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Abstract

Phylogenetic methods are being increasingly used to help understand the transmission dynamics of measurably evolving
viruses, including HIV. Clusters of highly similar sequences are often observed, which appear to follow a ‘power law’ behav-
iour, with a small number of very large clusters. These clusters may help to identify subpopulations in an epidemic, and
inform where intervention strategies should be implemented. However, clustering of samples does not necessarily imply
the presence of a subpopulation with high transmission rates, as groups of closely related viruses can also occur due to
non-epidemiological effects such as over-sampling. It is important to ensure that observed phylogenetic clustering reflects
true heterogeneity in the transmitting population, and is not being driven by non-epidemiological effects. We qualify the ef-
fect of using a falsely identified ‘transmission cluster’ of sequences to estimate phylodynamic parameters including the ef-
fective population size and exponential growth rate under several demographic scenarios. Our simulation studies show
that taking the maximum size cluster to re-estimate parameters from trees simulated under a randomly mixing, constant
population size coalescent process systematically underestimates the overall effective population size. In addition, the
transmission cluster wrongly resembles an exponential or logistic growth model 99% of the time. We also illustrate the con-
sequences of false clusters in exponentially growing coalescent and birth-death trees, where again, the growth rate is
skewed upwards. This has clear implications for identifying clusters in large viral databases, where a false cluster could re-
sult in wasted intervention resources.
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1. Introduction

Boosted by the increasing use of viral genotyping for clinical
purposes, there are more HIV sequence data than ever, repre-
senting around a third of all viral sequences in Genbank, which
can also be used to characterise the transmission dynamics of
HIV. Grouping sequences into phylogenetic clusters has previ-
ously proven useful for sifting through these large datasets,
with particular focus on national-level databases, and this ap-
proach has been used to correlate transmission with contact
rates, social network structures, risk behaviours, and the pres-
ence of co-infections with other viruses in a number of HIV
studies, including those from the United Kingdom, Switzerland,
Canada, the Netherlands and South America (Hughes et al.

2009; Bezemer et al. 2010; Kouyos et al. 2010; Ragonnet-Cronin
et al. 2010; Junqueira et al. 2016). However, the definition of a
phylogenetic cluster has not so far been standardised, despite
there being numerous approaches and software implementa-
tions to identify them (Prosperi et al. 2011; Ragonnet-Cronin
et al. 2013; Dennis et al. 2014; Wertheim et al., 2014; Vrbik et al.
2015).

In standard epidemiology, a cluster is defined as a higher
than expected burden or incidence of disease in close proximity
in time and space (Porta 2008). In phylogenetics, a cluster is sim-
ply a group of closely related sequences, or a subtree within the
full phylogeny, linked by a single recent common ancestor. This
definition on its own does not help resolve epidemiological
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links, since broad clustering in a tree of all HIV-1 sequences in a
national database will simply identify subtypes (Wertheim et al.
2014). However, this does not mean to say that the phylogenetic
and epidemiological definitions of a cluster cannot be recon-
ciled; sequences that are more closely related genetically may
have a smaller distance in terms of the number of transmission
events that have occurred between them, all other things being
equal. Thus, the identification of phylogenetic clusters can rep-
resent groups of recent transmission when identified using a
measure of relatedness. Whilst exact definitions vary in the lit-
erature, this relatedness, referred to here as the threshold, is
usually in the form of an allowable distance between se-
quences, either through a cut-off of genetic diversity, or in a
time period reflective of time to diagnosis. Methods using the
mean, median, and maximum distance for the threshold have
been proposed (Hughes et al. 2009; Leigh Brown et al. 2011;
Prosperi et al. 2011). Constraints on the certainty of the subtree
(through a bootstrap or posterior probability, for example), sub-
tree size, and geography of isolates have also been introduced
(Hué et al. 2005; Kouyos et al. 2010).

Regardless of how clusters are identified, resulting clusters
are undirected between pairs of sequences, and thus can also
be drawn as a network (Fig. 1b). The sizes of clusters can be rep-
resented as a (component) distribution (Fig. 1c). The distribution
of cluster sizes is often found to be right skewed, with a large
number of very small clusters and fewer large ones, shown to
be well-fitted by a power-law distribution (Hughes et al. 2009;
Leigh Brown et al. 2011). This shape is often thought to be a re-
flection of the heterogeneity in transmission, particularly for
sexually transmitted infections where a similar pattern of skew
can be seen in risky sexual contacts (Liljeros et al. 2001). Cluster
sizes that are unusually large and fall in the upper tail of the
size distribution, such as the cluster of size 16 in Fig. 1, tend to
be of particular interest since these suggest new or unexpected
patterns of transmission for further analysis. However, without
a null model in which there is no heterogeneity in transmission,
it is difficult to interpret these distributions. Indeed, there is
nothing special about the largest cluster in Fig. 1, since the phy-
logeny has been randomly permuted to remove any substruc-
ture (Dearlove and Frost 2015; Ratmann et al. 2017).

The main advantage of clustering sequences from a large
database is that it is fast and scalable (Ragonnet-Cronin et al.
2013), helping to downsize large sequence databases to groups
of particular interest for further in-depth analyses that would
be computationally infeasible on the database as a whole.
When we have meta-data about clustered individuals, such as
potential risk behaviours and clinical results, then clusters can
help identify trends between individuals linked within the
same cluster and elucidate where to target interventions.
Interest also lies in whether these clusters may represent dis-
tinct sub-epidemics associated with higher transmission rates.
If this were the case, then clusters can be treated separately
from the dataset as a whole. However, clusters of related se-
quences can arise by chance even in the absence of any trans-
mission heterogeneities in the dataset, simply due to the
asymmetric way that random trees branch, and can also be
driven by oversampling. In this case, treating a cluster of se-
quences as distinct may be misleading.

Biases can also arise regardless of whether or not clustering
is present. Kuhner et al. (1998) have previously showed that es-
timates of the growth rate in coalescent models of exponential
growth are biased upwards. Two factors they attributed this to
were the non-linearity of the relationship between the growth
rate and the coalescence times, and the censoring of the first

coalescence event due to sampling. Pybus et al. (2000) and Wiuf
(2003) showed that the amount of bias varies according to the
product of the effective population size and the growth rate.
Censoring has also been found to be an issue in non-parametric
estimates of the effective population size over time, with false
slowing of epidemics detected near the present (de Silva et al.
2012).

In this paper, we investigate the problems of using phyloge-
netic clusters for phylodynamic inference, motivated by the
large national database scenario. These national-level phyloge-
nies are a composite of the local transmission process and
higher level migration events, including from multiple sub-
types. Whilst each sub-epidemic might resemble a typical HIV-1
phylogeny with long branches need the tips, the overall tree can
have multiple, complex topological features to tease apart.
Identifying a sub-epidemic with different transmission dynam-
ics relative to the rest of the epidemic early in its development
is essential for intervention to have the greatest impact. One
way to do this is to consider estimates of epidemiological pa-
rameters in transmission clusters to provide insights into the
ancestral dynamics (Dennis et al. 2014), and identify whether
clusters truly represent sub-epidemics with different transmis-
sion patterns. Here we focus on the issues of false clusters, that
is, clusters identified using the threshold method but from phy-
logenies simulated under models that are randomly mixing and
therefore unstructured. We investigate two main modelling
frameworks, the coalescent and birth–death sampling process,
quantifying parameter estimates of the effective population
size and growth rate of an epidemic. For the coalescent models,
we also implement a model that incorporates censoring for the
first coalescence event.

2. Methods
2.1 Simulating phylogenies

Coalescent phylogenies were simulated in GENIE v3.0 (Pybus
and Rambaut 2002), with the population size in the present, N(0)
equal to 1,000 generations, and the exponential growth rate, r,
equal to 0.5. Trees with 200, 400, 600, and 800 tips were simu-
lated under each scenario, with 1,000 replicates at each sample
size. A further 500 phylogenies were simulated with 500 tips,
N(0) of 1,000 generations and r equal to 0.01, 0.05, 0.1, 0.5, 1.0,
and 5.0 to test the effect of varying the growth.

Birth–death trajectories were simulated using MASTER v
4.1.3 (Vaughan and Drummond 2013), with a birth rate of 0.2
and death rate of 0.1 per unit of time, and an initial population
size of one. We again simulated 1,000 phylogenies of 200, 400,
600, and 800 tips, with samples taken homochronously after 70
time units. Therefore, in contrast to the coalescent case, more
tips represent a higher sampling proportion rather than total
population size. We removed any simulations that failed to
reach the target sample size.

2.2 HIV-like trees

To better understand the problems of clustering on a more real-
istic HIV-like phylogeny, we consider village-level trees simu-
lated and made available as part of the Phylogenetics And
Networks for Generalized HIV Epidemics in Africa (PANGEA-
HIV) methods comparison exercise (Ratmann et al. 2017). These
simulations cover a localised population size of around 8,000 in-
dividuals, with 25–50% sequencing coverage depending on the
scenario. To create a null distribution of trees with no
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population substructure, we used the permutation method de-
scribed in Dearlove and Frost (2015) to simulate 500 new trees
from each of Village simulations 0, 6, and 7. This method retains
the tip and internal node times from the observed phylogeny,
but reconnects them at random, therefore breaking down any
epidemiological effects. This means that any clusters subse-
quently identified will be false positives.

2.3 Cluster identification

The phylogeny was first converted into a matrix of pairwise dis-
tances between tips. Samples were deemed to be in the same
cluster if the total branch length, or patristic distance (Farris
1967), between them was less than the threshold distance. The
exact threshold depended on the modelling scenario, and was
chosen to ensure that the largest cluster used in all further anal-
yses had enough tips to provide useful estimates, but did not in-
clude the full tree. Therefore, the star-like trees of the growing
populations required thresholds relatively deeper in the phylog-
eny so as to maintain largest clusters that were not just single-
tons and pairs. In the constant coalescent simulations we used
a threshold of 500 time units, with 15 in the exponential case
when r¼ 0.5. For the extra exponential phylogenies with 500
tips, thresholds were chosen so as to produce similar distribu-
tions for the maximum cluster size (Supplementary Fig. S1). In
the birth–death scenario, we used a threshold of 50 time units
and for the HIV-1 PANGEA trees, we used a threshold of
15 years.

To assess the impact of the threshold value, we also looked
at two other scenarios. To investigate the effect of conditioning

on the largest cluster size at a particular threshold distance, we
chose an internal node at random, and all tips linked by that as
their most recent common ancestor were deemed to be in the
cluster. Internal nodes were resampled if the resulting cluster
had less than four tips. This is denoted the ‘random subtree’
method in what follows. We also dropped tips at random
throughout the tree (the ‘randomly dropping tips’ method),
leaving the same size tree as the largest cluster, to assess any
bias in estimates that would be expected from simply having a
smaller phylogeny.

2.4 Model fitting and parameter estimation

All models were fitted using maximum likelihood in R (R Core
Team 2013). For the coalescent simulations, we fitted the con-
stant (N tð Þ ¼ Nð0Þ), exponential (N tð Þ ¼ N 0ð Þe�rt) and logistic
(N tð Þ ¼ Nð0Þðaþ 1� að Þe�rtÞ) demographic coalescent models,
where N(0) is the initial population size, r is the exponential
growth rate and a is the population size at t ¼ 1 as a proportion
of N 0ð Þ. Optimization was performed via the BOBYQA algorithm
(25) as implemented in the minqa package in R (Bates et al. 2014)
using the genieR package available on GitHub (available at:
https://github.com/xiangfstats/GenieR). The model with the
best fit was decided by taking the model with minimum Akaike
Information criterion (AIC) (Akaike 1974).

For the birth–death model, we followed the fitting proce-
dures given in Section 3 of Volz and Frost (2014). The likelihood
was maximised using the Nelder–Mead method (Nelder and
Mead, 1964) implemented in the bbmle package in R (Bolker
2016). We assume the death rate is known and fixed at 0.1, and

(a) (b)

(c)

Figure 1. Identifying clusters using a threshold. Clusters from a simulated HIV phylogenetic tree [Village 0 from Ratmann et al. (2017)] permuted to remove any sub-

structure (a) with a threshold cut-off of 15 years (Dearlove and Frost 2015) can also be represented by an undirected network (b) or size (component) distribution (c).
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estimate the birth rates and sampling proportion. This makes
sense epidemiologically, since these are often parameters of in-
terest during outbreak situations, and independent clinical in-
formation can be used for the death rate.

The percentage change in parameter estimate is calculated
as:

hsmall � hfull

hfull
� 100

where hfull is the estimate in the full phylogeny, and hsmall is the
estimate from the down sampled tree (i.e. identified cluster,
randomly sampled subtree or from randomly dropping tips).
When this value is negative, the smaller tree underestimates
the true parameter, and when it is positive, the smaller tree
overestimates the full tree parameter.

2.5 Censored likelihood

To investigate the effect of left censoring of the first coalescent
event, we implemented a censored likelihood. Only the first coa-
lescent event needs to be adjusted for censoring, since the expo-
nential waiting time in the coalescent model is calculated between
consecutive internal nodes in the tree. Therefore, for the second
and deeper coalescence events, we can calculate the exact waiting
times from the tree. However, for the first coalescence event, the
observed time is cut off by the sampling of the lineages below it.
Under the standard coalescent (Kingman 1982a,b), the probability
density function for the time to the next coalescence is:

p tð Þ ¼
k

2

 !
k tð Þexp �

k

2

 !
K tð Þ

 !

where k is the number of lineages, K tð Þ ¼
Ð t
0 k uð Þdu, and k tð Þ is

the rate of coalescence relative to that in the present (Griffiths
and Tavaré 1994). Therefore, the probability that the first coales-
cence event has a time, C1, greater than the observed t1, the
time of sampling, is given by:

P C1 > t1ð Þ ¼ 1� P C1 � t1ð Þ ¼ exp �
k

2

 !
K t1ð Þ

 !
:

The total likelihood is given by the product of all the proba-
bilities of the coalescence events and sampling events, that is:

Y
i
pðtiÞ

where

p tið Þ ¼

exp �
k

2

0
B@

1
CAK tið Þ

0
B@

1
CA if i is the first coalescence

or a sampling event

k

2

0
B@

1
CAk tið Þexp �

k

2

0
B@

1
CAK tið Þ

0
B@

1
CA if i is the second or

later coalescence

8>>>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>>>:

Thus, the censored likelihood is different from the standard

coalescent likelihood by a factor of
k

2

 !
k t1ð Þ.

4. Results
4.1 Constant coalescent model

We considered coalescent phylogenies simulated under two
demographic scenarios: constant and exponential growth.

In the constant coalescent, the estimated effective popula-
tion size of the full population was underestimated when con-
sidering the false-positive clusters (Fig. 2). The effect was
similar whether the false-positive cluster was found using a
threshold, shown in Fig. 2a, or using a random subtree (Fig. 2b).
The bias was strongest when considering clusters containing
the smallest proportion of the full tree, reducing as the cluster
size approached that of the full tree. This makes sense, since in
a coalescent model, the effective population size is proportional
to the branch lengths in the tree. By analysing the cluster with-
out the remaining ancestral context, the depth of the tree has
been lost. When trees are down-sampled to the same number
of tips at random, then the full depth of the tree is less likely to
be lost and the estimate of the full tree more likely to be recov-
ered (Fig. 2c). What is perhaps more surprising is the linear na-
ture of the relationship between proportion of tips in the cluster
or subtree, and the reduction in estimate of the full effective
population size (Table 1). For every 10% (i.e. a proportion of 0.1)
more tips present in the cluster relative to the full tree, the ac-
curacy of the effective population size increases by around 9%
in the constant case, and this is consistent regardless the num-
ber of tips in the tree.

Although of theoretical interest, the effective population size
of a cluster relative to the full tree is less useful in practice. The
effective population size is hard to interpret in absolute terms
with respect to the number of infected individuals, as it is con-
founded by the transmission rate (Frost and Volz 2010, 2013);
however, exponential growth rates as well as overall demo-
graphic patterns are well captured when sampling is random.
Therefore, we also performed model fitting to the false clusters,
to see if they most resembled a constant, exponential or logistic
population.

Surprisingly, 67.8% of true constant trees were wrongly fitted
as having logistic growth when dropping tips at random, which
should have little or no effect on the demographic model (Table
2). When we instead did model fitting using the censored likeli-
hood, this figure was reduced to 20.4% (constant: 63.2%; expo-
nential: 16.4%). Using clusters biased the model selection
further: when comparing between the constant and exponen-
tial, the constant model was favoured only 12.0% of the time for
clusters compared to 84.6% for trees with randomly dropped
tips (censored likelihood: 10.0% versus 83.2%). Adding the logis-
tic model caused the constant model to be favoured for only 1%
of the clusters, versus 23.9% of trees with randomly dropped
tips (censored likelihood: 4.6% versus 63.2%).

This is particularly problematic when it comes to phylody-
namic inference for identifying intervention strategies. Using a
metapopulation coalescent (Dearlove and Wilson 2013), it can
be shown that exponential growth of the viral population is
equivalent to a susceptible-infectious (SI) epidemiological
model in the host, and the logistic curve is equivalent to the
susceptible-infectious-susceptible model (SIS).

4.2 Exponential coalescent model

The results for the effective population size of the exponential
model were broadly similar to that of the constant model
(Supplementary Fig. S2), though with much more noise. The
long branch lengths in the present relative to the past, typical of
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exponential tree shape, meant that the effective population size
tended to be overestimated when using particularly small ran-
dom subtrees, and also when tips were randomly dropped. The
constant demographic model was rejected for all cases (Fig. 3),
with the exponential model rejected for 47.9% of the clusters

but only 9.3% of the trees with randomly dropped tips (censored
likelihood: clusters 41.3% versus dropped tips 5.0%).

For growing populations, using false clusters might seem
less problematic than in the simplest constant case if there was
other evidence, such as epidemiological data, also suggesting a

Likelihood
Standard

Censored

Figure 2. The effect on estimates of the population size in a constant coalescent when considering (a) clusters, (b) random subtrees, and (c) tips dropped at random.

Colours represent the number of tips in the tree: yellow¼200, green¼ 400, pink¼600, and purple¼800. The bar plots show the proportion of phylogenies favouring the

constant versus exponential (middle column) or constant versus exponential and logistic models (rightmost column) for the standard (light grey) and censored (dark

grey) likelihoods.

Table 1. Regression estimates and 95% confidence intervals for the constant coalescent simulations in the form of y¼ b0þ b1x, where y is the
percentage change in estimated Ne, and x is the proportion of tips in the cluster.

Clustering approach Intercept, b0 Slope, b1 Adjusted R-squared

Threshold cluster �100.14 (�100.55, �99.73) 92.00 (90.84, 93.15) 0.8591
Random subtree �100.43 (�100.47, �100.39) 97.80 (97.37, 98.23) 0.9805
Random tips 4.52 (3.70, 5.34) �11.16 (�13.47, �8.86) 0.02181

Table 2. Model fitting results.

Percentage best fitted by the AIC using:

Standard coalescent Censored coalescent

Model Constant Exponential Logistic Constant Exponential Logistic

Constant
Threshold cluster 0.650 45.525 53.825 4.475 66.600 28.825
Random subtree 10.100 28.325 61.575 8.600 51.575 39.825
Random tips 23.900 8.350 67.750 63.175 16.400 20.425
Full tree 24.950 8.130 66.920 69.375 15.300 15.325
Exponential
Threshold cluster 0.000 52.150 47.850 0.000 58.750 41.250
Random subtree 10.950 51.800 37.250 0.000 61.650 38.350
Random tips 0.000 90.700 9.300 0.000 95.050 4.950
Full tree 0.000 90.725 9.275 0.000 92.350 7.650

B. L. Dearlove et al. | 5



growing population. However, Fig. 3 shows that the estimates of
the growth parameter, r, tend to be biased upwards in clusters
relative to the true value in the tree. This overestimation is be-
yond that which occurs when tips are dropped at random (Fig.
3c). The bias calculated from these randomly dropped tip trees
represents the expected bias simply due to having a smaller
tree, and has a median value of 1.19%, with 2.5 and 97.5 percen-
tiles of �13.74 and 22.03%, respectively. For comparison

purposes, these extremes are represented by the light blue pan-
els in Fig. 3a,b.

When taking clusters in these trees (Fig. 3a), the median
growth parameter bias is 33.27%, with 94.52% clusters having
more extreme bias than the same size tree obtained by dropping
tips at random. More generally, points are estimated to fall
above light blue box 73.58% percent of the time. A slightly lower
figure is obtained for the random subtrees (63.1%), where the

Likelihood
Standard

Censored

Figure 3. The effect on estimates of the growth parameter, r, in an exponential coalescent when considering (a) clusters, (b) random subtrees, and (c) tips dropped at

random. Colours represent the number of tips in the tree: yellow¼200, green¼400, pink¼600, and purple¼800. The blue region shows the 2.5 and 97.5% points of the

bias in the randomly dropped tips trees for comparison. The bar plots show the proportion of phylogenies favouring the constant versus exponential (middle column)

or constant versus exponential and logistic models (rightmost column) for the standard (light grey) and censored (dark grey) likelihoods.

Figure 4. Comparison of fold change in estimated r for downsampled trees relative to the full tree estimate for clusters (grey) and dropping tips (blue). Thresholds were

chosen to obtain similar maximum cluster sizes across the different values of r (shown in Supplementary Fig. S1).
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smaller subtrees give much more varied estimates overall. The
pattern of overestimation is much more pronounced for smaller
exponential growth rates, with 99.6% of clusters falling outside
of the 2.5–97.5% interval from randomly dropping tips when
r¼ 0.01, but less so for larger ones, for example only 66.0% of
clusters fall outside the equivalent interval for r¼ 5 (Fig. 4).

4.3 HIV-like phylogenies

We considered three datasets from the PANGEA methods com-
parison exercise, Villages 0 (low percentage acute, no interven-
tion), 6 (high fraction acute, fast intervention scale up), and 7
(high fraction acute, slow intervention scale up). We took 500
permutations of each, fitting an exponential coalescent as the
full model. All the villages showed similar levels of bias (Fig. 5).
As would be expected from the exponential simulations, the es-
timated growth rates in the subtrees were biased upwards. For
subtrees with randomly dropped tips, the median bias is
68.00%, with 2.5 and 97.5 percentiles of �3.86 and 161.07%, re-
spectively. For clusters, the median bias is 217% (�20.34%,
545.70%), with 87.67% clusters having more extreme bias than
their equivalent dropped tips tree.

The results for the effective population size were much
more variable (Fig. 6). Whilst the bias for the clusters in general
followed the trend seen in the constant and exponential coales-
cent models, with biases closer to �100% the fewer the tips re-
maining in the tree, the bias for the randomly dropped tip trees
were regularly overestimated. For these trees, the median bias
was 700%, whereas it would be expected to centre around zero.
This most likely reflects the small size of the trees with variable
heights depending on the sampling dates, and also some model
mis-specification. Similar results were obtained assuming the
logistic model as the true full model.

4.4 Birth–death models

The birth–death results look very similar to those of the expo-
nential coalescent. Like r, the exponential growth parameter,
the birth rate, b, was overestimated in the clusters
(Supplementary Fig. S3). When randomly dropping tips, the me-
dian overestimate is 1.84%, with the 2.5 and 97.5 percentiles
�13.38% and 42.92% respectively (again, represented by the light
blue panels in Supplementary Fig. S3). The median overestimate
rises to 22% (�23.33, 457.90) for the randomly chosen clades,
and 31.5% (0.69, 94.22) using threshold clustering. Making a di-
rect comparison between the dropped tips and cluster results,
since they have the same down sampled size, the cluster result
bias is more extreme (whether over or underestimating) than of
the dropped tip tree in 90.8% of the phylogenies.

The population size, calculated using the size of the tree and
the estimated sampling proportion, is also underestimated
(Supplementary Fig. S4). The line on the graphs shows where
y¼ x, and when dropping tips at random, the full tree estimate
is recovered. Clusters and random subtrees underestimate the
majority of the time, with results generally noisier in the latter:
the cluster overestimates the population for 1.4% of phyloge-
nies, versus 5% for random clades and 57.95% when dropping
tips at random. Similar results were obtained when using the
tree likelihood conditioned on the number of tips in the phylog-
eny [as given by Equation 3 in Stadler (2013)].

5. Discussion

Early identification of new epidemics is essential for interven-
tions to be most effective. This is even more important in a
highly clustered epidemic, where, unless interventions are tar-
geted appropriately, the infection will continue to spread re-
gardless of its underlying transmissibility (Leigh Brown et al.

Likelihood
Standard

Censored

Figure 5. The effect on estimates of the growth parameter, r, in the HIV-like phylogenies when considering (a) clusters, (b) random subtrees, and (c) tips dropped at ran-

dom. Colours represent the PANGEA Village Simulation number: yellow¼0, green¼ 6, and pink¼7. The blue region shows the 2.5 and 97.5% points of the bias in the

randomly dropped tips trees for comparison. The bar plots show the proportion of phylogenies favouring the constant versus exponential (middle column) or constant

versus exponential and logistic models (rightmost column) for the standard (light grey) and censored (dark grey) likelihoods.
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2011). In this paper, we show that whilst clusters can be useful
for finding affinities between closely related samples, there are
some caveats when using them to understand demographics in
subpopulations. Most importantly, false clusters can masquer-
ade as growing epidemics.

Clusters have previously been used in the literature to down-
sample large datasets and look at the fit of demographic models
(Hué et al. 2005; Mir et al. 2016; Pati~no-Galindo et al. 2016). For
example, Hué et al. (2005) identified six clusters of UK origin,
and found all of them to be best fitted by a logistic growth model
with an doubling time of approximately a year during the initial
exponential growth stage. Although their clusters were identi-
fied using location, rather than genetic or temporal signal, the
results of our random subtree analysis (where we could have la-
belled tips at random with location and picked the biggest clus-
ter with>90% identical geography) show that it is feasible that
these clusters are not growing at all, and are simply an artefact
of using a threshold to downsample a large database taken
from a randomly mixing population.

Identifying clusters is not the only problem when inferring
population dynamics, however. Previously noted biases were reit-
erated when looking at our trees downsampled by randomly
dropping tips: the over-estimation of the exponential growth rate
parameter and the false fitting of the logistic model over the con-
stant (Kuhner et al. 1998; Pybus et al. 2000; Wiuf 2003; de Silva
et al. 2012). de Silva et al. (2012) showed that there exist biases in
non-parametric estimates of the population size, with false slow-
ing of the exponential growth parameter near to the present. In
their paper, they suggested that this is due to left censoring back-
wards in time and the relative time between the first coalescence
and sampling events. Here, the majority of true constant

downsampled trees were wrongly fitted as having logistic growth
when using standard parametric models. We implemented a cen-
sored likelihood for the first coalescent event which went some
way to improving the model selection, suggesting that demo-
graphic biases from censoring are not limited to non-parametric
methods (c.f. the conclusions of de Silva et al.). The censoring ap-
peared to have less effect on the model selection in clusters,
probably due to the overall reduced tree height.

Clustering itself has a number of disadvantages, particularly
pertaining to the arbitrary choice of threshold. Most clustering
methods are defined by non-parametric methods, that is, not by
a model, and neglect the rest of the information deeper in the
phylogeny’s ancestry, with small thresholds biasing cluster
membership to recent infection events. Non-epidemiological
factors such as sampling are also an issue (Frost and Pillay
2015); oversampling in an area or time period can skew results,
and unsampled individuals mean that a point source transmis-
sion to a single cluster cannot be excluded.

When clusters truly represent different subpopulations, it
makes sense computationally to analyse them outside the back-
ground of the rest of the database. One obvious problem is that
large databases will not have one single background demo-
graphic model as considered here. Instead, there may be one or
more clusters of varying age, demography and viral viability.
Effect on demography estimates aside, the phylogenetic cluster-
ing is ill-equipped for dealing with these. A recent simulation
study by Poon (2016) showed that many clustering methods
cannot detect heterogeneity in transmission rates between sub-
populations. Instead, they focus on individuals with a short
waiting period between transmission and diagnosis. This has
further ramifications on targeting interventions, as clusters

Figure 6. The effect on estimates of the present population size, N0, in the HIV-like phylogenies when considering (a) clusters, (b) random subtrees and (c) tips dropped

at random. Colours represent the PANGEA Village Simulation number: yellow¼ 0, green¼ 6, and pink¼7.
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may well be identifying subpopulations that are already seeking
medical attention.

Methods for identifying up-and-coming epidemics from
within a large database need to be able to look for growth above
and beyond the biases we have shown exist. Clustering
approaches have the advantage that they are reasonably fast
even on relatively large datasets (Ragonnet-Cronin et al. 2013), es-
pecially compared to alternative approaches such as the struc-
tured coalescent. To truly identify clusters, it seems likely that an
explicit structured coalescent or similar is required, where clus-
ters can be determined parametrically. There have been a num-
ber of recent developments which have made the structured
coalescent more amenable for this sort of analysis, however fit-
ting many demographic models to an unknown number of strati-
fications in the sample remains difficult (Volz et al. 2012;
Rasmussen et al. 2014; De Maio et al. 2015). One way to under-
stand the population background in the tree for comparison to an
identified cluster would be to use information in the clades out-
side of the cluster to form a null distribution. The clustering
method of Prosperi et al. (2011) uses genetic distance between
tips for a similar purpose. For phylodynamic inference, a permu-
tation approach such as that in Dearlove and Frost (2015) could
be used to assess whether observed clustering is due hidden het-
erogeneity. In addition to asymmetry metrics for measuring het-
erogeneity across the phylogeny, the clade size distribution, local
branching index (Neher et al. 2014), and exponential growth or
birth rate calculated from different time points (e.g. for the sub-
tree below each internal node) could add additional information.
However, statistical power is likely to become an issue, as the
overall phylogeny could contain many conflicting local transmis-
sion dynamics which might be affecting its topology.

Until a suitable null distribution or parametric method for iden-
tifying clusters is developed, their interpretation will remain prob-
lematic for phylodynamics. In particular, we should be cautious
when targeting intervention strategies on the basis of clustering,
to ensure resources are put where they will have most impact, and
not to populations already active in seeking medical help.

Supplementary data

Supplementary data are available at Virus Evolution online.
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