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Abstract

The predictability of pain makes surgery an ideal model for the study of pain and the devel-
opment of strategies for analgesia and reduction of perioperative pain. As functional near-
infrared spectroscopy reproduces the known functional magnetic resonance imaging acti-
vations in response to a painful stimulus, we evaluated the feasibility of functional near-
infrared spectroscopy to measure cortical responses to noxious stimulation during general
anesthesia. A multichannel continuous wave near-infrared imager was used to measure
somatosensory and frontal cortical activation in patients undergoing catheter ablation of
arrhythmias under general anesthesia. Anesthetic technique was standardized and intrao-
perative NIRS signals recorded continuously with markers placed in the data set for the tim-
ing and duration of each cardiac ablation event. Frontal cortical signals only were suitable
for analysis in five of eight patients studied (mean age 14 + 1 years, weight 66.7 + 17.6 kg, 2
males). Thirty ablative lesions were recorded for the five patients. Radiofrequency or cryoa-
blation was temporally associated with a hemodynamic response function in the frontal cor-
tex characterized by a significant decrease in oxyhemoglobin concentration (paired t-test,
p<0.05) with the nadir occurring in the period 4 to 6 seconds after application of the ablative
lesion. Cortical signals produced by catheter ablation of arrhythmias in patients under gen-
eral anesthesia mirrored those seen with noxious stimulation in awake, healthy volunteers,
during sedation for colonoscopy, and functional Magnetic Resonance Imaging activations
in response to pain. This study demonstrates the feasibility and potential utility of functional
near-infrared spectroscopy as an objective measure of cortical activation under general
anesthesia.
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Introduction

Surgery results in nociceptor activation, inflammation at the surgical site, and nerve injury [1].
Nociceptor input can lead to central sensitization, defined as a reversible increase in the excit-
ability and synaptic efficacy of neurons and circuits in central nociceptive pathways as well as
reduced nociceptive inhibition [2, 3]. Central sensitization, by virtue of the abnormal percep-
tual response to normal sensory input, presents as hyperalgesia, allodynia, after sensations, and
spread of pain to areas without discernible pathology. This topic has been reviewed elsewhere
[1, 2, 3]. Consequences of central sensitization are plastic changes at a number of levels in the
central nervous system, but especially the cortex, leading to altered and pathological behaviors
referred to as maladaptive plasticity [4].

Individuals vary in their perception of pain and response to tissue injury, and different pain
patterns may be seen in the perioperative period. It has been hypothesized that changes in pain
sensitivity are an important contribution whereby severe, unrelieved acute postoperative pain
may result in persistent postoperative pain [5, 3, 6]. As surgery is a common and predictable
source of painful stimuli, it represents an ideal model for the study of pain and the develop-
ment of strategies to guide analgesic administration and develop interventions to ameliorate
persistent postoperative pain. However, objective and robust measures of nociceptive process-
ing are a prerequisite to detect and prevent repeated nociceptive afferent discharges, central
sensitization, and changes in brain systems [7].

Recent advances in brain imaging may be applied to the monitoring of perioperative nocicep-
tion. Functional near-infrared spectroscopy (NIRS) is a non-invasive, non-ionizing method for
functional monitoring and imaging of brain hemodynamics [8]. It takes advantage of the low
absorption of near-infrared light by biological tissues to measure changes in concentrations of
oxygenated (HbO), de-oxygenated (HbR), and total hemoglobin (HbT) in the brain. Increased
neuronal activity (activation) is associated with vascular dilation and increased cerebral blood
flow such that the increase in cerebral O, delivery is greater than the increase in cerebral O, con-
sumption. These hemodynamic fluctuations result in increased concentrations of HbO and HbT
and decreased concentrations of HbR [9], creating the basis of functional magnetic resonance
imaging (fMRI) and fNIRS. Functional NIRS has now been used for over 20 years to measure and
map brain activation in humans for a broad range of applications [8], and the instrumentation
and methodology has been reviewed [10]. Functional near-infrared spectroscopy has been shown
to reproduce the same fMRI activations in response to pain [11, 12, 13]. Initial and more recent
studies in healthy volunteers utilizing fNIRS found that noxious stimuli produced contralateral
activation in the somatosensory cortex and a deactivation (negative change) in the frontal cortex,
and that based on the temporal and spatial characteristics of the response in the frontal cortex it
was possible to discern painful from innocuous stimulation [14,15]. The aim of this study was to
evaluate the feasibility of INIRS to measure the responses to noxious stimulation in the somato-
sensory and prefrontal cortices in patients under general anesthesia. We hypothesized that nox-
ious stimuli applied under general anesthesia would produce the same patterns of hemodynamic
activation in somatosensory and prefrontal cortices as that found in healthy awake volunteers.

Materials and Methods
Subjects

The Institutional Review Board at Boston Children’s Hospital approved the study and its pro-
tocol. Written informed consent was obtained from subjects over 18 and from parents if the

participant was a minor. Signed consent forms where archived according to HIPPA/Hospital
regulations and a copy was given to participants or her/his parents. Eight patients 12 years of
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age and older (mean (SD) 15.8 (4.3) years, four males) scheduled for catheter ablation of
arrhythmias under general endotracheal anesthesia were enrolled. All subjects were right-
handed. Exclusion criteria were structural heart disease, neurologic disease, diabetes, smoking,
psychoactive medications, and scalp or hair not permitting adequate optical light detection.

Imaging Equipment

A multichannel continuous wave near-infrared imager (CW6, TechEn Inc., Milford, MA) was
used to measure cortical activation. The system has previously been described in detail [16,17].
Briefly, two wavelengths of near-infrared light (690 nm and 830 nm) are emitted by 20 diode
lasers and detected by 20 detectors (Fig 1). The sources and detectors are coupled to fiber
optics, with each emitting fiber or detector constituting one optode. The optodes are 1-3mm in
diameter, allowing them to be easily wiggled through the hair to make optical contact with the
scalp. The source-detector separation is 3 cm, allowing for measurement of cortical activation
at a depth of 1.5 cm [18]. The head probe holding the optodes covers the somatosensory and
motor areas as well as the frontal cortex. Changes in cortical oxyhemoglobin (HbO) and dexox-
yhemoblogin (HbR) are measured via differential absorption characteristics of the two wave-
lengths of near-infrared light [18].

Protocol

The head probe was placed after midazolam premedication and prior to induction of general
anesthesia. Signal quality was assessed by applying brush stimuli to the dorsum of the right
hand for 5 seconds, with 15 seconds between, for 5 cycles. Anesthetic technique was standard-
ized for all subjects. Anesthesia was induced with propofol and fentanyl and maintained with
sevoflurane in air and oxygen. As a specific end-tidal sevoflurane concentration during ablation
was not predetermined, sevoflurane was administered according to routine clinical practice.
Neuromuscular blockade with vecuronium or rocuronium was maintained until the end of the
procedure. No narcotics were administered beyond the immediate induction period. Intraopera-
tive recordings were collected and markers placed in the data set, using an auxiliary data acquisi-
tion channel, for the timing and duration of each cardiac ablation event. The electrophysiologic
study proceeded using the usual approach which consists of combinations of induced arrhyth-
mia and pacing maneuvers to characterize and target the arrhythmia. These maneuvers fre-
quently include a period of isoproterenol infusion. Radiofrequency or cryo applications are
started for 5-10 seconds, and if deemed potentially successful continued for 60 seconds.

Data Processing

Data analysis was performed using the open source software Homer2 [19]. Channels were
pruned using the following exclusion criteria: insufficient signal strength (<80 dB), excessive
signal strength (>140 dB), or insufficient signal-to-noise ratio (<2). Light intensity was then
converted to optical density and sections of the data determined by the automatic motion arti-
fact detection algorithm [tMotion: 0.5, tMask: 1.0, STDEVthresh: 50.0, AMPthresh: 5.00] were
excluded using the time range [-5.0 20.0] (seconds). The data was then low-pass filtered below
0.5 Hertz and converted from optical density to chromophore concentration using a partial
path factor of 6.0 for both frequencies. The data was then manually reviewed to identify periods
of more than 120 seconds of artifact-free resting data in which time marks were semi-randomly
placed as a control for comparison. Finally, the hemodynamic response function (HRF) was
modeled using consecutive Gaussian temporal basis functions with a standard deviation of 1
second and their means separated by 1 second over the regression time range of -2 to 20 sec-
onds, where time-zero is the initiation of the ablative process or a control time mark, as we
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Fig 1. Sensor array and sensitivity profile. The fNIRS sensor array light sources (red dots), detectors (blue
dots), and sensor channels (green lines) are shown at their intended locations. Although some shifting may
occur for each subject, this has been shown to be sufficiently minimal in other studies where subject specific
optode placements were measured. The sensitivity of the probe to detecting brain hemodynamics is shown
as a logarithmic temperature plot ranging from 1.00 (0 dB, red) to 0.01 (-40 dB, blue) times the maximum
sensitivity. The four frontal lobe channels used in this analysis are indicated with orange stars.

doi:10.1371/journal.pone.0158975.g001

have used previously [15]. The anatomical placement of each sensor channel is approximated
in Fig 1. The prefrontal regions of interest from left to right are channels: 27, 28, 55, and 56,
which correspond to left lateral, left central, right central, and right lateral locations, indicated
with stars in Fig 1. Demographic and clinical parameters are presented as mean + SD.

Results
Patients

Eight patients were studied, but due to poor signal quality in three patients, data from only five
subjects was adequate for analysis. Mean age was 14 + 1 years, weight 66.7 + 17.6 kg, with a
male: female ratio of 2:3. Anesthetic drugs administered intravenously comprised midazolam
premedication 1.4 + 0.3 mg, propofol 1.8 + 0.4 mg/kg, fentanyl 1.5 + 0.7 mcg/kg, and either
vecuronium (n = 4) or rocuronium. No additional fentanyl was administered after the induc-
tion of anesthesia. End-tidal sevoflurane concentration was 2 + 0.5% during application of the
ablation lesions. As is the norm for catheter ablation of arrhythmias, there was significant vari-
ability in heart rate and to a lesser extent blood pressure during ablation. Isoproterenol was not
administered during application of any ablation lesions. None of the recordings collected over
the somatosensory cortex were of adequate quality for analysis.

Lesions and NIRS Signal

Thirty ablative lesions were recorded for the five patients (Table 1). NIRS recordings acquired
during radiofrequency ablation or cryoablation showed a HRF in the frontal cortex. Channels
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Table 1. Patient demographics. The number of catheter-applied ablative lesions with processable signals that met the inclusion criteria for data processing

and analysis are included in the right column.

Patient Number | Age (Years)
1 14
2 15
3 12
4 16
5 15

Weight (Kg) | Gender | Ethnicity Diagnosis Type of Ablation Atrium | Number of Ablations
50.3 F Caucasian AVNRT Radiofrequency R 4
61 F Caucasian AVNRT Radiofrequency + Cryo R 4
61 M Caucasian WPW Radiofrequency R 4
101 M Caucasian AP Radiofrequency L 6
60 F Hispanic | WPW + AVNRT Radiofrequency R 12

AVNRT, Atrioventricular Nodal Reentrant Tachycardia; WPW, Wolf-Parkinson-White syndrome; AP, accessory pathway; R, right atrium; L, left atrium

doi:10.1371/journal.pone.0158975.1001

used for frontal cortical analysis overlie the superior frontal gyrus and medial frontal gyrus on
each side. The HRF was characterized by a significant decrease in HbO concentration (paired
t-test, p<0.05) with the nadir occurring in the period 4 to 6 seconds after application of the
ablative lesion (Fig 2). Application of a single ablative lesion is in the order of 30 to 45 seconds.
To investigate the frontal signals further, the HRF for each individual subject was averaged
over the time interval 4 to 6 seconds post ablation onset (same method as used in Yiicel et al.,
2015 [15]), producing single metrics for the HbO response for each cardiac ablation event
(n =30). To evaluate the effectiveness of this method for differentiating between a cardiac abla-
tion event (nociception) and the resting state (no or less nociception), paired t-tests were used

<107 Group Average - Resting State (dashed), Cardiac Ablation (solid)

opxy] 1 l

Change in HbO (delta molars)
L
]

1 1 1 1 1 1 1 1 1 1 J
2 0 2 4 6 8 10 12 14 16 18 20
Time (seconds)

Fig 2. Group mean hemodynamic response function averaged across all frontal channels during
cardiac ablation events. The average response for periods of rest (no ablations, less likely to be
nociceptive) is represented with the dashed line and the response to cardiac ablations (more likely to be
nociceptive) is represented by the solid line. Time-zero corresponds to either the initiation of the ablation
processes or control time marks placed in artifact-free periods of rest, generally after induction of anesthesia
but before any ablations have been performed.

doi:10.1371/journal.pone.0158975.9002
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Table 2. Results of paired t-tests for each channel. Significance was reached for three of the channels individually for within-event identification of
whether the change in HbO concentration is the result of a processable ablation or a stimulus-free state.

Channel 27 (left, lateral) Channel 28 (left, central) Channel 55 (right, central) Channel 56 (right, lateral)

t-test Result p =0.2306 p=0.0010 p=0.0015 p <0.0001
Number of Ablations n=18 n=230 n=230 n=230
Mean Delta (moles) -2.15x10/-7 -5.20x107-7 -5.08x10/-7 -6.21x10/-7
Standard Deviation of Delta 7.41x107-7 7.75x10M-7 7.95x10M-7 6.59x107-7

doi:10.1371/journal.pone.0158975.1002

to calculate the power for each channel (Table 2 and Fig 3). While channels 28, 55, and 56 all
reached significance, channel 27 did not. This is likely due to the decreased number of ablation
events measured on this channel as a result of channel 27 not passing the data quality assurance
procedures performed by Homer?2 for patient #5 (12 of the ablation stimuli).

Discussion

In this study, we demonstrate the feasibility of using fNIRS to measure cortical responses to
noxious stimulation in patients under general anesthesia. The cortical signals produced by
catheter ablation of arrhythmias mirror those seen with noxious stimulation in healthy volun-
teers and fMRI activations in response to pain. Our results support the notion that NIRS has a
potential utility as an objective measure of nociception and pain. Specifically, we report that
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Fig 3. Individual Measures. The mean change in the oxygenated hemoglobin concentration (HbO) over the
time period 4 to 6 seconds post ablation onset to differentiate the response to cardiac ablations (more likely to
be nociceptive) versus periods of rest (less likely to be nociceptive). Plotting the mean response across the
four frontal channels, for each of the 30 ablations that were recorded, shows that the decrease in HbO is
greater than the paired resting period for the majority of ablation events (p = 0.0004). The difference between
nociceptive and resting states is -5.34+7.38x107-7 (mean + standard deviation).

doi:10.1371/journal.pone.0158975.9g003
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the frontal cortical signals detected by NIRS are temporally related to the cardiac ablative
lesions, suggesting that catheter ablation of arrhythmias produces changes in brain activity
associated with pain. Importantly, the NIRS signals we found are similar to those produced by
painful stimuli in awake, healthy volunteers [14, 20,21, 15], during sedation for colonoscopy
Becerra et al PM(C4794375, and fMRI activations in response to pain [11, 12, 13,22].

Patients undergoing cardiac ablation have described the procedure as painful; indeed the
majority of patients complain of chest pain during, [23-25] and occasionally several days fol-
lowing, the operation. Thus, there is clinical evidence the ablation produces pain. Ablation by
radiofrequency destroys tissue, which activates nociceptive fibers in a similar manner to a burn
[24,26]. Therefore, the source of nociceptive afferent drive has a clinical and neurophysiologi-
cal basis in patients undergoing catheter ablations for control of their cardiac arrhythmias.
Pain pathways from the heart are thought to originate in sympathetic fibers that synapse on
the spinothalamic tract neurons in the upper thoracic and lower cervical segments and on sec-
ond order neurons that project to the thalamus. Additional fibers from the area of injury enter
the brain via the nucleus of the solitary tract and connect with higher order regions such as the
amygdala [27]. From these locations, third order neurons project to cortical regions, such as
the prefrontal cortex [28]. The frontal lobe also receives input from a number of brain regions
involved in nociceptive processing [29,30] and sends efferent projections to areas such as the
periaqueductal gray to modulate (inhibit under healthy conditions) nociceptive activation of
cells in the dorsal horn of the spinal cord. Conceptually, this provides a model for the activation
profile we observe in the frontal regions, which is based on a balance between increased activa-
tion (resulting from afferent nociceptive input) and decreased activation (resulting from inhibi-
tory processes in these regions).

The Issue: Surgical Intervention and Measures of Pain

Catheter ablation using radiofrequency energy is associated with pain, even with the adminis-
tration of sedative and analgesic agents [31, 26, 32]. The mechanisms and pathways of cardiac
pain are complex and have recently been reviewed [27]. Briefly, nociceptive information is
transmitted by (1) cardiac visceral afferent fibers travelling with the sympathetic nerves via the
dorsal root ganglia into the spinal grey matter and ascending via the contralateral spinothala-
mic tract (STT) to the thalamus; and (2) vagal afferents via the nodose ganglia to the nucleus
tractus solitarius in the brainstem. Above the level of the thalamus, sensory information is
relayed not only to the somatosensory cortex but also to the cingulate gyrus, insula, amygdyla,
hypothalamus, and prefrontal cortex. Activations of the prefrontal cortex mediate part of the
cognitive and emotional dimensions of pain processing [33, 34].

Autonomic responses (changes in heart rate, blood pressure, and pupillary size) via the
nociceptive medullary autonomic circuit, rather than direct measures of consciousness and
analgesia, are used as surrogates to guide drug administration during general anesthesia [35].
Hence, intermittent or continuous barrages of nociceptor-induced neural activity during (and
after) surgery can result in peripheral and central pain sensitization with pain hypersensitivity,
changes in brain activity, and persistent postsurgical pain [7, 2,5]. Pain has been reported as a
component of intraoperative awareness, but the frequency and relationship to significant psy-
chological sequelae is inconsistent [36, 37, 38].

Assessing pain in individuals not able to communicate (e.g. neonates, infants, general anes-
thesia, coma, or following stroke) might be very difficult due to the lack of non-verbal objective
measures of pain. The consequences of ongoing pain include peripheral and central sensitiza-
tion with amplification of the pain and allodynia. Additionally, there are changes in brain sys-
tems (‘centralization of pain’) affecting emotional and cognitive processing [7]. Near-infrared
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spectroscopy (NIRS) being a portable, non-invasive and inexpensive method of monitoring
cerebral hemodynamic activity has the potential to provide such a measure. In a prior study we
have used functional NIRS to evaluate brain activation to an innocuous and a noxious electrical
stimulus on healthy human subjects. The painful and non-painful stimuli can be differentiated
based on their signal size and profile [15]. Furthermore, the signal was distinguishable from a
skin sympathetic response to pain that tended to mask it. Our results support the notion that
functional NIRS has a potential utility as an objective measure of pain processing.

NIRS Measures in Response to Ablation of Arrhythmias

Although the pattern of change in HbO concentration in response to cardiac ablation resembles
that found in awake, healthy volunteers [15], the time to peak change was shorter (by about
50%) in our patients. Possible explanations for this include the effects of anesthesia on cerebral
hemodynamics, the location of the stimulus (heart versus hand), the type of stimulus, or a com-
bination of these effects. Another important aspect of the observed signal is the amplitude. The
peak values for the HbO response to cardiac ablation range from approximately -1.7 to 0.5
micro Moles, with a mean value around -0.44 micro Moles. This is substantially larger than the
response observed in our healthy subject studies, which utilize short separation regression to
remove systemic effects such as the skin response. However, based on prior observations, we
have verified that the frontal cortex response, without the use of a regression measure, also
resembles the results reported in this study with a similar increase in amplitude [15].

The somatosensory cortex responses during cardiac ablation are also of great interest. Due
to procedural limitations in this study, NIRS channels over the somatosensory cortex often
deviated from their preoperative configuration, reducing the signal to noise ratio below accept-
able levels. We have reason to be concerned that systemic activity could be producing the
hemodynamic response function in the prefrontal cortex. Short separation channels were uti-
lized during the collection of this data set, but were only located at medial somatosensory loca-
tions, which are not useful for regression of signals in the prefrontal cortex. To overcome this
limitation and enhance our confidence in the data, a second cohort of cardiac ablation patients
is being studied with a different sensor positioning system utilizing short separation channels
located adjacent to all channels. This will allow us to eliminate any systemic effects that may be
present in the scalp or skull over the prefrontal cortex and rule out the possibility of a sympa-
thetic response. We also expect to be able to detect a differentiable response in the somatosen-
sory cortex region [15], which will corroborate our results in the prefrontal cortex. There is
some uncertainty over where heart pain is processed in the brain, with the possibility that the
insular lobe is responsible for both heart control and sensation, but there is support that a
more accessible cortex location may be available [39].

The Frontal Lobe and Pain

Our study focused on measures of pain in the frontal lobe, an area that is frequently reported
in experimental and pain studies. The specific regions are the superior medial and mid-frontal
lobe.

The frontal lobe has been implicated in a number of functional processes including: (1)
defining future processes that may result from current actions and defining relative choice
outcomes (viz., good/bad; aversive/rewarding) between these actions; (2) defining responses
in a social context; (3) defining relative congruency of processes (viz., objects or proceedings);
and (4) long-term emotional memories. In this study we evaluated changes in the medial
frontal lobe [40, 41, 42, 43] that has attributed functions including those in fear and extinc-
tion [44]. How are these functions altered by nociceptive signals during unconsciousness
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associated with anesthesia? First, there is accumulating evidence that there may be non-con-
scious or unconscious processing of fear by the medial prefrontal cortex [45, 46]. While dis-
turbances of network properties (including those in the medial prefrontal cortex) during
impaired consciousness (viz., coma) or anesthesia [47], prior work in animals under general
anesthesia show that nociceptive signals activate somatosensory pathways [48, 49, 50]. Sec-
ond, the connectivity of the medial prefrontal cortex has been studied in rats, monkeys and
humans and data supports a major cortical output from the region to visceromotor structures
in the hypothalamus and brainstem, the basal ganglia (accumbens, putamen and ventrome-
dial caudate) and mediodorsal thalamus [51, 52]. Its role in pain is supported by a number of
clinical and preclinical studies: (1) the regions noted above are all regions activated by noci-
ceptive signals in human fMRI studies and notably the region is predictive for hyperalgesia
and anti-hyperalgesia [53]; the latter is of note since we suggest that the region may be a
marker for analgesia; (2) alterations in channel function are reported in in the region in neu-
ropathic pain produced by spared nerve injury in rats [54]; and pain produces deactivation of
the medial prefrontal cortex (mPFC) which is part of or closely associated with the s-mPFC
that alters glutamate and GABA receptors [55] in a manner that may contribute to pain
induced deactivation; (3) Consistent with an inhibitory effect, medial prefrontal areas project
to the periaqueductal gray [56], a region involved in descending modulation and perhaps
involved in adaptation or habituation of a repetitive fNIRS stimulus we have previously
reported [15]. Under normal conditions, GABAergic inhibition may thus be at play, resulting
in decreased evoked activity in mPFC neurons—and perhaps consistent with the decreased
fNIRS signal observed in our study.

We propose that during incomplete analgesia, nociceptive signals activate pathways that
include spinothalamic/spinoparabrachial-amygdala pathways and that these areas (thalamus
and amygdala) relay the information to the medial prefrontal cortex. The decreased fNIRS
signal is putatively related to enhanced GABAergic processing (see [55]). Its unconscious pro-
cessing continues presumably because of the relative depth of anesthesia. Thus represents eval-
uation of ‘current action’ (including the aversive emotional nature of nociception) and while
interrogating this information attempting to define a course of action, consistent with known
function of the superior medial prefrontal cortex (s-mPFC).

Measures of Pain and Anesthesia

Although definitions and goals of the anesthetic state vary among anesthesiologists, important
components of general anesthesia include lack of experience of surgery (unconsciousness or
disconnected consciousness, amnesia), immobility, and nociceptive blockade [57]. The rela-
tionship of memory to level of consciousness is complex, and both inhalation and intravenous
anesthetics can cause memory blockade at doses considerably lower than those required for
loss of consciousness and immobility [58]. Monitoring brain states under general anesthesia
and sedation is presently directed at assessment of the level of consciousness and prevention
of awareness. This is still performed by interpretation of physiologic parameters and to a
lesser extent by EEG-derived indices and changes in the unprocessed electroencephalogram
(EEG).

Although attempts to develop an analgesic state monitor in response to sympathetic stimu-
lation [59] or evoked potentials [60, 47] are ongoing, a technique which can detect and reduce
cerebral nociceptive input would be superior. Validation of this technique to measure pain pro-
cessing would allow testing of the hypothesis that reduction in nociceptive processing during
anesthesia would allow for development of strategies to improve analgesia in the perioperative
period [2,5,7].
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Caveats

Hemodynamic effects initiated by neuronal activity are considerably smaller in magnitude
than the background variations in blood oxygenation and volume caused by systemic activities
(e.g. cardiac rhythm, respiration, and blood pressure oscillation). To improve the ability to
identify single events, a regression technique such as using short separation optodes [61], in
addition to our sensor array, should be used. Additionally, near-infrared spectroscopy is
dependent on consistent contact with the medium being imaged. Excessive patient movement
can cause both loss of contact with the scalp as well as movement within the cerebral fluid.
Loss of contact results in sudden changes in received light intensity. Signal processing methods
are now being developed to correct for these types of artifacts [62].

These results do not take into account any changes that occur due to the influence of phar-
macologic agents on hemodynamic response to stimuli or brain function in general [63, 64, 65,
66]. Cortical activity monitored in healthy, awake individuals through NIRS may not provide a
direct comparison to individuals undergoing cardiac ablation, because a pain signal observed
in patients under anesthesia may exhibit variations in amplitude or time of onset of activity, as
well as other factors not present in the control data.

Conclusions

The findings of this study indicate that detection of cortical nociceptive activation signatures is
possible with fNIRS in patients under general anesthesia. Specifically, this suggests that further
research could provide a measure of pain through fNIRS measures in the prefrontal cortex. If
successful, this would create a tool that a variety of pain related fields could use for objectifica-
tion of pain as well as pain detection in populations with no means of communicating pain
intensity. This would almost certainly improve the study of pain as well as our ability to pro-
vide perioperative pain relief.
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