2] BF[m: m3]

Activation

Model (m1)

−1433.287 1 9.16E−26 2.05E−25

Associative

Model (m2)

−1375.635 1.09E+25 1 2.24E+00

Reinforcement

Model (m3)

−1376.439 4.88E+24 4.48E−01 1

did not instruct participants to communicate with a confederate.
They only needed to judge whether the prime sentence is
grammatically correct or not, and then to describe the target
picture using the verb provided. This simple verification task,
similar to the verification task in Experiment 1, was used to
encourage participants to attend to the prime sentences, and
assess whether the grammar error could be detected effectively.

Results
The syntactic structure of responses typed by participants were
first automatically coded with the Natural Language Toolkit
package (NLTK; Bird et al., 2009), as Dative Object (DO),
Prepositional dative (PD) or N/A, and then double-checked
manually. The total of 2,840 responses yielded 64.47% DO,

and 28.06% PD descriptions. The remaining 7.46% responses
coded as neither DO nor PD constructions were excluded
for further analysis. Similar to Experiment 1, responses with
minor grammatical errors and typos (e.g., “The sailor gives
the an a teapot”) were included in the analysis, and the
grammaticality of responses was coded as 1 (error) or 0 (no
error). The analysis was conducted with logistic mixed-effects
models using orthogonal contrast coding as implemented in
the lme4 package in R (as Slevc and Ferreira, 2013). Because
the proportion of DO and PD descriptions are complementary,
we only analyzed the proportion of DO sentences produced
by each participant in each condition. Syntactic Structure (DO
or PD) and Syntactic correctness (Correct or Incorrect) were
treated as fixed effects, and individual subjects were treated
as random effects. The parameters were estimated based on
the maximum likelihood. Similar to Experiment 1, the analysis
focused on raw proportions rather than log-odds ratios. The
priming effect was calculated as the proportion of DO responses
following DO primes minus the proportion of DO responses
following PD primes. Figure 5 shows the mean proportion of
DO descriptions as a function of prime syntactic structure (DO
vs. PD), prime syntactic correctness (Correct vs. Incorrect).
Table 4.2 showed the proportion of DO responses under various
priming conditions. Table 3.2 shows the full statistical results of
the logistic mixed effects models.

Overall, syntactic priming effects were observed in written
productions. Participants tended to produce 15.9% more
DO constructions after DO than PD primes, regardless of
grammaticality, z = 7.29, SE = 0.42, p < 0.001. Specifically,
the priming effect of grammatical constructions is 14.5%,
z = 6.33, SE = 0.38, p < 0.001, and that of ungrammatical
constructions is 17.3%, z = 7.06, SE = 0.40, p < 0.001.
Different from Experiment 1, the effect of grammaticality on
the preference of syntactic productions was not significant,
p > 0.1. No significant interaction of syntactic structure and
grammaticality was found, p > 0.1, suggesting that the SP
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FIGURE 5 | Experiment 2: Mean proportion of producing DO constructions as a function of prime grammaticality (Correct vs. Incorrect) and syntactic structure (DO

vs. PD). The bar graph and the numbers within each bar represent the mean proportion of produced descriptions across participants, with error bars representing

95% confidence interval. The dot plot represents the estimated proportion transformed by mixed effect logistic model outputs. Asterisk indicates significance level (***

means p < 0.001, and n.s. indicates non-significant results). No significant effect of grammaticality was found, z = 1.2, p > 0.1. No interaction between Syntactic

Structure and Syntactic Correctness was found, z = −0.76, p > 0.1. Statistical analysis showed significant priming effects, controlling for syntactic correctness, p <

0.01.

effect was not mediated by the grammaticality of primes. The
interaction analysis of grammaticality indicated that there was
no significant difference of target constructions after primed
with ungrammatical sentences than grammatical sentences,
p > 0.1. Of all responses, 2.64% responses were coded as
ungrammatical responses. Unlike Experiment 1, no significant
effect of grammaticality of prime on the grammaticality of written
responses was found, p > 0.05, while the interaction between
grammaticality and syntactic structure was significant, z = 2.62,
SE = 1.96, p = 0.009, suggesting that the tendency of making
more grammar errors was mediated by both grammaticality and
syntactic structure of the prime. The following sections will
discuss several possible interpretations of the divergent findings
between experiment 1 and experiment 2.

Computational Model Analysis
As in Experiment 1, three different models were fit to each
participant of experiment 2. In order to evaluate the complexity
and goodness-of-fit of three models, all possible simulation
outputs were fit into aggregated individual participant data.
Similar to the model analysis in Experiment 1, the group-
level likelihood was calculated for each model by summing
up the individual likelihoods of the best-fitting parametrization
of the model for each participant in Experiment 2. The ratio
of likelihoods was then compared to yield a Bayes factor as
relative-likelihood. Figure 6 showed the BIC distribution across
three models and the relative likelihood. The Associative Model
has slightly higher relative-likelihood than the Reinforcement
Model, which adds further evidence supporting the Associative
Model. In Table 5.2, the Bayes Factor of Spreading Mode vs.
Activation Model (BF[m2:m1]) is > 100, much higher than
other BFs in its row. According to the Kass and Raftery (1995)’s

Bayes Factor interpretation reference, the Associative Model
being the best explanation of the behavioral results. In sum, the
simulation results of individual model fitting and group-level BF
analysis suggest that an associative account with a declarative
representation of syntactic rules is the best theory to explain the
empirical data in Experiment 2.

Discussion
The priming effect was observed in DO/PD structure, regardless
of the grammatical correctness. However, the effect of grammar
error seems to be much smaller compared to Experiment 1, being
not significant for both PD primes. There are several possibilities
to explain this pattern. First, it is possible that there is no effect
of grammaticality, suggesting that the null hypothesis is the
best account to explain the empirical findings. The priming of
ungrammatical constructions is reduced. This would, however,
be at odds with the significant effects found in Experiment 1
using active/passive primes. Another possible explanation is that
there is no single mechanism of language processing which could
be applied to everyone, especially in ungrammatical SP effects.
Different people depend on different mechanisms to process
grammar errors, which is supported by the great individual
differences observed.

A third possibility is that an effect of grammaticality on primes
exists, but our results were underpowered and the variability in
our participants’ performance are partially obscuring the result.
This possibility is supported by the modeling approach, which
show that, while the overall pattern resembles the prediction of
the Activation model, individual participants are almost never
fit by it, producing instead results more compatible with the
other two models When comparing the models in terms of GBF,
the Associative Model, much like in Experiment 1, provides the
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FIGURE 6 | (A) The distribution of BIC for three models fit by Experiment 2 data. (B) The relative log-likelihood of three models fit by Experiment 2 data. The

relative-likelihood is the ratio of the group-level likelihood to the minimum log-likelihood of three models. Consistent with statistical analysis, 17 subjects were excluded

from simulation data analysis.

best account for the data, implying that the patterns of results
observed in individual participants, however noisy, do show an
effect of surprise.

GENERAL DISCUSSION

This paper has presented the results of two experiments in
which the nature of syntactic representations was investigated
using the syntactic priming effect. As demonstrated in many
syntactic priming studies, people tend to reuse the same syntactic
structures they are primed with. Consistent with this body of
literature, our experiment showed an overall syntactic priming
effect for active and passive structures, regardless of grammatical
correctness and semantic correctness. This implies that the
tendency of reproducing primed syntactic structures persists
even if the priming linguistic structure is erroneous. Three
different theories were tested; each theory was implemented
as a computational model within the same, general, cognitive
architecture, and their predictions were compared to the
experimental results.

In both experiments, we found that the empirical group-level
pattern of results did not precisely follow the exact predictions
of any model. In particular, the effect of grammaticality in
Experiment 1 followed partially the predictions of the Associative
Model and partially those of the Reinforcement model; in
Experiment 2, no effect of grammaticality was found. The
difference in findings between the two experiments could
potentially be accounted for by the fact that the strong but
unexpected grammaticality effect in Experiment 1 was partially
due to plausible but non-existent verb forms, and that the
grammatical structure could be guessed before the error was
detected, leaving an opportunity for different parsing strategies.
Experiment 2, which removed both confounds, offers a pattern
that is in line with the ActivationModel. The group-level finding,
however, obscurses significant variability in the data; while at
the group level no effect of grammaticality is found, individual

participants consistently show effects of grammaticality on
priming, suggesting that the group average results is a particular
case of “averaging over methods” (Newell, 1973) leading to
false results.

This conclusion is supported by a careful model-based
analysis of individual subject data. As three models are
parametrized to fit each individual, the Associative offers a
better fit to individuals than either of the other two models,
in terms of Bayes Factor. This finding is consistent across
both experiments, as is the finding that the Activation model
rarely matches the results of any participant, despite its
predictions resembling the group averages. We believe that this
approach, in which an individual is matched to a corresponding
model, has greater explanatory power as it accounts for
both individual differences and explicit comparisons of
different hypotheses.

If our modeling conclusions are to be believed, they
would imply that syntactic structures are likely represented
declaratively, activated by learned associations, and affected by
frequency and recency rather than by feedback signals.

This conclusion is perfectly in line with Reitter et al. (2011)
model of syntactic priming, which served as the inspiration
for our Associative model. It is also consistent with the results
of Ivanova et al. (2012), which strongly imply that syntactic
structures are represented in a lexicalized, declarative way. And,
finally, it is consistent with other ACT-R models that also
used declarative knowledge to represent syntactic structures
(as in the case of Stocco and Crescentini’s 2005 model of
aphasia). At the same time, this conclusion seems apparently
at odds with Ullman’s influential framework (2004), which
assumes that all syntactic operations are procedural, and with
the mounting evidence for a corresponding role of the basal
ganglia in supporting linguistic processes (Lieberman, 2002;
Crinion et al., 2006; Kotz et al., 2009; Stocco and Prat, 2014).
However, note that, as implied by Ullman’s framework, all of
our models do contain a mixture of declarative and procedural
knowledge. In all models, for example, lexical information is
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represented declaratively, and all the steps in the parsing process
are represented procedurally. In the Associative model, it is
only the specific representation of syntactic structure that is
represented declaratively, rather than procedurally; procedural
knowledge is still needed to process and operate on them.
Therefore, we maintain that results are still compatible with
Ullman’s (2004) framework at large (and with a role of
subcortical structures in language) even if they reject a stronger
version of it.

Still, our results should be considered in light of a number
of limitations. First, they do not cover the range of possible
syntax structures that could be primed, or grammatical errors
that could be induced. Second, it would have been desirable to
have a greater sample size, especially since some effects were
barely on the threshold of statistical significance. Finally, it
is possible that in-person manipulations of syntactic priming
during error would have elicited a stronger effect. Given
that nowadays the way people communicate is no longer
limited to in-person verbal communication, it is important to
investigate online typing-based communication. Future studies
could examine whether people’s way of communication would be
different when they realize that the person they speak to is not
a real human.

These limitations notwithstanding, we believe that our results
do contribute in many ways to the growing body of research
on the computations underlying language processing. First,
although different hypotheses have been put forward about
the nature of SP, our study is the first one to fully compare
three different mechanisms. Second, our results highlight the
role of prediction and of basic attention mechanisms in
language, whose contribution might shed light on the basic
computations underlying syntactic parsing in an emergentist
fashion (Hernandez et al., 2019). Third, our results highlight
the power allowed by using detailed computational models to
explain psycholinguistic effects and the importance of analyzing
individual-level models in examining theories.
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