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Low-power fluorescence microscopy of 5-ALA-induced PpIX has emerged as a

valuable intraoperative imaging technology for improving the resection of malignant

gliomas. However, current fluorescence imaging tools are not highly sensitive nor

quantitative, which limits their effectiveness for optimizing operative decisions near

the surgical margins of gliomas, in particular non-enhancing low-grade gliomas.

Intraoperative high-resolution optical-sectioning microscopy can potentially serve as a

valuable complement to low-power fluorescence microscopy by providing reproducible

quantification of tumor parameters at the infiltrative margins of diffuse gliomas. In this

forward-looking perspective article, we provide a brief discussion of recent technical

advancements, pilot clinical studies, and our vision of the future adoption of handheld

optical-sectioning microscopy at the final stages of glioma surgeries to enhance the

extent of resection. We list a number of challenges for clinical acceptance, as well as

potential strategies to overcome such obstacles for the surgical implementation of these

in vivo microscopy techniques.
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INTRODUCTION

Gliomas are the most common primary malignant brain tumors, with∼20,000 new cases each year
in the United States (1). As the standard-of-care for all grades of gliomas, patients generally receive
surgery as a first-line treatment. The goal of this “debulking” surgery is to maximize the extent
of resection (EOR) while avoiding neurological damage. Mounting evidence suggests that more-
extensive EOR is associated with increased overall survival and progression-free survival for both
low- and high-grade gliomas patients (2–11). Unfortunately, optimal EOR is not achieved in many
patients due to the lack of effective technologies to delineate tumor margins intraoperatively, with
reported rates of gross-total resection (GTR) for high-grade gliomas (HGGs) ranging from 33 to
76% (12–19) and for low-grade gliomas (LGGs) ranging from 14 to 46% (7–9, 20, 21).

In recent years, numerous reports have detailed the benefits of using 5-aminolevulinic acid
(5-ALA) for guiding HGG resections (22–38). In brief, 5-ALA is a non-fluorescent prodrug that
is orally administered to patients several hours prior to surgery. 5-ALA is then intra-cellularly
metabolized to form a fluorescent byproduct, protoporphyrin IX (PpIX), a heme-synthesis pathway

https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://www.frontiersin.org/journals/oncology#editorial-board
https://doi.org/10.3389/fonc.2019.00592
http://crossmark.crossref.org/dialog/?doi=10.3389/fonc.2019.00592&domain=pdf&date_stamp=2019-07-03
https://www.frontiersin.org/journals/oncology
https://www.frontiersin.org
https://www.frontiersin.org/journals/oncology#articles
https://creativecommons.org/licenses/by/4.0/
mailto:jonliu@uw.edu
https://doi.org/10.3389/fonc.2019.00592
https://www.frontiersin.org/articles/10.3389/fonc.2019.00592/full
http://loop.frontiersin.org/people/708713/overview
http://loop.frontiersin.org/people/742535/overview
http://loop.frontiersin.org/people/217433/overview


Wei et al. Quantitative PpIX With High-Resolution Microscopy

substrate that accumulates preferentially in glioma cells due to
metabolic dysregulation (39–43). In most cases, after 5-ALA
administration, the bulk of a HGG tumor emits visible red
fluorescence (∼630 nm) when excited with blue (∼405 nm)
illumination, as viewed by the unassisted eye or with a wide-field
fluorescence surgical microscope. A landmark phase III trial in
Europe by Stummer et al. demonstrated that the use of this
technique resulted in higher rates of GTR (65 vs. 36%) and
6-month progression-free survival (41 vs. 21.1%) compared to
control patients (37). Intraoperative 5-ALA-induced fluorescence
has since emerged as a valuable adjunct for HGG surgeries (22,
35–38), and has recently been approved by the US Food andDrug
Administration (FDA) for neurosurgical guidance in 2017 (44).

In spite of its clear benefits, 5-ALA-based fluorescence-guided
surgery (FGS) suffers from a number of shortcomings. First, it
remains ineffective for guiding the resections of most LGGs and
at the infiltrative margins of all diffuse gliomas (low- and high-
grade) due to the fact that PpIX accumulation in these tissues
is typically below the detection limit of conventional low-power
wide-field surgical microscopes. Second, the visible fluorescence
generated by PpIX is interpreted subjectively (45) and is difficult
to quantify. This is because the visualized fluorescence is greatly
affected by light-tissue interactions such as absorption and
scattering, as well as detection parameters such as the angle and
working distance of the microscope (46, 47). In light of these
concerns, spectroscopy-based methods have been developed to
provide a more accurate and reproducible measurement of the
absolute concentration of PpIX expression in tissue, in which
mathematical models are used to correct for the aforementioned
confounding effects (22, 48–51). These quantitative detection
methods should enable more-objective decision-making during
tumor resection since the degree of PpIX accumulation has
been shown to correlate with proliferative index, mitochondrial
content, and other clinicopathologic metrics (22, 23, 40, 52, 53).
However, while probe-based spectroscopy can provide improved
sensitivity to detect weak PpIX fluorescence (i.e., in LGGs or at
the tumor margins of all gliomas) in comparison to conventional
wide-field surgical microscopy (54), spectroscopic approaches
are typically limited to sampling localized points of tissue at
low spatial resolution rather than generating an image over an
extended field of view (FOV).

As a high-resolution, high-contrast imaging technique,
handheld confocal microscopy has been explored as an
alternative solution to guide the resection of both LGGs and
HGGs. In 2011, a pilot study by Sanai et al. first demonstrated
the feasibility of using a handheld in vivo confocal microscope
to detect PpIX expression in LGGs (55), in which conventional
wide-field surgical microscopy lacked the sensitivity to detect
the PpIX fluorescence. Although the raw intensity of PpIX
fluorescence, as previously mentioned, is subjective and cannot
be reliably quantified, the spatial distribution (e.g., size, density,
localization, etc.) of the signal can potentially serve as a
reproducible tumor biomarker (56). Most recently, high-
speed handheld confocal microscopy with video-mosaicking
capabilities have also been developed and are continuing to be
refined for 5-ALA-based FGS (57). In this perspective article,
we outline a vision for a clinical workflow in which quantitative

high-resolution microscopy is implemented to achieve optimal
EOR for the ultimate benefit of patients suffering from LGGs
and HGGs. We also describe key challenges to overcome and
potential strategies to facilitate the clinical acceptance of these
new technologies.

QUANTITATIVE PPIX VISUALIZATION WITH
OPTICAL-SECTIONING MICROSCOPY

Optical-sectioning microscopy enables cross-sectional
imaging of intact tissue at shallow depths (<0.5mm deep)
by removing the background “haze” due to out-of-focus
and multiply-scattered photons. A technical description of
various optical-sectioning approaches has been provided in
previous review articles (58–61). In general, optical-sectioning
microscopy provides the superior image contrast and spatial
resolution that is necessary to detect the weak and sparse
PpIX fluorescence generated by LGGs and at the infiltrative
margins of all diffuse gliomas (55). An increasing number
of studies have showcased the feasibility to examine PpIX
expression in human gliomas at the microscopic level using
optical-sectioning techniques (55, 56, 62, 63). Microscopic
PpIX expression in gliomas is manifested as localized
subcellular foci of fluorescence, a pattern that is consistent
with our current biological understanding of subcellular
PpIX generation by mitochondria (43). Quantification of
microscopic PpIX expression based on a tabletop line-scanned
dual-axis-confocal (LS-DAC) microscopy—a high-speed,
high-contrast optical-sectioning technique—has been shown to
agree with conventional fluorescence histology (56), suggesting
that a miniature LS-DAC device could serve as a real-time
non-invasive alternative to slide-based histopathology. As
detailed in a recent review (47) and summarized in Figure 1, the
main trade-off for high-resolution microscopy is a limited FOV
that can lead to sampling bias in glioma tissues that are often
spatially heterogeneous. To mitigate this problem, handheld
confocal microscopy with video-mosaicking (i.e., stitching
overlapping video frames to create an extended FOV over time
using image processing algorithms) have been developed to
sample a tissue region comparable in size to a physical biopsy
specimen (several millimeters in scale) while maintaining high
resolution and contrast (57, 64–68).

PROPOSED CLINICAL WORKFLOW

In the current clinical workflow for 5-ALA-based FGS, glioma

margins are defined by pre-operative or intraoperative magnetic

resonance imaging (MRI), as well as wide-field (low-power)
surgical microscopy. However, since all gliomas are diffuse and

ill-defined, the contrast-enhancing regions revealed by these
wide-field imaging methods (e.g., Gd-enhancement for HGGs,
T2-hyperintensity for LGGs, and macroscopic PpIX fluorescence
for most HGGs) are not indicative of the actual extent of tumor
infiltration. While frozen-section histopathology can confirm
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FIGURE 1 | Comparison of routine and emerging imaging techniques for neurosurgical guidance. (A) In the current standard-of-care, pre-operative MRI is used to

assess the location and size of the bulk tumor, and wide-field surgical microscopy is used intraoperatively to guide debulking. Neither method provides sufficient

spatial resolution or sensitivity to effectively visualize diffuse tumors at the surgical margins. Handheld optical-sectioning microscopy is an intraoperative imaging

technique that provides superior resolution and sensitivity to detect infiltrating tumor cells at the margins, and can be potentially used to quantify tumor parameters at

localized regions at the final stages of resection. (B) The colored boxes indicate the relative field-of-view (FOV) of the imaging modalities described. Larger FOVs are

advantageous to mitigate sampling errors when imaging heterogeneous tissues, but typically require trade-offs in terms of resolution and sensitivity. Green: MRI. Blue:

wide-field microscopy. Orange: optical-sectioning microscopy with mosaicking.

tissue status during the course of glioma resection, this strategy

is invasive (requiring a physical biopsy) and time consuming.

Our hypothesis, to be investigated in future prospective studies, is

that when operating on gliomas adjacent to eloquent cortical and

subcortical pathways, quantitative high-resolution microscopy
can be used at the final stages of resection to interrogate tumor
burden and other quantitative biomarkers at multiple suspicious
sites in order to optimize the EOR (including beyond the
radiographicmargins) without jeopardizing functional pathways.
As shown in Figure 2, a specific workflow for future clinical use is
provided below:

(1) At the initial stages of the surgery, standard neurosurgical

methods will be used for debulking the central portions
of the tumor. As the neurosurgeon approaches the
radiographic or functional boundaries of the tumor (indicated
by anatomical/visual cues, MRI-based neuronavigation,
intraoperative stimulation mapping, and 5-ALA-based FGS
using wide-field surgical microscopy), regions adjacent to non-
eloquent brain can be resected more aggressively to minimize
residual tumor burden.

(2) At the final stages of surgery, ambiguous regions at critical

locations (e.g., near eloquent brain) will be probed with high-
resolution video-mosaicked microscopy of the exposed tissue

surfaces, enabling a quantitative measure of microscopic PpIX
expression that should ideally correlate with clinicopathologic
metrics such as tumor burden and proliferative/mitotic index in

order to guide operative decision-making. This provides a non-
invasive and real-time alternative to intraoperative consultation
with frozen-section histology. It should be noted that similar
sterile probe-based microscopy/spectroscopy strategies have
been implemented during neurosurgeries, as described in
several reports (69–73).

(3) Conventional surgical tools (e.g., ultrasonic aspirator,
suction catheters, etc.) will be used in an iterative process
with intraoperative microscopy until optimal resection has been

achieved. Ideally, neuronavigation would be used to track the

spatial coordinates of all surgical devices (microscope, suction
catheters, etc.) to ensure good co-registration between iterative
rounds of imaging and resection.

CHALLENGES AND FUTURE STEPS

A number of translational milestones should ideally be achieved
in order to bolster confidence in a high-resolution intraoperative
imaging technique for adoption by surgeons. First, and perhaps
the most critical step, is to establish a biological context and
understanding of the pattern of sub-cellular PpIX expression
that is visualized with an optical-sectioning microscope. Note
that numerous studies have already shown that PpIX expression
provides specific delineation of a variety of neoplasms under
wide-field (low-resolution) imaging and spectroscopy (52, 74,
75), including a general correlation between PpIX concentrations
and proliferative score as well as World Health Organization
(WHO) histologic score (52). Preliminary studies [e.g., using
high-resolution in vivo microscopy (55), or using fluorescent-
activated cell sorting of dissociated human cells [unpublished
data]] have also shown that PpIX expression at the cellular level
is highly tumor-specific. However, larger-scale correlation studies
are needed to improve our ability to interpret high-resolution
images of PpIX in gliomas. For example, studies should ideally
demonstrate a clear correlation between subcellular patterns of
PpIX fluorescence and well-established clinicopathologic metrics
such as tumor burden and proliferative/mitotic index (e.g., Ki-67
and pHH3 expression). Facilitated by the recent advancements
in both imaging hardware [e.g., open-top light-sheet microscopy
(63)] and artificial intelligence (e.g., deep-learning algorithms
for classification and regression tasks), it should be possible to
perform large correlative studies within a reasonable timeline.
A second milestone, as mentioned previously, is to mitigate
sampling bias due to tissue heterogeneity and to more-closely
match the spatial precision of current surgical tools (typically
several millimeters in scale). While it is technically challenging
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FIGURE 2 | Proposed clinical workflow of 5-ALA-based fluorescence-guided neurosurgery. (A) Conventional low-power fluorescence surgical microscopy provides a

wide FOV that often covers the entire surgical cavity. (B) Macroscopic PpIX fluorescence is visible at the central portions of most HGGs, but not at the infiltrative

margins. (C) Example low-power fluorescence microscopy image of PpIX expression from a bulk HGG region. The margins of the tumor are subjectively delineated

and ambiguous. (D) Debulking guided by macroscopic PpIX fluorescence, resulting in residual tumor burden. (E) High-sensitivity probe-based optical-sectioning

microscopy is used to examine localized regions near the surgical margins, providing a non-invasive alternative to intraoperative frozen section histopathology.

(F) Visualization of subcellular PpIX fluorescence can potentially enable quantification of tumor parameters in order to guide surgical decisions at the final stages of

resection. (G) Example image of microscopic PpIX fluorescence in a HGG biopsy using high-resolution optical-sectioning microscopy. (H) Optimal extent of resection

is achieved after iterative tumor resection guided by video-mosaicked handheld optical-sectioning microscopy.

to engineer high-resolution microscopes with such large FOVs,
robust computer vision algorithms have been developed and
continue to be refined to stitch overlapping image frames
together to create an extended FOV in real time while an imaging
device is translated along the tissue surface (57, 64–68).

It bears repeating that the goal of optical-sectioning
microscopy is NOT to image deeply, but rather to perform
quantitative imaging near the exposed tissue surface, which
requires the high contrast of an optical-sectioning device.
However, in practice, the ability to image over a shallow range
of depths (<150 microns) may be of practical value to identify
an optimal depth where image quality and tissue integrity are
maximized. Complementary imaging modalities for detecting

PpIX fluorescence from deep subsurface tumors (76–78) are
beyond the scope of this perspective paper. In terms of resolution,
since current resection tools lack the spatial precision of a
high-resolutionmicroscope, the value of high-resolution imaging
is not to enable cellular-scale resection, but to enable accurate
quantification of PpIX, which in turn should correlate with
relevant metrics of tumor burden/proliferation to guide surgical
decisions. As with all innovative technologies, clinical validation
is needed through well-powered and controlled studies. For
example, “malignancy scores” based on quantitative PpIX
microscopy should agree with traditional assessment methods
such as histopathology and post-operative MRI, and should also
be predictive of patient outcomes (e.g., recurrence). Note that
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for most glioma patients, adjuvant radiotherapy is a logical next-
step following tumor resection. The development of technology
that enables microscopic quantification of tumor burden and
proliferation, and therefore identification of resection cavity
regions with high-risk of tumor recurrence, could also inform
postoperative radiotherapy planning and improve the efficacy of
radiation-based strategies to control tumor progression.

In summary, the recent FDA approval of 5-ALA-based FGS

and the advancement of fluorescence imaging technologies have
provided a unique opportunity to improve glioma surgeries.
We believe that handheld video-mosaicked optical-sectioning
microscopy has an important role to play in improving the
EOR for glioma surgeries through quantitative and reproducible
delineation of the infiltrative margins of diffuse gliomas, for
which current techniques fail to provide adequate guidance at the
final most-critical stages of resection procedures. The successful
translation of this technology will require collaborative efforts
amongst multidisciplinary teams that include optical engineers,
neurosurgeons, pathologists/biologists, computer scientists,
industry partners, and regulatory/reimbursement stakeholders.

Together with wide-field imaging techniques such as MRI and
low-power surgical microscopy, we have provided a perspective
that the use of intraoperative high-resolution microscopy
within the surgical armamentarium should yield significant
improvements in glioma patient outcomes.
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