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Capturing hidden regulation based 
on noise change of gene expression 
level from single cell RNA‑seq 
in yeast
Thoma Itoh1 & Takashi Makino1,2*

Recent progress in high throughput single cell RNA‑seq (scRNA‑seq) has activated the development 
of data‑driven inferring methods of gene regulatory networks. Most network estimations assume that 
perturbations produce downstream effects. However, the effects of gene perturbations are sometimes 
compensated by a gene with redundant functionality (functional compensation). In order to avoid 
functional compensation, previous studies constructed double gene deletions, but its vast nature of 
gene combinations was not suitable for comprehensive network estimation. We hypothesized that 
functional compensation may emerge as a noise change without mean change (noise‑only change) 
due to varying physical properties and strong compensation effects. Here, we show compensated 
interactions, which are not detected by mean change, are captured by noise‑only change quantified 
from scRNA‑seq. We investigated whether noise‑only change genes caused by a single deletion of 
STP1 and STP2, which have strong functional compensation, are enriched in redundantly regulated 
genes. As a result, noise‑only change genes are enriched in their redundantly regulated genes. 
Furthermore, novel downstream genes detected from noise change are enriched in “transport”, which 
is related to known downstream genes. Herein, we suggest the noise difference comparison has the 
potential to be applied as a new strategy for network estimation that capture even compensated 
interaction.

Abbreviations
GRN  Gene regulatory network
TF  Transcription factor

Cells are controlled and maintained by proteins translated from thousands of genes. Genes involved in cellular 
function interact with each other to exert their actions in  cells1. To understand the regulatory mechanisms of gene 
expression, the regulatory relationships among genes have been closely  examined2. Gene regulatory networks 
(GRNs) are directed graphs showing regulatory relationships of transcription factors (TFs) and their target genes. 
Since the GRN plays an important role in connecting genes and phenotypes, uncovering interactions contributes 
to understanding diverse biological phenomena. In recent years, a vast amount of expression data has rapidly 
accumulated through the development of high-throughput RNA-seq, resulting in data-driven GRN estimation 
methods, which have drawn much attention. Most GRN estimation methods are based on the assumption that 
perturbations in a specific gene affects downstream  genes3. Capturing changes in expression levels due to the 
deletion of a specific gene effectively estimates molecules downstream of the deleted gene. However, the actual 
GRN is more complex, and may not be estimated with this simple assumption. Hundreds of genes downstream 
of STP2, which is a TF, have been validated by experimental approaches. Interestingly, most were detected from 
the double deletion of STP1 and STP24,5, and did not show a change in the mean expression level when only STP2 
was  deleted6. This phenomenon would be explained by functional compensation of a STP2 paralog. Since the lost 
function, upon STP2 deletion, was compensated by STP1, which is the functionally redundant gene with STP2, 
the downstream genes of STP2 are not affected by the STP2  deletion7, resulting in no change in the expression 
levels of STP2 downstream genes.
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While functional compensation provides robustness to perturbations in the GRN, it hinders estimation 
of downstream genes. To identify downstream genes that are not affected by upstream perturbations due to 
functional compensation, we focused on a change in expression noise by gene deletion. Expression noise is the 
stochastic variation in gene expression quantified by variance excluding the contribution of the mean in a clonal 
 population8. Since expression noise is affected by the transcription or translational efficiency characterized by the 
physical property of a  sequence9, even functionally redundant gene pairs may show different expression noise. 
Furthermore, since it has been reported that expression noise propagates from upstream genes, the expression 
noise altered by compensation of redundant genes is expected to propagate to downstream genes and alter the 
expression noise of downstream  genes9. Based on these previous reports, we hypothesize that noise change can be 
observed downstream of functionally compensated genes due to the physical change in upstream genes (Fig. 1).

Notably, not all noise changes imply functional compensation, as noise change reflects changes in physical 
properties, such as upstream translational efficiency, and does not necessarily indicate functional compensation. 
If functional compensation occurs upstream, the genes must show noise change without mean change (noise-
only change), due to changes in physical properties and compensation effects on the expression level. Therefore, 
we focused on genes that show noise-only change and investigated whether they are enriched in the common 
downstream genes of redundant gene pairs, such as STP1/2 (Fig. 2a).

In this study, we aimed to estimate mean-change genes and noise-change genes in yeast using scRNA-seq 
data by comparing expression patterns in a single deletion mutant (ΔSTP1, ΔSTP2, ΔRTG1, ΔRTG3, ΔGLN3, 
ΔGAT1, ΔGZF3, and �DAL80; Table S1) with those in wildtype. Furthermore, we investigated enrichment of 

Figure 1.  Noise difference detects functional compensation. STP1 and STP2 redundant pathway (Left: 
Wildtype, Right: STP2 deletion mutant). The lack of STP2 is compensated by STP1, resulting in no change in the 
mean expression level of downstream genes (orange circles). However, expression noise that propagated from 
upstream changes differ due to changes in physical characteristics of upstream genes. An example of change 
of distribution is shown at the bottom. The vertical axis represents the number of cells and the horizontal axis 
shows the expression level of the target gene. Whereas the variance was small because of the noise offset by the 
redundant pathway in the WT, the variance became large due to the lack of noise offset in ΔSTP2. Mean remains 
constant by the functional compensation effect. Note that whether the noise becomes large or small upon 
deletion is not evident, and that the direction of change is not an essential issue in this study.
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estimated genes to the downstream genes shared by a gene group, such as paralogous pair or protein complex 
members (Fig. 2a).

Results and discussion
Redundantly regulated target; STP1 and STP2. STP1 and STP2 are a duplicated pair of genes that 
arose from whole genome duplication (ohnologs), and thus share many downstream genes. Since it has been 
reported that STP1 and STP2 have redundant  functions7, those common targets are likely to be redundantly 
regulated. Regarding the downstream genes shared by STP1/2 (STP1 and STP2), the proportion of genes that 
show mean expression change in the ΔSTP1 and ΔSTP2 was 36% (133/374) and 24% (91/374), respectively. 
The remaining genes did not show mean expression change in the single deletion, which suggests functional 
 compensation4–6 (Fig. 2b). Based on our hypothesis, those redundantly regulated genes can be detected by noise-
only change, even in the single deletion of STP1 or STP2.

First, we estimated mean-change genes and noise-change genes using the BASiCS R package. Mean and noise 
were inferred by comparing the gene expression of WT with that of the interest strain based on the hierarchical 
Bayesian model proposed in previous  studies10,11. The relationship between inferred mean change and noise 
change is shown in Fig. 2c-1, and the transition of the inferred mean and noise is shown in Fig. 2c-2. From those 
relationships, we extracted noise-only change genes (Fig. 2c-1, blue dots) and mean-change genes (Fig. 2c-1, 
red dots).

We examined whether mean-change genes or noise-only change genes in ΔSTP1 and ΔSTP2 were enriched 
in the redundant downstream genes. Note that we consider the downstream genes shared by the functionally 
redundant genes (e.g., STP1 and STP2) as the redundant downstream genes. The mean change genes upon ΔSTP2 
were not enriched in the downstream genes shared by STP1/2 (Fig. 3a). This result was consistent with a previous 
study showing that most downstream genes of STP2 were undetectable from single deletion of STP26. However, 
mean change genes upon ΔSTP1 were enriched in the downstream genes shared by STP1/2 (p < 0.05, Fisher’s 
exact test; Fig. 3a). This result suggests that the deletion of STP1 was not well compensated by STP2, although 
a previous study reported that deletion of STP1 was compensated by STP27. Subsequently, we quantified noise 
considering heterogeneity due to cell cycle. Briefly, we clustered WT and mutant cells simultaneously by similar 
expression pattern and executed comparison within each clusters (Fig. S1, S2 and see Material and methods). 
Because this analysis is vulnerable to the clustering methods, we keep this analysis as supplement. When we 
executed the same analysis with Fig. 3a but with considering cell cycle heterogeneity (Fig. S4a and see Materials 
and Methods), the same tendency with Fig. 3a were maintained. On the contrary, the noise-only change genes 
were enriched in the downstream genes shared by STP1/2 in both ΔSTP1 and ΔSTP2 (p < 0.05, Fisher’s exact test; 
Fig. 4a). This result supports our hypothesis that the downstream genes of functionally redundant genes show 
noise-only change. When we eliminated cell cycle heterogeneity, the enrichment of noise-only change genes to 
common downstream genes of STP1/2 disappeared in ΔSTP1, but a relatively high proportion of noise-only 
change genes (2/12) were common downstream genes of STP1/2 (Fig. S5a). Note that in the above results, we 
treated with the downstream genes shared by the STP1/2 as the redundant targets and executed an enrichment 
test toward those genes. From a more conservative perspective, it is possible to consider the redundant targets as 
the downstream genes detected only from the experiment using the double deletion, ΔSTP1ΔSTP2. We executed 
the analysis based on this consideration regarding redundant targets. The results are shown in the Fig. S3. The 
same tendency as those obtained in the main results were observed for ΔSTP2, but the significant enrichment 
of the noise-only change for ΔSTP1 was not observed. Since in this analysis many of the true redundant genes 
appeared to be missing among the conservatively defined redundant genes, the consistent results regarding 
ΔSTP2 suggests that these findings are highly reliable. 

Non redundantly regulated target; RTG1 and RTG3. Next, as control, we investigated downstream 
genes shared by non-redundant genes. RTG1 and RTG3 are not a paralog pair, but they have significant overlap 
in downstream genes to form a  complex6. We investigated whether mean change genes or noise-only change 
genes were enriched in the downstream genes shared by RTG1/3. The mean change genes were enriched in the 
common downstream genes in both ΔRTG1 and ΔRTG3 (p < 0.05, Fisher’s exact test; Fig. 3b). The results are 
reasonable because RTG1 and RTG3 do not have functional compensation and the perturbation of even one gene 
produces downstream effects. We observed the same trend even when we considered cell cycle heterogeneity 
(Fig. S4b). The noise-only change genes were not enriched in ΔRTG1 nor ΔRTG3 (Fig. 4b). This is also consist-
ent with the result considering cell cycle heterogeneity (Fig. S5b). These results suggest that RTG1 and RTG3 do 
not exhibit functional compensation.

Possibly redundantly regulated target; GATA family. Next, we focused on the GATA family, GAT1, 
GZF3, DAL80, and GLN312, and investigated networks constituted from homologous gene groups. They are 
paralogs and possibly have redundant functions. We investigated whether GATA family members display func-
tional compensation by estimating whether noise-only change genes are enriched in common downstream 
genes of the paralogous family. In ΔGZF3, the mean change genes were enriched in downstream genes shared 
by GZF3 and other GATA family members (p < 0.05, Fisher’s exact test; Fig. 3c). However, other deletion strains 
from the GATA family did not show enrichment of mean change genes compared to common downstream 
genes. When we considered cell cycle heterogeneity, any genes did not show the enrichment (Fig. S4c). The 
noise-only change genes were enriched in the common downstream genes of the GATA family only in ΔGLN3 
(p < 0.05, Fisher’s exact test; Fig. 4c). Although a redundant pathway has not been reported between GLN3 and 
other genes, double deletion of GLN3 and GAT1 or GLN3 and DAL80 decreased growth  rate13,14. These results 
suggest the existence of functional compensation between GLN3 and GAT1 and/or GLN3 and DAL80. In Fig. 
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S5c, any strains did not show enrichment with common downstream genes with the GATA family even when we 
considered cell cycle heterogeneity. The small number of common downstream genes might hinder the estima-
tion of downstream genes.

In summary, we found that downstream genes shared by a functional compensative pair tend to show noise-
only changes when one of the functional compensative pairs, such as STP1 and STP2, is deleted. Although other 
functional compensative pairs should be used to reinforce our results, no suitable scRNA-seq data are available 
to perform additional examinations. scRNA-seq of yeast is still an advancing technology and the data we require 
is expected to accumulate from now on.

From the above results, we suggest that noise-only change captures redundantly regulated genes. Based on 
our concepts, the candidate of redundantly regulated genes, which was detected by noise-only change, must 
be common to the deletion strain of the redundant gene pair. In fact, we detected three genes (MUP1, CDC21, 
GAS3) that show noise-only change in both ΔSTP1 and ΔSTP2 (genes indicated by two dark red or blue arrows 
in Fig. 5), while two of these (MUP1, CDC21) are known as shared downstream genes of STP1 and STP2 (genes 
indicated by two dark red arrows in Fig. 5). We propose that GAS3 is a new redundantly regulated candidate of 
STP1/2. Although an interaction between STP2 and GAS3 has not been reported, an interaction between STP1 
and GAS3 was  reported6. This supports that GAS3 is a new redundantly regulated candidate by STP1/2. Notably, 
although the number of noise-only change genes common to ΔSTP1 and ΔSTP2 was three, the number of mean 
change genes common to ΔSTP1 and ΔSTP2 was zero. These results support our hypothesis that redundantly 
regulated genes that cannot be detected from mean change but are detected from noise-only change.

However, not all noise-only change genes are common to ΔSTP1 and ΔSTP2. The total number of noise-only 
change genes in ΔSTP1 is 15, while there are eight in ΔSTP2. As described above, the three genes overlap. Most 
noise-only change genes are detected only in ΔSTP1 or ΔSTP2. We speculate that this asymmetric noise-only 
change is caused by (1) artifact of FDR threshold, (2) asymmetric compensation, or (3) compensation by other 
genes. First, since the extent of noise difference caused by gene deletion is attributed to physical properties of 
the deleted gene, such as translational  efficiency9, the threshold must differ gene by gene. Applying the same cut 
off to all genes leads to increased false negative results. The precise modeling of noise propagation must improve 
detection of redundant regulation. Second, asymmetric functional compensation might be considered. For 
example, the deletion of STP2 is compensated by STP1, but the deletion of STP1 is not compensated by STP2 
with fewer interactions. In such situations, the gene shows mean change upon ΔSTP1 and on the contrary the 
gene shows noise-only change upon ΔSTP2. Third, functional compensation by other genes might be considered. 
We assumed that functional compensation is likely to occur between paralogous pairs due to their functional 
similarity, but there are many synthetic effects between STP1/2 and other  genes13. However, a synthetic effect 
does not necessarily translate to functional compensation, but those interactions suggest that a lack of STP1 or 
STP2 functionality may possibly be compensated by the other genes.

Novel downstream candidates of STP1 and STP2 detected from noise change. We investigated 
noise change genes, including mean change, to determine whether noise difference tests narrow down the rea-
sonable downstream genes. We hypothesized that noise-only change genes shared by the deletion strain of a 
paralogous pair, such as ΔSTP1 and ΔSTP2, are likely to be the target of functional compensation. However, 
the noise change genes accompanied with mean change genes also can be recognized as downstream gene can-
didates. Interestingly, both known STP2 downstream genes and novel STP2 downstream candidates detected 
from noise change were enriched in transport-related genes (p < 0.01; SGD GO Term Finder; Process; Table 1). 
Therefore, it can be argued that the noise difference test has targeted reasonable candidates.

Figure 2.  Schematic workflow and data processing. (a) Schematic workflow. 1) scRNA-seq data from wildtype 
and deletion strains. Each strain has 6 replicates that were separately constructed. 2) We selected two deletion 
strains that share a common downstream gene. Although STP1/2 are depicted, RTG1/2 and GATA family 
(GZF3, GAT1, GLN3, and DAL80) were selected as pair (group) for the same reason. 3) Technical noise is 
eliminated by decomposing the total variance to technical noise and expression noise using the hierarchical 
Bayesian model. Briefly, common variance among replicates is recognized as expression noise, and replicate 
specific variance is recognized as technical noise. 4) Comparison between wildtype and the interest strain 
regarding mean and noise. Further, we derived the noise-only change genes that show significant noise change 
without mean change. An example of distribution change is shown at the bottom. 5) Investigation of the 
enrichment of mean change or noise-only change genes into the downstream genes shared by the pair genes 
(STP1/2, in this example). (b) Venn diagram of STP1/2 downstream genes. The pink and blue areas represent 
genes that showed mean change in the single deletion, ΔSTP1 (500) and ΔSTP2 (161) respectively. The green 
area represents genes that showed mean change in the double deletion ΔSTP1ΔSTP2 (290). The area circled 
in yellow indicates the downstream genes shared by STP1/2 (374). (c) Comparison of mean and noise change 
genes in WT vs ΔSTP1. c1) x-axis: mean expression change measured by log2 fold change (Mean Log2FC). 
y-axis: expression noise change measured by the distance of residual over-dispersion (ResDispDistance), which 
is the noise difference correcting the mean dependency. The red dots represent genes with at least mean change 
(e.g., CHO2, YHB1). The blue points represent genes with noise-only change which is the noise change without 
mean change (e.g., GAS3). c2) Left: mean expression level transition. Right: expression noise transition. YHB1 
and CHO2 are the mean change genes and are showed by the red line. YHB1 shows both mean change and 
noise change. CHO2 shows only mean change without noise change. GAS3 is the noise-only change gene and 
is showed by the blue line. Whereas GAS3 showed significant noise change, mean expression was not changed.
Schematic workflow for enrichment analysis of mean change genes and noise-only change genes to the target.

◂
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In this study, we executed two types of analysis. (1) The conservative difference test, which quantified values 
from all cells (Figs. 3 and 4), and (2) the progressive difference test, which quantified values from cells belonging 
to the same cluster (Fig. S4 and S5). In the later progressive analysis, as cell cycle heterogeneity is excluded from 
noise quantification, we can quantify that the noise change originated from a molecular process (but the results 
are affected by clustering). In the former conservative analysis, CLN1, which is related to cell cycle regulation 
and does not interact with STP1, showed noise change upon ΔSTP1, but in the later progressive analysis, CLN1 
did not show noise change upon ΔSTP1 (Table S2). In the same way, CLN2, which is related to the cell cycle and 
does not interact with STP2, showed noise change upon ΔSTP2, but when we consider cell cycle heterogeneity, 
CLN2 did not show significant noise change (Table S2). This implies that the noise change of CLN1 and CLN2 
originated from differences in cell cycle heterogeneity that are out of our interests. We consider that the consist-
ent results of conservative and progressive analysis should be reliable. We found four consistent genes in ΔSTP2 
that show noise change, both from conservative and progressive analysis (CDC21, SIT1, FIT2, FIT3). FIT2 and 
CDC21 are known as shared downstream genes of STP1 and STP2 (genes indicated by two dark red arrows in 
Fig. 5). SIT1 and FIT3 are possibly newly downstream candidates of STP2, and function as transporters, similar 
to the many known downstream genes of STP2. In addition, SIT1 and FIT3 are known as downstream genes of 
STP1 (genes indicated by dark red arrows and blue arrows in Fig. 5). This suggests they are redundantly regulated 
by STP1 and STP2. Note that SIT1 and FIT3 are the noise-only change genes.

In summary, we detected four novel gene candidates that are redundantly regulated by STP1 and STP2 (ARG1, 
FIT3, SIT1, GAS3), even from the single deletion strain of STP2 (Genes indicated by red arrow and blue arrow 
in Fig. 5). Three of these (FIT3, SIT1, GAS3) are constant, as we observed consistent results across progressive 
and conservative analyses. Interestingly, ARG1 is involved in the arginine biosynthesis  process15, and it was 

Figure 3.  Ratio of mean change genes in known downstream genes shared by homologous groups. Bars show 
the proportion of mean change genes in the two categories labeled in the x-axis. Common downstream; the 
reported downstream genes that are shared by the gene groups in which the deleted gene belongs. The others; 
the other genes in the right category. Bars indicate the ratio of mean change genes in each category. Note that 
the numbers of common downstream genes (shown on the red bar) do not coincide (even within the group) 
because non expressed genes in each strain are excluded. (a) Redundant gene group; STP1 and STP2. (b) Non 
redundant gene group; RTG1 and RTG3. (c) Possibly redundant paralogous group; GATA family (DAL80, GAT1, 
GLN3, and GZF3). The p-values above each bar were calculated using Fisher’s exact test.
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previously unknown that STP2 affects this process. Thus, our results suggest that STP2 may be involved in the 
arginine biosynthesis process.

Based on the above results, we constructed the gene interaction network shared by STP1 and STP2 (Fig. 5). 
In the previous study, MUP1, FIT2, and YGP1 were only detected from mean change in the double deletion of 
STP1 and STP24,5. Namely, they cannot be detected in single deletions of STP1 or STP2. However, in this study, 
those hidden interactions could be detected by the noise-only change, even from the single deletion of STP2. In 
addition, several new STP2 downstream genes were detected by noise change. We found that some of these were 
also downstream genes of STP1, which supports that they are redundantly regulated by STP1/2 (genes indicated 
by blue and red arrow in Fig. 5). Here, we discuss about the reason why those novel STP2 downstream genes 
that have redundant interaction with STP1, had not been found by ΔSTP1ΔSTP2 nor ΔSTP2 in the previous 
study. If the effect of STP1 is much larger than that of STP2 in redundant pathway, the mean expression change 
of downstream genes estimated in ΔSTP1ΔSTP2 may not differ from that in ΔSTP1 due to the subtle effect of 
STP2. Namely, the detection of asymmetric functional compensation is difficult, even from the double deletion, 
unless we use noise-only change.

Conventionally, redundantly regulated genes are detected by assessing mean expression change in the double 
deletion of redundant genes, in order to avoid functional compensation. From this analysis, we propose that 
redundantly regulated genes can be detected by assessing noise-only change, even in the single deletion of one 
of the redundant genes. Our new approach will provide a novel framework for revealing complex gene networks. 
As a limitation of this study, because it is necessary to quantify the variation of expression levels in homogeneous 
cells, as we showed in this study (Fig. S1 and see Materials and Methods), its application is limited to unicellular 
organisms at this stage. Furthermore, the quantified noise includes intrinsic noise and extrinsic noise, which 
later one is not our interests. More accurate interaction analysis should be possible by eliminating extrinsic noise 

Figure 4.  Ratio of noise-only change genes in known downstream genes shared by homologous groups. 
Bars show the proportion of noise-only change genes in the two categories labeled in the x-axis. Common 
downstream; the reported downstream genes that are shared by the gene groups in which the deleted gene 
belongs. The others; the other genes in the right category. Bars show the ratio of noise-only change genes in each 
category. Note that the numbers of common downstream genes (shown on the red bar) do not coincide (even 
within group) because non expressed genes in each strain are excluded. (a) Redundant gene group; STP1 and 
STP2. (b) Non redundant gene group; RTG1 and RTG3. (c) Possibly redundant paralogous group; GATA family 
(DAL80, GAT1, GLN3, and GZF3). The p-values above each bar were calculated using Fisher’s exact test.
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Figure 5.  Novel and known interactions shared by STP1 and STP2. Red and blue arrows imply known and 
novel interactions, respectively. Light red arrows represent known interactions that cannot be detected from 
noise changes in this study. The color of gene names implies GO terms retrieved from SGD GO Slim mapper.

Table 1.  Noise-change genes in ΔSTP1 and ΔSTP2. Name: Genes that showed noise change in ΔSTP1 or 
ΔSTP2 are listed; Interaction: Noise change genes that had not been reported as STP1 or STP2 downstream 
in Yeastract are labeled as “Novel”; GO term: GO terms retrieved from SGD GO slim mapper (Yeast GO-Slim 
process). In the novel STP1 candidates, there were no enriched GO terms (SGD GO term finder process). In 
the novel STP2 candidates, GO terms were enriched in transport-related genes, in which STP2 downstream 
genes are involved (p < 0.01; SGD GO Term Finder; Process).

Name Interaction GO term

STP1

BIO2 Novel Vitamin metabolic process, monocarboxylic acid metabolic process

RPL26A Novel Cytoplasmic translation, ribosomal large subunit biogenesis

ILV5 Novel Cellular amino acid metabolic process, mitochondrion organization

CLN1 Novel Protein phosphorylation, mitotic cell cycle, regulation of protein modification process, regulation of cell cycle

WSC2 Novel Cell wall organization or biogenesis, response to heat

MET6 Known Cellular amino acid metabolic process

MUP1 Known Ion transport, amino acid transport, transmembrane transport

TOS4 Known Cellular response to DNA damage stimulus

GAS3 Known Cell wall organization or biogenesis, carbohydrate metabolic process

CDC21 Known Nucleobase-containing small molecule metabolic process

STP2

TIM9 Novel Mitochondrion organization, protein targeting

SIT1 Novel Ion transport, transmembrane transport, cellular ion homeostasis

NOP16 Novel rRNA processing, ribosomal large subunit biogenesis

HXT4 Novel Ion transport, transmembrane transport, carbohydrate transport

GSY2 Novel Carbohydrate metabolic process, generation of precursor metabolites and energy

RPS17A Novel Ribosomal small subunit biogenesis, ribosome assembly, cytoplasmic translation

GAS3 Novel Cell wall organization or biogenesis, carbohydrate metabolic process

ARG1 Novel Cellular amino acid metabolic process

FIT3 Novel Ion transport

CIN2 Novel Protein folding, cell morphogenesis

CLN2 Novel Mitotic cell cycle, protein phosphorylation, response to chemical, regulation of cell cycle, regulation of protein 
modification process, conjugation

MUP1 Known Ion transport, transmembrane transport, amino acid transport

YGP1 Known Cell wall organization or biogenesis

CDC21 Known Nucleobase-containing small molecule metabolic process

FIT2 Known Ion transport
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and focusing on intrinsic noise. In this study, we roughly excluded extrinsic noise by clustering scRNA-seq data 
(Fig. S1, S2). We propose that exact modeling of extrinsic and intrinsic noise using scRNA-seq data will allow 
for more accurate noise difference estimation. We consider that noise difference tests can be applied as a new 
strategy for data-driven network estimation that can capture even functional compensation.

Materials and methods
Expression data. We used single-cell RNA-seq data in yeast, including eight different TF deletion strains 
(ΔSTP1, ΔSTP2, ΔRTG1, ΔRTG3, ΔGLN3, ΔGAT1, ΔGZF3, and ΔDAL80) and wild type (WT) as a  control16. 
ΔSTP1 and ΔSTP2 were used to investigate a redundant gene pair. ΔRTG1 and ΔRTG3 were used to investigate 
a non-redundant gene pair that shares many target genes. ΔGAT1, ΔGZF3, ΔDAL80, and ΔGLN3 were used to 
investigate paralogues gene groups, from which redundant functions have not been reported. Each strain had 
six biological replicates, which were independently constructed and cultured under YPD conditions. Six of the 
deleted TFs were paralogs (BLASTP search, E-value <  10–10) and two of these were singletons (Table S1). We 
obtained transcript counts from individual cells, which passed quality control, followed by removal of doublets 
according to Jackson et al.16.

Elimination of cell cycle heterogeneity. In order to precisely quantify the changes in expression noise 
caused by gene deletion, cell heterogeneity due to cell cycle should be eliminated. Therefore, we divided cells into 
groups exhibiting similar expression patterns. Two comparative strains were clustered simultaneously. This ena-
bled us to compare two strains within a cluster (Fig. S1). In order to cluster cells by their expression state, first, 
we normalized cell specific biases using scran normalization  methods17. Subsequently, we constructed shared 
nearest neighbor  graphs18 from normalized counts, and clustered these using Louvain  methods19. As a result, the 
strains were grouped into five or six clusters (Fig. S2). Although cells of two strains were randomly distributed in 
the clusters, expression patterns of DSE220, PIR121, and HTB22, known as cell cycle marker genes, were biased by 
clusters (Fig. S2). Thus, cells were thought to be clustered by cell cycle. Since each cluster represents a specific cell 
state, two strain comparisons within a cluster was not thought to be affected by heterogeneity due to cell cycle. 
Since the comparison was executed by cluster, noise (mean) difference results for one gene in a strain equated to 
the number of clusters. If a gene showed significant change (FDR < 0.01; Bonferroni correction) in at least one 
cluster, we considered the gene as a downstream gene candidate of the deleted gene. The results were shown in 
Fig. S4 and S5. Note that clustering cells based on cell cycle requires a large sample size (number of cells) because 
the expression pattern in a sampled population is desired to reflect the true populational distribution. Since the 
sample size of ΔGLN3 is small, clustering analysis was not executed in that strain. Detected genes in this method 
are not robust as they are affected by clustering.

Filtration of technical noise. As we described above, each strain includes six biological replicates con-
structed from different experiments. Note that variance between replicates is smaller than the variance between 
compared strains (Fig. S6). These replicates were utilized to estimate technical noise under the assumption in 
which replicate specific variation is technical artifact, and common variation between replicates is biological 
noise (Fig. 2a; panel 2). Further, Poisson noise is subtracted from the variance as it is interpreted as the RNA 
sampling noise of the sequencer. As a result, over-dispersion of Poisson noise after accounting for technical noise 
is considered as biological noise. The example of variance decomposition is shown in the Fig. S6. This filtration 
was executed using the hierarchical Bayesian model in BASiCS R  package10,11.

Expression level comparison. To test the hypothesis that functional compensation is not detected by 
mean change but can be detected by noise change, we compared differences in mean expression levels for each 
gene between wildtype and deletion mutant with differences in expression noise (Fig. 2a). The mean expres-
sion level and expression noise were estimated using the hierarchical Bayesian model in BASiCS R  package10,11. 
All parameters of MCMC were set to the recommended values in the BASiCS R package manual. Since the 
expression noise used in the comparison was a residual measure of variability that is not correlated with mean 
expression level, expression noise change is independent from mean change. The details were reported in Eling 
et al.10 (residual over-dispersion). After comparing the mean with noise respectively, genes showing a significant 
change with EFDR less than 0.01 were estimated as downstream genes of the deleted gene.

Validation of estimation results. To investigate whether estimated downstream genes were enriched 
in reported downstream genes, we used the experimentally confirmed interaction database,  Yeastract23. We 
retrieved the regulation matrix from Yeastract. Only expression evidence detected under unstressed log-phase 
growth conditions were included.

Criteria for false negative and false positive targets. In the mean or noise difference tests regard-
ing expression levels, we referred to the false negative target and false positive target. These identifications are 
based on the Yeastract data which we used as a gold standard. False negative targets are recognized as genes that 
we could not estimate but have been reported on the Yeastract. On the contrary, genes that we could detect but 
have not been reported on the Yeastract are possibly novel candidates of downstream genes. However, the newly 
detected genes that are not related to the known downstream genes or GO terms of known downstream genes 
are recognized as false positive targets.
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Data availability
All data analyzed during this study are included in this manuscript. Scripts used in this analysis have been 
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