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Abstract

Objectives. Non-small-cell lung carcinoma (NSCLC) is the most
prevalent and lethal form of lung cancer. The need for
biomarker-informed stratification of targeted therapies has
underpinned the need to uncover the underlying properties of the
tumor microenvironment (TME) through high-plex quantitative
assays. Methods. In this study, we profiled resected NSCLC tissues
from 102 patients by targeted spatial proteomics of 78 proteins
across tumor, immune activation, immune cell typing, immune-
oncology, drug targets, cell death and PI3K/AKT modules to
identify the tumor and stromal signatures associated with overall
survival (OS). Results. Survival analysis revealed that stromal CD56
(HR = 0.384, P = 0.06) and tumoral TIM3 (HR = 0.703, P = 0.05)
were associated with better survival in univariate Cox models. In
contrast, after adjusting for stage, BCLXL (HR = 2.093, P = 0.02)
and cleaved caspase 9 (HR = 1.575, P = 0.1) negatively influenced
survival. Delta testing indicated the protective effect of TIM-3
(HR = 0.614, P = 0.04) on OS. In multivariate analysis, CD56
(HR = 0.172, P = 0.001) was associated with better survival in the
stroma, while B7.H3 (HR = 1.72, P = 0.008) was linked to poorer
survival in the tumor. Conclusions. Deciphering the TME using
high-plex spatially resolved methods is giving us new insights into
compartmentalised tumor and stromal protein signatures
associated with clinical endpoints in NSCLC.
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INTRODUCTION

Non-small-cell lung cancer (NSCLC) and small-cell
lung cancer (SCLC) are the most diagnosed and

deadliest subtypes of lung cancer worldwide.1–3

Approximately 80% of lung cancer cases are
caused by smoking exposure to carcinogens, in
addition to rare genetic predispositions.4,5
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Surgery, radiation therapy, chemotherapy and,
more recently, targeted therapy and
immunotherapy are treatment options for lung
cancer.6,7 Immunotherapy, alone or combined
with chemotherapy, is the current regimen for
patients without actionable mutations and has led
to improved progression-free survival (PFS) and
overall survival (OS).8,9

There is mounting evidence that the study of
the tumor microenvironment (TME) is crucial for
understanding tumor characteristics and the
effectiveness of treatments.10–12 The TME
comprises complex mixtures of soluble
chemokines in the extracellular matrix, fibroblasts,
endothelial cells and innate and adaptive immune
cells, into which tumor cells must invade and
evade to proliferate.13 The cellular interactions
with nearby cells in this milieu drive dynamic
phenotypic expression of cellular markers in both
tumor and non-tumor cells.14 Thus, studying the
variations in marker expression provides a unique
insight into the complex network of cell–cell
interactions in the tumor microenvironment.15,16

This reveals not only important indicators of
interactions but also may uncover molecular
mediators that influence the TME to favor tumor
growth.17 Over the past few years, the TME of
NSCLC has emerged as an essential driver in the
progression of primary lung cancer cases,
responsible for its aggressiveness and resistance to
anticancer therapies.18,19

Digital spatial profiling (DSP) maps biomolecules
at a regional resolution within the spatial context
of tissue morphology, allowing for a more
complete understanding of the spatial relationships
of tumor and non-tumor regions and potentially
influencing tumorigenesis.20,21 High multiplexing
additionally enables the simultaneous study of
numerous biomarkers within their tissue
architecture with high detection sensitivity and
specificity.22 This technique enables biomarker
identification and subsequent insights into the
tumor microenvironment, resulting in increased
depth for the discovery of novel therapeutic
targets.23,24

RESULTS

NSCLC patient cohort

Our cohort consists of early (Stages I and II) and
advanced (Stages III and IV) patient samples
constructed across two TMAs. The cohort was

composed of 65.7% male and 34.3% female
(Table 1). TMA cores were collected at resection,
and survival status was calculated from the time
of surgery to the final follow-up.

Identification of differentially expressed
proteins by the Nanostring GeoMx
DSP assay

Using Nanostring GeoMx� DSP technology,
multiplex proteomics of 102 TMA cores was
performed (Figure 1). Regions were segmented
into tumor (PanCK+) and stroma (PanCK�) to
determine protein expression within tissue
compartments. To inspect the integrity of our
data, we first performed differential expression
between tumor and stroma compartments
(Figure 2b–e). In stroma regions, cell death
markers, immune regulatory markers and myeloid
markers were more common, while tumor areas

Table 1. Clinicopathological information about patients

Cohort 1

(N = 37)

Cohort 2

(N = 65)

Overall

(N = 102)

Gender

Male 27 (73%) 40 (61.5%) 67 (65.7%)

Female 10 (27%) 25 (38.5%) 35 (34.3%)

Age

Median 68 (46,83) 72 (41,86) 70 (41,86)

Stage

IA 4 (10.8%) 15 (23.1%) 19 (18.6%)

IB 13 (35.2%) 19 (29.2%) 32 (31.4%)

IIA 1 (2.7%) 5 (7.7%) 6 (5.9%)

IB-IIA 0 (0%) 7 (10.8%) 7 (6.9%)

IIB 7 (18.9%) 14 (21.5%) 21 (20.6%)

IIIA 7 (18.9%) 3 (4.6%) 10 (9.8%)

IIIB 1 (2.7%) 2 (3.1%) 3 (2.9%)

IV 4 (10.8%) 0 (0%) 4 (3.9%)

Subtype

Adenocarcinoma

(ADC)

21 (56.7%) 54 (83%) 75 (73.5%)

Squamous cell

carcinoma (SCC)

26 (70.2%) 0 26 (25.4%)

Unclassified 1 (2.7%) 0 (0%) 1 (0.9%)

Mutation

KRAS

Wild type 5 (13.5%) 0 (0%) 5 (4.9%)

Mutant 1 (2.7%) 0 (0%) 1 (0.9%)

Unknown 31 (83.7%) 65 (100%) 96 (94.1%)

EGFR

Wild type 5 (13.5%) 0 (0%) 5 (4.9%)

Mutant 0 (0%) 0 (0%) 0 (0%)

Unknown 32 (86.4%) 65 (100%) 97 (95.1%)

Survival status

Alive 24 (64.9%) 35 (53.8%) 59 (57.8%)

Deceased 13 (35.1%) 30 (46.2%) 43 (42.2%)
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were enriched with immune-modulating and
immune-activating markers. B-cell lymphoma extra
large (BCLXL), P53, BCL2 antagonist of cell death
(BAD), CD127, poly ADP-ribose polymerase
(PARP), cleaved caspase 9, B-cell lymphoma 6
(BCL6), Bcl-2-like protein 11 (BIM), forkhead box
protein P3 (FOXP3), PD-L2 and CD25 are the most
upregulated markers in tumor compartments,
whereas the expression of smooth muscle actin
(SMA), fibronectin, CD3, CD4, CD45, CD163, CD34,

CD14 and CD68 decreased (Figure 2d and e)
(Supplementary table 1).

Univariate survival analysis

A Cox proportional hazards model and Kaplan–
Meier (KM) survival model were applied to each
protein to determine the association between
protein expression and OS. In the continuous Cox
model for the stromal compartment, CD56, a

Figure 1. Overview of the digital spatial profiling workflow. In the first step, conjugated antibodies with DNA oligos bind to the target antigens.

Through the visualising markers, region of interests (ROIs) are selected and UV-cleaved oligos are collected into specific wells and counted. The

figure was generated by Biorender.
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Figure 2. Different protein expressions between tumor and stroma. (a) The principal component analysis biplot indicates the proteins deriving from

different groups. (b) Differential expression analysis of tumor versus stroma helps to visualise the differences between the two groups by transforming

the data into log ratio and average means. (c) Boxplots demonstrating the enrichment of Pan-CK, BCLXL, SMA and Her2 within the tumor areas. (d)

Scatter plot showing tumor region enrichment of proteins ranked by significance (�log10 P-value). (e) Top 13 most differentially expressed proteins.
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marker of natural killer (NK) cells, showed a
positive association with survival (HR = 0.384,
P = 0.067), approaching statistical significance,
with KM analysis confirming this protective effect
(P = 0.00087) (Figure 3a and c). Conversely, immune
checkpoint molecules B7-H3 (HR = 1.287, P = 0.1)
and PDL1 (HR = 1.306, P = 0.11) along with the
anti-apoptotic marker BCLXL (HR = 1.586, P = 0.1)
were linked to poorer survival outcomes. Kaplan–
Meier estimates for PDL1 (P = 0.06), B7-H3
(P = 0.01) and BCLXL (P = 0.1) supported Cox
results associated with adverse survival prognosis
(Figure 3a and b).

Cox regression of markers within the tumor
regions indicated the tumor suppressor
neurofibromin 1 (NF1) (HR = 1.548, P = 0.072)
associated with poorer survival. Conversely, higher
expression of other markers was linked with
improved survival outcomes. TIM3 (HR = 0.703,
P = 0.05), an immune checkpoint receptor,
positively impacted survival. Similarly, arginase 1

(ARG1), which negatively affects T cell function
(HR = 0.733, P = 0.07), and CD44, known for its
association with cancer stem cell properties
(HR = 0.837, P = 0.1), were linked to better
survival rates. In addition, T cell activation marker
4.1BB (HR = 0.729, P = 0.09) also indicated more
favorable survival outcomes in Cox models
(Figure 3d). Survival analysis by Kaplan–Meier
suggested that only higher expression of ARG1
(P = 0.05) was associated with better survival,
while TIM3 (P = 0.3), NF1 (P = 0.04) (Figure 3f),
4.1BB (P = 0.03) (Figure 3e) and CD44 (P = 0.5)
were linked to diminished survival.

The ‘Delta test’ is a method for determining the
difference in relative expression levels of a marker
in tumor regions compared to the stroma,
generally represented as d (d = Expression tumor –
Expression stroma). This approach is beneficial in
identifying the relative enrichment of markers
that may have a greater impact within the tumor
bulk, such as markers of immune cell function.

Figure 3. Analysis of overall survival (OS)-associated proteins. (a) Univariate CoxPH forest plot indicating hazard ratio with 95% confidence

interval for proteins from the stroma regions. (b, c) Kaplan–Meier plots of stromal CD56 and B7-H3. (d) Univariate CoxPH forest plot indicating

hazard ratio with 95% confidence interval for proteins from tumor regions. (e, f) Kaplan–Meier plots of tumoral 4.1BB and NF1. (g) CoxPH

models for delta protein expression (tumor–stroma). (h, i) Kaplan–Meier plots of delta protein expression for TIM-3 and VISTA. HR >1

demonstrates an association with poorer OS. Threshold above median = red. Threshold below median = green.
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Indeed, the Delta test indicated protective CoxPH
trends for TIM-3, VISTA, CD45 and CD44. TIM-3
(HR = 0.614, P = 0.04) and VISTA (HR = 0.641,
P = 0.05) were immune checkpoint molecules
associated with a reduced risk of mortality in
continuous Cox models. Similar positive survival
associations were observed for T cell activation,
signalling and migration markers such as CD45
(HR = 0.57, P = 0.07) and CD44 (HR = 0.781,
P = 0.07) (Figure 3g). Conversely, higher
expression of SMA (HR = 1.305, P = 0.09) in the
Delta test indicated reduced survival time in both
Cox and KM survival estimates results.

Univariates corrected for stage

To examine the independent effects of each
marker while adjusting the potential influence of
patient effects, we corrected the survival results
for the disease stage. After correcting for stage in
stromal regions, upregulated anti-apoptotic
markers BCLXL (HR = 2.093, P = 0.02) and BAD
(HR = 1.982, P = 0.04) were found to correspond
with worse survival outcomes. CD14 (HR = 1.501,
P = 0.05), a marker of M2 macrophage
polarisation and immune suppression, was also
associated with poorer outcomes (Figure 4a). In
line with Cox models, KM survival analysis of

BCLXL (P = 0.0038) (Figure 4b), BAD (P < 0.0001)
(Figure 4c) and CD14 (P < 0.0001) provided similar
survival outcomes, contrary to CD56 (P < 0.0001)
and CD66b (P < 0.0001) showed different trends
compared to Cox model.

In tumor regions, continuous survival regression
analysis for antigen-presenting cell (APCs)
markers CD40 (HR = 0.681, P = 0.06) (Figure 4d
and e) and HLA DR (HR = 0.814, P = 0.1) in
addition to ARG1 (HR = 0.721, P = 0.07) was
indicative of prolonged survival time (Figure 4d).
We found apoptosis mediator-cleaved caspase 9
(HR = 1.575, P = 0.1) (Figure 4f) and GZMB
(HR = 1.777, P = 0.1), which enhance antitumor
immunity to be linked with poorer survival in
both analyses.

Multivariate model after variable selection
using stepwise Cox regression analyses

Multivariate analysis is a statistical approach for
evaluating the impact of several variables on
survival outcomes at once, allowing for the
adjustment of confounding factors and
the identification of independent survival
predictors. This technique is instrumental in
survival analysis for determining how numerous
factors combine to determine survival rates.

Figure 4. Analysis of overall survival (OS)-associated proteins corrected for stage. (a) CoxPH model for stromal protein expression corrected for

stage. (b, c) Kaplan–Meier survival curves for stromal BCLXL and BAD expression corrected for stage. (d) CoxPH model for tumoral protein

expression corrected for stage. (e, f) Kaplan–Meier survival curves for stromal CD40 and cleaved caspase 9 expression corrected for stage. HR >1

demonstrates an association with poorer OS. Threshold above median = red. Threshold below median = green.
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Multivariate analysis of our study reports
stromal CD56 associated with improved survival
outcomes while upregulated B7.H3, CD20, LAG3
and PDL1 reduced survival rate. A multivariate
model after variable selection using stepwise Cox
regression analyses for delta expression (Tumor–
Stroma) revealed a significant association between
SMA and worse survival opposite to 4.1BB,
fibronectin and CD44 (Table 2).

DISCUSSION

Non-small-cell lung cancer continues to be the
leading cause of cancer-related deaths globally,
posing a significant therapeutic obstacle.25–27 Most
patients are diagnosed with advanced stages of their
condition, rendering surgical interventions no longer
feasible. This emphasises the immediate demand for
improved therapeutic methods, namely in targeted
therapy, to control and potentially reverse the
advancement of the disease.28 In contrast to the
significant improvements made by targeted and
immunotherapy in advanced-stage disease,
chemotherapy remains the essential choice for
resected patients with stage II–IIIA disease with a
5-year survival benefit of 5%.29 A variety of factors
can cause chemotherapy failures in NSCLC patients,
including tumor heterogeneity and acquired drug
resistance.30,31

Integrating multiplexed molecular assays with
spatial context can deeply aid our understanding of
tumor heterogeneity, shed light on treatment
resistance mechanisms and provide direction for
novel treatment approaches.32,33 This study assessed
the inter- and intratumor differences in protein

expression of NSCLC tissue samples to investigate
biomarkers indicative of patient outcome. We found
that a diverse array of biomarkers, including cell
adhesion molecules, immunological regulators,
immune checkpoint inhibitors and apoptotic
markers, are associated with survival outcomes in
NSCLC patients. Anti-apoptotic proteins like BCLXL
are released from the cells to prevent cell death.
There are, however, some pro-apoptotic proteins,
such as BAD, that counteract this by acting as
antagonists to synergise with other apoptotic
proteins, including cleaved caspase 9, to activate the
intrinsic apoptosis pathway.34–36 Surprisingly, it has
been shown that caspase 9 enhances NSCLC
tumorigenicity and correlates with an anti-apoptotic
phenotype.37–39 Our findings show that BCLXL, BAD
and cleaved caspase 9 have a notable connection to
survival outcomes, particularly after adjusting for
the disease stage. All three mentioned markers were
strongly linked to shorter survival, implying that
their overexpression may enhance tumor resistance
to apoptosis. CD56 is documented to be expressed
mostly on NK cells in several cancers like lung and
renal cell carcinoma.40–44 CD56+ NK cell enrichment
level in the stroma was found to be favorably
correlated to a higher survival index.45–47 CD56 has
consistently shown a protective effect on survival in
the current study, highlighting its function in the
immune response. A study showed its adverse effect
upon correcting the stromal expression for stage.
This may be caused by the advanced stage of cancer
dominating the protective capabilities of immune
cells.48,49 Besides CD56, the integral role of CD40 in
immune surveillance is inevitably important. When
engaged, CD40 enhances the ability of

Table 2. Multivariate model after variable selection using the CoxPH model

exp (coef) se (coef) z Pr (>|z|)

Multivariate model after variable selection using stepwise Cox regression analyses for stroma

CD56 0.172 0.559 �3.151 0.00163

B7.H3 1.72 0.205 2.65 0.00805

CD20 2.32 0.372 2.262 0.0237

LAG3 2.009 0.271 2.578 0.00993

PDL1 1.418 0.159 2.192 0.0284

Multivariate model after variable selection using stepwise Cox regression analyses for tumor

TIM-3 0.733 0.189 �1.642 0.1005

ARG1 0.694 0.164 �2.231 0.0257

NF1 1.601 0.269 1.75 0.08019

Multivariate model after variable selection using stepwise Cox regression analyses for delta expression (tumor-stroma)

SMA 2.232 0.235 3.413 0.00064

4.1BB 0.648 0.185 �2.347 0.01893

Fibronectin 0.58 0.21 �2.596 0.00943

CD44 0.668 0.165 �2.443 0.01457
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antigen-presenting cells to stimulate T cells and
facilitate their activation and maturation.50–52

Robust activation of T cells through CD40 can
promote adaptive immune responses against tumors
and improve the survival probability.53,54 Although
we found a protective effect for CD40 through the
Cox model after correcting the stage, KM estimates
did not confirm the results. The protective effect of
CD40 may be masked by other variables, whereas
the negative correlation could be caused by
unmeasured confounders or specific subgroups,
highlighting the need for more research to clarify
these findings.

Immune regulatory markers such as PDL1, TIM-3,
B7-H3 and LAG3 play an integral role in the TME of
NSCLC, influencing immune evasion and patient
survival.55–57 B7-H3 and regulatory T cells (Tregs)
were discovered as potentially cooperating in tumor
cell immune evasion and unfavorable outcomes.58

B7-H3 has been shown to limit T cell proliferation,
minimise cytokine production and suppress
transcription factor activation.59–61 Our finding
replicates the negative impact of increased B7-H3 on
patient survival. Multivariate analysis for the stroma
confirms the unfavorable impact of LAG3, B7-H3 and
PDL1, implying that when other covariates are
controlled, the adverse effects of these markers
become more pronounced. It has been shown that
high GZMB is associated with the increased cytotoxic
activity of tumor-infiltrating lymphocytes (TILs) and
improved disease-free survival (DFS) and OS in
multiple cancer types.62,63 However, GZMB
expression alone or coupled with markers like PD-L1
can variably affect both recurrence-free survival (RFS)
andOS.62,64,65 Our study supports these contradictory
data by demonstrating that high GZMB expression is
linkedwith poor survival. It implies that the impact of
cytotoxic activity may vary depending on the cancer
type and immunological context. CD14+ cells in
NSCLC contribute to the complexity of TME by
increasing inflammation, which can potentially
enhance tumor development and immune system
evasion.66 High CD14 expression is shown to be
linked with a worse prognosis in lung squamous cell
carcinoma (LUSC).67 Schenk et al. also showed
early-stage adenocarcinoma patients with increased
CD14+ cells experienced a lower median OS of
5.5 years compared to 10.7 years for those with
moderate or low CD14 expression levels.68 This
negative effect is most likely caused by the role of
myeloid-derived suppressor cells (MDSCs), in
encouraging tumor spread and contributing to an
immunosuppressive environment.69,70 We also

confirmed that increased stromal CD14 is strongly
related to poor survival outcomes corroborating the
results of previous studies. CD66b’s role in NSCLC
includes immune landscape modulation like
neutrophil extracellular trap (NET) development and
contribution to tumor progression and
metastasis.71,72 We found an association between
increased CD66b expression and shorter survival. One
similar study found that elevated CD66b was related
to an increased hazard ratio even after adjusting for
other clinical covariates.73 The same trend was seen
in NSCLC patients treated with immune checkpoint
inhibitors (ICI).74

We observed some discrepancies between CoxPH
models and Kaplan–Meier results with a few
potential reasons for this dominance, as follows. (1)
Kaplan–Meier plots classify patients into groups
according to cut-off points (e.g. median or quartiles),
which may show significant group differences that
would be less visible in a continuous analysis, such as
CoxPH. (2) In accounting for numerous covariates,
the CoxPH model may report less statistically
significant results while Kaplan–Meier plots show
the impact of a single marker on survival, especially
when there are few confounding factors. (3) Kaplan–
Meier plots might indicate early or late differences in
survival rates that are not visible in the Cox model. If
survival differences are concentrated at specific time
intervals (e.g. early months or later years), they may
appear as notable shifts in Kaplan–Meier curves, but
are averaged out in CoxPHmodels.

STUDY LIMITATIONS

Our study profiled two independently collected
NSCLC tissue cohorts with single-core biopsies
prepared in tissue microarray format. Tissue
microarrays consist of limited tissue areas that are
selected by pathologists to be representative of
the tumor but may not account for the true
tumor heterogeneity found across an entire
full-face section. Furthermore, the post-surgery
treatment information was not available for this
study, preventing us from investigating their
impact on the patient’s survival.

CONCLUSION

In this study, we analysed two NSCLC cohorts of over
100 patients before chemotherapy. We used Cox
proportional hazards models and Kaplan–Meier
estimates to assess patients’ survival rates and
discover protein markers affecting outcomes. Most
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of the markers belong to the apoptosis, immune
regulatory and immune response families.
Furthermore, immune-modulating biomarkers, such
as B7-H3 and PDL1, have significantly impacted
immune evasion and tumor survival strategies. In
addition, some cell adhesion molecules and myeloid
cell markers have been associated with lowered
survival rates. Taken together, this study provides an
informed rationale for identifying biomarkers
associated with OS in NSCLC. Further validation of
findings is needed in orthogonal cohorts.

METHODS

Study design

This project has the Human Research Ethics Committee’s
approval and the University of Queensland’s ratification.
Two tissue microarrays (TMA) were constructed from
resected lung specimens by Tristar Technologies Group
(Washington, DC, USA). The clinical metadata included the
NSCLC patients’ age, stage at diagnoses and OS. TMAs
contained 148 total single-patient cores, of which 102 were
analysed in this study after excluding cores that failed tissue
quality control or had no clinical follow-up data.

Nanostring GeoMx DSP

Profiling of NSCLC TMAs was performed by Nanostring
GeoMx DSP Technology as per manufacturer’s instructions

(Seattle, Washington, USA). The samples were stained with
anti-pan-cytokeratin (PanCK) and anti-CD45 morphology
markers to visualise tumor (PanCK+) and non-tumor
(PanCK�). A multiplex panel consisting of 78 antibodies for
pan-tumor, immune activation, human immune cell,
immune cell typing, immune-oncology (IO) drug target and
cell death and PI3K/AKT were used per region of interest
(ROI) on the slides (Table 3).

Through the ROI selection process, regions of interest
were selected with a size of up to ~660 lm under the
supervision of an anatomical pathologist. Segmentation of
the ROI into two areas of interest (tumor and stroma)
facilitated the targeted collection of oligos from specific
locations.

Antibody barcodes were counted using the Nanostring
nCounter� platform in accordance with the supplier’s
guidelines. External RNA Controls Consortium (ERCC) QC
normalised data were exported from the instrument for
bioinformatic analysis.

Data analysis

Principal component analysis (PCA) was used to assess the
data quality, and coefficients of variation were utilised to
decide whether the RUV-seq normalising approach was
appropriate (Figure 2a).75,76 Differential analysis
was performed by Limma.77 Survival analysis by Kaplan–
Meier was performed on median cut points of protein
expression and the Cox proportional hazards model with
continuous protein expression data. The CoxPH models for
OS were developed using the CoxPH function in survival
package in R (version 3.3–1). The survival object was created
using Surv function in survival package. The P-values were

Table 3. Multiplex panel of antibodies.

Immune cell profiling panel IO drug target panel

Human protein core Human protein module

Beta-2-microglobulin CD3 CD68 CTLA4 GZMB PD1 4-1BB LAG3

CD11c CD4 CD8 Pan-cytokeratin HLA-DR PDL1 ARG1 OX40L

CD20 CD45 CD56 Fibronectin Ki-67 SMA B7-H3 STING

Ms IgG2a Histone H3 GITR TIM-3

Ms IgG1 S6 IDO1 VISTA

Rb IgG GAPDH

Immune activation status panel Cell death panel PI3K/AKT signalling panel Immune cell typing panel Pan-tumor panel

Human protein module Human protein module Human protein module Human protein module Human protein module

CD127 BAD Pan-AKT CD14 BCL-2

CD25 BCL6 MET CD163 EpCAM

CD27 BCLXL Phospho-AKT1(S473) CD34 ER alpha

CD40 BIM Phospho-GSK3B (S9) CD45RO HER2/ERBB2

CD80 CD95/Fas Phospho-Tuberin (T1462) CD66b MART1

ICOS GZMA Phospho-GSK3A (S21)/

Phospho-GSK3B (S9)

FAP-alpha NY-ESO-1

PD-L2 p53 INPP4B FOXP3 PR

CD44 PARP PLCG1 PTEN

Cleaved Caspase 9 Phospho-PRAS40 (T246) S100B

Neurofibromin
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corrected using the false discovery rate for multiple
correction method. The multivariate CoxPH model was also
developed by incorporating the stage of disease
information. To perform stepwise Cox regression with the
specified parameters, the bidirectional selection method is
employed, where the algorithm considers both forward
addition and backward elimination steps. The significant
levels selection criteria were applied to evaluate the
significance of each variable to determine their inclusion or
exclusion from the model. Additionally, the Breslow
approximation method is used to handle ties in the data
using StepReg package. HR values that were larger than 1
indicated an increased risk, whereas values that were less
than 1 indicated a decreased risk.
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