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Immune thrombocytopenia (ITP) is an autoimmune disease defined by low platelet counts 
which presents with an increased bleeding risk. Several genetic risk factors (e.g., poly-
morphisms in immunity-related genes) predispose to ITP. Autoantibodies and cytotoxic 
CD8+ T cells (Tc) mediate the anti-platelet response leading to thrombocytopenia. Both 
effector arms enhance platelet clearance through phagocytosis by splenic macrophages 
or dendritic cells and by induction of apoptosis. Meanwhile, platelet production is inhib-
ited by CD8+ Tc targeting megakaryocytes in the bone marrow. CD4+ T helper cells are 
important for B cell differentiation into autoantibody secreting plasma cells. Regulatory 
Tc are essential to secure immune tolerance, and reduced levels have been implicated 
in the development of ITP. Both Fcγ-receptor-dependent and -independent pathways 
are involved in the etiology of ITP. In this review, we present a simplified model for the 
pathogenesis of ITP, in which exposure of platelet surface antigens and a loss of toler-
ance are required for development of chronic anti-platelet responses. We also suggest 
that infections may comprise an important trigger for the development of auto-immunity 
against platelets in ITP. Post-translational modification of autoantigens has been firmly 
implicated in the development of autoimmune disorders like rheumatoid arthritis and type 
1 diabetes. Based on these findings, we propose that post-translational modifications of 
platelet antigens may also contribute to the pathogenesis of ITP.

Keywords: immune thrombocytopenia, immune thrombocytopenic purpura, autoantibodies, CD8+ T  cells, 
autoimmunity, iTP

iNTRODUCTiON

Immune thrombocytopenia (ITP) is an autoimmune disease characterized by low platelet counts 
and increased bleeding risk (1–4). The initial event(s) leading to anti-platelet autoimmunity remains 
unclear, but strong evidence exists that autoantibodies and autoreactive CD8+ cytotoxic T cells (Tc) 
trigger enhanced platelet destruction and impair platelet production by megakaryocytes (MKs) in the 
bone marrow. We will briefly discuss the clinical aspects of this heterogeneous disease, followed by 
an overview of the mechanisms and pathways by which autoreactive B and Tc engage in anti-platelet 
immunity, with a particular focus on their specificity for platelet autoantigens. We will postulate a 
general model for ITP pathophysiology and finally highlight opportunities in ITP research, which 
can be derived from studies on other autoimmune diseases.

epidemiology and Clinical Features
Immune thrombocytopenia is a diagnosis of exclusion: patients who develop thrombocytopenia 
(defined as platelet counts below 100,000 platelets per microliter) with no clear underlying cause 
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are currently diagnosed with (isolated) primary ITP (1, 4). 
Secondary ITP is defined as an ITP induced by other diseases or 
treatments. These include autoimmune disorders, lymphoprolif-
erative disorders, infectious agents, transfusion, or induction by 
drugs, accounting in total for 20% of ITP cases (5, 6). In total, the 
incidence of ITP is approximately 1.9–6.4 per 100,000 children/
year and 3.3–3.9 per 100,000 adults/year (6–8), and this number is 
increasing (6, 9). ITP can be classified in a transient form termed 
newly diagnosed ITP (up until 3 months), or persistent ITP (up 
until 12 months) that is more prevalent in children, or a chronic 
form (longer than 12 months) that does not resolve on itself and 
is more prevalent in adult patients (1, 6, 7). The acronym “ITP” 
should not be confused with the outdated definition of “idiopathic 
thrombocytopenic purpura” that has been used previously (1, 4). 
ITP is no longer considered an idiopathic disease and a proportion 
of patients do not present with purpura (see below). In this review, 
we discuss both adult and pediatric ITP studies and highlight 
discrepancies between both groups where necessary.

Bleeding symptoms in ITP patients typically present as either 
a mild form, such as bleeding in skin and mucosal regions, or a 
more severe, life-threatening form, such as bleeding in gastroin-
testinal or intracranial areas (6, 10). Patients with ITP have vary-
ing platelet counts as a result of the disease. Those with platelet 
counts above 50,000 per microliter rarely bleed, but below this 
“threshold” value, there are large differences in clinical pheno-
types between patients that are as of yet unexplained (2, 3, 10). 
Platelet function testing appears successful in predicting bleeding 
risk in patients (11–13). However, no clear-cut diagnostic tools 
exist as associations between biomarkers and ITP remain limited, 
and no markers exist that may predict treatment responses (2, 
3). The most common therapeutic options are based on immu-
nosuppression [by corticosteroids, intravenous immunoglobulin 
(IVIg), or rituximab], or stimulation of platelet production [by 
thrombopoietin receptor agonists (TPO-RAs), see below].

Platelet Life Cycle
On average, the human body produces around 100 billion platelets 
per day resulting in a concentration of ~150,000–400,000 platelets 
per microliter blood (14). Platelets circulate for approximately 
7–10 days, slowly undergoing age-related changes in morphol-
ogy, activation, and surface receptor density (15–18). Platelets are 
produced by MKs in the bone marrow (19). MKs are polynuclear 
cells that protrude extensions in the blood, termed proplatelets, 
and eventually bud off platelets from these extensions (20, 21). 
Recent findings show that MKs may also reside in the lung, 
facilitating platelet production in lung tissues (22), although the 
relevance of platelet production at this site is currently unclear.

Thrombopoietin (TPO) is the key hormone responsible for 
platelet production. It is primarily synthesized in the liver and 
promotes MKs to produce platelets in the bone marrow via the 
TPO receptor, Mpl (23–25). As newly made TPO is released in 
the bloodstream by hepatocytes, it is also incorporated into cir-
culating platelets via Mpl. This constitutes an inhibitory feedback 
loop in which platelet counts inversely correlate with the amount 
of TPO reaching the bone marrow to stimulate new platelet 
production (23, 26). Recent evidence suggests that the Ashwell-
Morrell receptor (AMR) on hepatocytes plays an important role 

in this physiological process. Normally, as platelets age terminal 
sialic acid is gradually lost from the surface, which exposes the 
underlying galactose residues. This allows for their clearance by 
the AMR (27). AMR-mediated platelet clearance triggers hepatic 
TPO transcription and translation, and new TPO is released 
(27). Several other physiological clearance mechanisms exist 
that control platelet numbers, such as platelet apoptosis (28) and 
possibly phagocytosis by αMβ2 integrins on hepatic and splenic 
macrophages [for a review, see Ref. (29)].

In ITP, this normal platelet life cycle is disturbed by autoanti-
bodies and platelet-reactive CD8+ Tc as summarized in Figure 1. 
Autoantibodies and CD8+ Tc may interfere with multiple aspects 
of the platelet life cycle, including their production and clearance 
that result in thrombocytopenia. In such thrombocytopenic con-
ditions, the small amount of circulating Mpl-containing platelets 
often leads to high TPO levels (30, 31). Interestingly, only slightly 
elevated TPO levels are observed in ITP; likely because platelets 
with incorporated TPO are rapidly cleared (31). Therefore, one 
of the therapeutic options for ITP patients involves stimulation 
of the TPO receptor on MKs by TPO-RAs, which proves to be 
successful in many patients (32). Not all patients are equally 
responsive to TPO-RAs and poor responders likely suffer from a 
prolonged autoimmune response against platelets that cannot be 
resolved by increasing the platelet production.

Genetic Risk Factors
As mentioned, autoreactive B and Tc have been firmly implicated 
in the pathophysiology of ITP. Consequently, many studies have 
reported associations between ITP and single nucleotide poly-
morphisms (SNP) in immunity-related genes. Polymorphisms in 
genes encoding specific cyto- or chemokines, such as interleukin 
(IL)-1, IL-2, IL-4, IL-6, IL-10, IL-17, TNF-α, TGF-β, and IFN-γ, 
have been associated with ITP (33–37). Several studies have also 
investigated whether specific HLA class I or II alleles are elevated 
in patients with ITP (38–45); current findings suggest that 
polymorphic sites within the HLA locus are not linked to ITP as 
studies have reported both significant and nonsignificant findings 
(37–44). The variation in studies could potentially be explained 
by small sample size, ethnic variability, or differences in diag-
nosis, yet does not allow to reach a consensus. New biomarkers 
such as miRNAs regulating levels of cytokines or other immune 
components are also increasingly recognized as potential risk 
factors for ITP (46). Classically, polymorphisms in Fcγ receptors 
(FcγRs) have been associated with the onset and pathogenesis of 
ITP (47–54) and are therefore further discussed below. Most of 
the reported association studies performed in ITP patients were 
conducted in small cohorts and in specific ethnic subgroups, and 
thus should be interpreted with caution. Additionally, many of 
the identified associations are not found in all patients and are 
commonly observed in other autoimmune diseases as well and 
are therefore general predisposing factors and not specific for 
ITP. Advances in (epi)genomics are likely to identify additional 
genetic risk factors for the development of ITP (55, 56).

environmental Risk Factors
For a long time, the occurrence of specific infections has been 
associated with ITP, particularly in children (5–7). Some of 
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FiGURe 1 | Disturbance of the platelet life cycle in immune thrombocytopenia (ITP). (1) Platelets (yellow) are normally produced by megakaryocytes (MKs, yellow) in 
the bone marrow. Aging platelets undergo apoptosis but also gradually lose terminal sialic acid from the surface (indicated by black circles). This allows for their 
clearance in the liver. Liver-mediated platelet clearance triggers hepatic TPO transcription and translation, and new TPO is released. This process is disrupted by 
autoantibodies in ITP, which are hypothesized to enhance platelet desialylation leading to enhanced clearance. (2) Macrophages (MF, green) can phagocytose 
platelets; meanwhile, platelet antigens are presented in the spleen to immune cells, such as CD4+ T helper (Th) cells. With CD4+ T cell help, B cells (B cell, dark blue) 
are able to differentiate into platelet-reactive plasma cells (PC, light blue) that can secrete autoantibodies (red). Cytotoxic T cells (Tc) (CD8+, red) can directly lyse 
platelets. (3) In peripheral blood, plasma cells and cytotoxic Tc further induce autoimmune responses against platelets. Cytotoxic Tc may also induce desialylation 
leading to enhanced clearance. In addition, platelet-reactive memory B cells may be present in the blood. (4) Plasma cells and cytotoxic Tc are also present in the 
bone marrow, where they can inhibit platelet production by targeting MKs.
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the most occurring and most studied infectious agents are 
Helicobacter pylori (57, 58), Hepatitis C virus (59, 60) and 
human immunodeficiency virus (61–67). Evidence also exists 
for Cytomegalovirus (68, 69), Epstein Barr Virus (69), and some 
other viruses (70, 71). Although individual cases of ITP have been 
reported after vaccination, this is exceedingly rare (72, 73). One 
of the suggested mechanisms by which infections lead to autoim-
munity is the occurrence of molecular mimicry. In this case, viral 
proteins resemble platelet receptors to evade the immune system 
(74). In case of an immune response against these viral proteins, 
cross reactivity may occur against platelet receptors, which sub-
sequently lead to autoantibodies specific for both the viral protein 
and platelet receptors. This could explain the initiation of ITP in 
some cases (60–63, 66), which can be resolved by clearance of 
the infectious agent after which autoantibodies diminish (57, 58). 
Besides a transient decrease in platelet counts, infections some-
times elicit strong immune responses that can perpetuate and 
develop into chronic ITP, resulting in sustained platelet clearance.

Toll-like receptors are present on various innate immune cells, 
including platelets, and are suggested to mediate some of the 
microbial-platelet interactions that can trigger and/or aggravate 
autoimmunity (75). Immune-mediated thrombocytopenia may 
also occur as a result of other autoimmune diseases, drugs, 
transfusion, and in lymphoproliferative disorders (76, 77). Often, 
these cases are also diagnosed as secondary ITP, but may greatly 
differ in etiology. As our review focuses on primary ITP, we refer 
readers to Ref. (77) for more information on the underlying 
pathophysiology of these forms of secondary ITP.

eTiOLOGY

Autoantibodies
In approximately 60% of all ITP patients, autoantibodies are 
found, predominantly against platelet glycoprotein (GP) IIb/
IIIa (~70%) and/or the GP Ib–IX–V complex (~25%) (78–81). 
Antibodies against GPIa–IIa or GPVI are also detected in 
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FiGURe 2 | Differences in B cell and T cell mechanisms in immune thrombocytopenia (ITP). B cells (left) differ from cytotoxic T cells (Tc) (right) in their autoimmune 
response against platelets in ITP. Stimulation of the adaptive immune response is similar: splenic macrophages (green) and dendritic cells (DCs, purple) can 
phagocytose platelet fragments to present to T helper (Th, light green) cells. Th cells are able to induce B cell development into autoantibody secreting plasma cells 
and can also stimulate cytotoxic Tc effector mechanisms. This process is regulated by regulatory Tc (Treg, pink), but regulatory T cell levels are imbalanced in ITP 
patients which leads to insufficient control of the autoimmune response. Shared effector functions of B cell-produced autoantibodies and cytotoxic Tc include 
impairing thrombopoiesis by targeting megakaryocytes (MKs), inducing platelet apoptosis and enhancing platelet desialylation. Autoantibodies can further stimulate 
C3b deposition on platelets to initiate complement activation, while cytotoxic Tc can directly lyse platelets.
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sporadic cases (~5%) (80, 82, 83). While it is not entirely clear how 
autoantibodies against platelet antigens are generated, their effect 
on platelet clearance and production have now been fully eluci-
dated (Figure  1). When microbial-antigens mimicking platelet 
autoantigens, or the platelet antigens themselves, are presented 
to B cells, these can develop into autoantibody-secreting plasma 
cells. The spleen has been implied as an organ where immune 
cells are primarily presented with platelet autoantigens, and 
where platelet clearance takes place most (84, 85). Particularly 
splenic macrophages and dendritic cells (DCs) can present 
platelet antigens to T helper (Th) cells that provide help to B cells 
that differentiate into antibody-secreting plasma cells (86, 87). 
Plasma cells secreting platelet-reactive autoantibodies are present 
in peripheral blood and bone marrow, where they can further 
generate autoantibodies that can sequester platelets and MKs 
(88–90). In addition, memory B cells activated in the spleen are 
also released in the circulation (Figure 2) (85). Autoantibodies 
accelerate platelet clearance by removal via splenic macrophages 
and DCs (87), complement deposition (91–93) and platelet apop-
tosis (94), or by inhibiting megakaryocytic platelet production 
(88–90).

Autoantibody and B Cell Classification
Initial studies investigating autoantibodies in ITP identified 
high levels of platelet-associated IgGs (PAIgGs) in nearly all 
patients, and they were soon thought to be the causative factor 

of the autoimmune response. However, it was found that PAIgGs 
bound nonspecifically to platelets and were detected in other 
non-ITPs as well (95), likely because platelets themselves can 
bind circulating IgG via FcγRIIa (96). PAIgGs thus proved to 
be a poor predictor of the disease [for a review, see Ref. (95)]. 
Although it is interesting that PAIgGs levels are higher in ITP 
and other thrombocytopenic patients (consisting of different IgG 
subclasses compared to healthy individuals), their usefulness in 
investigating ITP remains limited and can be largely subscribed 
to the state of thrombocytopenia rather than the autoimmune 
conditions. Following the introduction of the MAIPA and 
immunobead assays in 1987 (79, 97), investigators were able to 
detect and further study platelet-specific autoantibodies in ITP 
(98, 99).

Most autoantibodies found in chronic ITP patients are of 
the IgG class, but IgM and sporadically IgA antibodies are also 
detected (100–102). IgM antibodies were shown to fix comple-
ment on platelets which could facilitate clearance, but this has not 
been further investigated; IgG autoantibodies seem to be the main 
mediator of antibody-driven autoimmunity (100). Most prevalent 
are IgGs of the IgG1 subclass, and while IgG2, IgG3, and IgG4 
subclass autoantibodies can be also found in patients, they are 
often accompanied by IgG1 antibodies (103, 104). Autoantibody 
allotypes and Fc-glycosylation are important determinants in 
antibody-mediated immunity and immunological disorders 
related to ITP (105–107), yet have been scarcely investigated.
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In the majority of ITP patients, B  cells producing platelet-
binding antibodies have been identified in clinical samples from 
different sources, such as peripheral blood, spleen, and bone mar-
row (108–115). However, not all patients have platelet-reactive 
B cells (108, 109, 112–114), suggesting that B cell independent 
autoimmune mechanisms (such as CD8+ T cell mediated auto-
immunity) exist. A landmark study by Roark and co-workers 
employed repertoire cloning to clone platelet autoantibodies 
from the spleen of two patients with chronic ITP (110). Sequence 
analysis of Ig heavy chain arrangements revealed that these 
anti-platelet antibodies evolved from a restricted number of 
B cell clones and provided evidence for extensive modification of 
heavy chain segments by somatic hypermutation (110). Overall, 
these findings provide evidence for a CD4+ T cell-driven antigen-
specific response in patients with ITP. Evidence for the selective 
incorporation of the VH3-30 variable heavy chain gene segment 
was noted in this study providing additional evidence for a 
restricted, oligoclonal B cell response targeting a limited number 
of epitopes on platelet antigens in ITP patients (110).

Autoepitope Specificity of Antibodies
As the predominant source of epitopes for autoantibodies in ITP, 
the GP IIb/IIIa receptor, or integrin αIIbβ3, has been studied most 
frequently. Reports have shown that autoantibodies can bind 
epitopes in both the extracellular- and cytoplasmic domain of 
GPIIb/IIIa (80, 116). However, autoantibodies targeting the cyto-
plasmic domain are likely to be generated during platelet destruc-
tion rather than being pathogenic, but their significance remains 
unclear (80). Subsequent studies have shown that autoantibodies 
particularly bind to the IIb subunit (117, 118), or contradictory, 
the IIIa subunit of the dimer (119). Eventually, several investiga-
tors have demonstrated that specific portions of the protein are 
preferred autoepitopes in ITP, often near ligand binding sites (81, 
120). The vitronectin (αvβ3) receptor shares the β3 integrin with 
GPIIb/IIIa and was shown to be an important autoantigen in ITP 
as well (121). However, this has not been further investigated.

Less is known about relevant autoepitopes on GP complex 
Ib-IX-V, although most antibodies are directed against the GPIb 
part of the receptor complex (78, 98, 122). Interestingly, patients 
with autoantibodies against GPIb are often less responsive to 
immunosuppressive therapy with corticosteroids or IVIg when 
compared to patients with GPIIb/IIIa autoantibodies (122–124). 
This could be explained by specific epitopes on GPIb, relative 
receptor abundance on the platelet surface or differences between 
both protein complexes.

B Cell Help by CD4+ T Cells
B cells require help by CD4+ Tc to efficiently develop into anti-
body-secreting plasma cells (Figure  2). As the development of 
autoantibodies is a hallmark of ITP, several studies have explored 
the involvement of CD4+ Tc in the pathogenesis of ITP. Initial 
observational studies showed that cytokines necessary for Th 
functions (such as IL-2, IL-10, IFN-γ) are increased in ITP patients 
(125, 126). Further evidence came from studies that identified a 
T cell imbalance in ITP: patients have a disturbed Th1/Th2 subset 
ratio, which trends toward a Th1 phenotype (127–129). Both 
rituximab and splenectomy seemed to resolve this polarization 

in responding patients, indicating the importance of balancing 
different populations of CD4+ Tc in ITP (128, 130). Pioneering 
work by Kuwana and co-workers have provided firm evidence 
for the presence of auto-reactive CD4+ Tc that target epitopes on 
GPIIb/IIIa (131, 132).

Recently, pro-inflammatory Th17 cells have emerged as a criti-
cal player in development of autoimmunity (133). Higher levels 
of Th17  cells were observed in several ITP cohorts (134, 135), 
but not in all studies (136). Several studies have found higher 
levels of both Th1 and Th17, compared to Th2 (137–141). The 
potential involvement of another subset of Th cells, Th22, was also 
investigated in ITP. Th22 cells typically promote protective and 
regenerative responses with predominant effects on epithelial cells 
(142–144). Increased levels IL-22 and elevated levels of the Th22 
T cell subset have been observed in patients with ITP suggesting 
a role for this population of Tc in ITP pathogenesis (145, 146). In 
line with its established role in B cell help, splenic follicular Th 
(TFH) cells have also been implicated in the pathogenesis of ITP 
(147). These findings show that multiple Th populations includ-
ing Th1/Th17/Th22/TFH contribute to the pathogenesis of ITP 
(127, 129, 135, 137, 145–147). We anticipate that the observed 
skewing toward Th1/Th17/Th22/TFH populations is not specific 
for ITP as similar Th polarization profiles are observed in other 
autoimmune diseases.

CD8+ T Cells
Besides autoreactive B cells, CD8+ Tc have also been implicated 
in ITP pathogenesis (126, 148, 149). Evidence from association 
studies shows that patients with ITP more often present with 
polymorphisms in CD8+ related cytokines (126, 150, 151), have 
increased granzyme levels (152), and have imbalanced ratios of 
CD8+ Tc cell subsets (137, 140). As CD8+ Tc are also dependent 
on help of CD4+ Th cells to efficiently perform effector functions, 
the polarization of CD4+ Th cells probably also affects the CD8+ 
Tc cell response (137, 140).

T cells are part of cell-mediated immunity and have different 
effector functions compared to antibody-secreting B cells. In ITP, 
B cells and Tc thus elicit different forms of anti-platelet immunity 
(Figure 2). CD8+ Tc have been shown to directly lyse platelets 
(148, 153–155), induce platelet apoptosis (153), and inhibit 
thrombopoiesis by MKs (156). CD8+ Tc can further inhibit 
platelet production by inhibiting MK apoptosis (157).

Increased levels of CD8+ Tc were found in patients without 
autoantibodies (154), suggesting that CD8+ Tc cell-mediated 
autoimmunity can be elicited separately from autoantibody-
mediated autoimmunity. Evidence of a T cell response separate 
from antibody-mediated autoimmunity was further shown in ITP 
patients who did not respond to the anti-CD20+ B cell-depleting 
antibody rituximab, in whom increased levels of splenic CD8+ 
Tc were detected (158). In contrast, CD8+ Tc were found to be 
protective and required for effective steroid therapy in a murine 
model of ITP, although these findings are counterintuitive and not 
supported by observations in other autoimmune diseases (159).

It is unclear how the B cell depletion and repopulation effects 
of rituximab alter T cell subsets in responding patients. Possibly, 
the altered cytokine environment as a result of B cell depletion 
affects T  cell subsets, as the B-T  cell interplay is essential in a 
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systemic autoimmune response (160). A recent study showed that 
rituximab could suppress murine CD8+ T-cell mediated immune 
responses (161), suggesting that B cells may regulate the CD8+ 
T-cell response in ITP. In fact, ITP patients present with lower 
levels of regulatory B cells (162). However, the effect of rituximab 
treatment in ITP remains difficult to interpret as B cell depletion 
may also affect CD20+ regulatory B cells, which can secrete IL-10 
and other suppressive cytokines to induce immune tolerance 
(163), as suggested previously.

As of yet, the target peptides expressed on MHC class I rec-
ognized by platelet specific CD8+ Tc have not been identified. 
Interestingly, no clear HLA association is found in ITP patients 
(38–45), as opposed to other autoimmune diseases. In H. pylori-
mediated ITP, HLA associations were also unclear (114, 164). 
Platelets are capable of presenting non-renewable MK-derived 
peptides on MHC class I, and it is likely that these peptides 
are being recognized by CD8+ Tc that develop in patients with 
ITP (165). More recently, it was proposed that platelets have 
the propensity to activate naïve CD8+ Tc and that platelets can 
present pathogen-derived peptides in the context of MHC class 
I (166). In this context, it is interesting to note that following 
dengue infection the MHC class I density on platelets increases, 
suggesting an active role of platelets in combatting infections 
(166, 167). Under resting conditions, platelets do not express 
MHC class II molecules on their surface, but several reports 
suggested platelets to express MHCII complexes during infec-
tion (164, 168). Whether antigen presentation on MHC class I 
by platelets has a role in the pathogenesis of ITP has not been 
demonstrated. In view of the established role of CD8+ Tc in this 
autoimmune disorder, this will be an interesting area for further 
research.

Regulatory T Cells
Tregs are a crucial checkpoint to limit immunity and secure 
immune tolerance. As such, they are important regulators that keep 
both B- and T cell-mediated autoimmunity in check (Figure 2). 
The importance of Tregs for the pathogenesis of ITP is evidenced 
by their reduced numbers and function in patients (169–173). The 
pivotal role of immune regulation in ITP, particularly by Tregs, 
was further shown by phenotypic and Treg profiling studies of 
treated versus untreated ITP patients. Treatment with corticos-
teroids and/or rituximab in responding patients both improved 
Treg levels as well as their activity (130, 174–178), indicating that 
loss of tolerance is essential for the pathogenesis of ITP. In an 
experimental murine model of ITP, Tregs were retained in the 
thymus. This was resolved by IVIg treatment, which normalized 
Tregs in the periphery (179). Additionally, transferring retained 
thymocytes delayed the onset of ITP, suggesting Tregs actively 
prevent ITP development at least in mice (179). Interestingly, 
TPO-RAs improved Treg activity indicating that platelets could 
directly or indirectly play a regulatory role in ITP by affecting 
Treg levels (175). As such, it is clear that ITP patients present with 
lower Treg levels which are restored upon successful treatment 
(see above). However, it is still unclear whether restoring Treg 
functionality directly alleviates the disease or is simply a marker 
of restored immune tolerance. Potentially involved pathways are 
further discussed below.

Tregs can interact with DCs to induce a tolerogenic pheno-
type. Two studies found that the interplay between Tregs and 
DCs is impaired in ITP (178, 180). As Treg levels are lower in 
ITP, this leads to a reduced expression of immunomodulatory 
enzyme indoleamine 2,3-dioxygenase 1 (IDO1) by DCs, and 
increased levels of mature DCs that can present (auto)antigens 
to other immune cells (178, 180). The important role of toler-
ance induction by DCs in ITP was further suggested by another 
study, in which IVIg was shown to mediate its effect via DCs in 
a murine model (181). The interplay between Tregs and DCs 
and immunomodulation via IL-10 is not only important in ITP 
but was also found essential in antibody-mediated acute lung 
injury (182, 183). As such, the Treg-DC-axis may be particularly 
important in autoantibody-mediated ITP, but this remains to be 
investigated.

Other immune Cells
Several other immune cells may modulate autoimmune responses 
in ITP but have been investigated sparsely. Neutrophils have been 
found to line MKs in ITP bone marrow (184), but their role in 
ITP has not been further investigated. A subset of CD16+ mono-
cytes derived from patients with ITP has shown to promote the 
proliferation of IFN-γ+ CD4+ Tc (185). Shifts in the balance of 
inhibitory and activating FcγRs were observed on monocytes fol-
lowing treatment with high-dose corticosteroid dexamethason as 
well as following H. pylori eradication in ITP (186, 187) (further 
discussed below). Additionally, they were found to be involved in 
T cell development (185). Both increased and decreased levels of 
NK cells have been found in ITP patients (188–190). The signifi-
cance of these observations is unclear since NK cells are not able 
to lyse platelets (148).

Finally, platelets themselves may be able to affect the autoim-
mune response in ITP, as they are increasingly recognized as 
mediators of immunity and inflammation [for a recent review, 
see Ref. (191)]. Evidence for such an autoregulatory loop was 
found in ITP patients responding to TPO-RAs, who not only 
had increased platelet counts but also correlating higher TGF-β 
plasma levels (175). Presumably, increased plasma TGF-β levels 
derive from an increased platelet mass (175). Furthermore, 
TPO-RAs reduced both autoantibody and T cell responses in a 
mouse model, which also lead to elevated TGF-β plasma levels 
(192). Interestingly, TPO-RAs may induce remission in a subset 
of patients whom then no longer needed therapy to maintain 
platelet levels (193–195). This would imply that immune toler-
ance can be restored in certain patient subsets by enhancing 
platelet numbers. Another mechanism by which platelets regulate 
immune responses occurs via CD40L. Activated Tc can stimulate 
B  cell proliferation and differentiation via CD40L interactions 
with CD40 on B cells (196). Platelets normally express CD40L 
only upon activation, but higher baseline levels are observed 
in ITP patients (13). Furthermore, activated platelets from ITP 
patients were shown to stimulate autoreactive B cells by CD40L 
(197). Interestingly, CD40L inhibition was successful in suppress-
ing T  cell-assisted B  cell-mediated autoantibody production in 
ITP, even in treatment of refractory ITP (198, 199). However, 
whether this is similarly successful affecting a potential B  cell-
platelet interaction remains unknown.
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PATHwAYS iNvOLveD iN PLATeLeT 
CLeARANCe

FcγR-Mediated eradication of Platelets
FcγRs have long been implicated in ITP etiology. These receptors 
are differentially expressed on immune cells and are the primary 
receptor for IgG. FcγRs mediate different functions, including 
phagocytosis, antibody dependent cellular cytotoxicity, and 
release of cytokines [reviewed in detail in Ref. (96)]. Most FcγRs 
are involved in activating the immune system, whereas FcγRIIb is 
the only inhibitory FcγR. Platelets only express FcγRIIa on their 
surface, while myeloid cells, such as granulocytes, monocytes, 
macrophages, and DCs express several FcγRs (96). In liver and 
particularly spleen, monocytes and macrophages have been sug-
gested to bind and phagocytose Ig-opsonized platelets by FcγRs, 
explicitly contributing to platelet clearance and autoantigen 
presentation (85, 87). As such, polymorphisms in several FcγRs 
have been associated with ITP (47–54). The low affinity FcγRIIa, 
FcγRIIIb on granulocytes, and FcγRIIIa on NK cells, monocytes, 
and macrophages all contain SNP that affect binding affinity to 
IgG (200).

For FcγRIIa, one polymorphism at position 131 (R/H, with 
H having higher affinity) most strongly or exclusively affects 
IgG2 binding (200), and the higher-affinity allele was found to 
be associated with ITP (48, 51–54). However, these studies had 
inconsistent outcomes. A recent meta-analysis indicated that the 
R131H polymorphism might be associated with a subgroup of 
childhood-onset ITP, but this should be interpreted with caution 
(54). In accordance with the notion that FcγRIIIa+ splenic mono-
cytes are particularly important for the clearance of platelets, 
only the higher affinity-allele of the FcγRIIIa polymorphism at 
position 158 [F/V, with 158  V having higher affinity for IgG1 
and IgG3 (200)] has been found to be associated with ITP (48, 
50–53). Intriguingly, one study found that a polymorphism in 
the transmembrane region of the inhibitory FcγRIIb (232I/T) 
is associated with the onset of newly diagnosed ITP in children 
(49). This polymorphism (232T) has been found to negatively 
affect the capacity of this receptor to downregulate immune 
responses (201) and could point at an immunomodulatory role 
of FcγRIIb. Intriguingly, eradication of H. pylori (a potential 
molecular mimicry causative of the onset of ITP) was found to 
shift monocyte FcγR expression toward an inhibitory FcγRIIb 
phenotype (187). Finally, the FcγRIIc has also been associated 
with ITP (50). FcγRIIc is a pseudogene in most individuals, but 
having FcγRIIc most likely predisposes individuals to stronger 
immune responses (202, 203). While the extracellular IgG-
binding domain of FcγRIIc is identical to the inhibitory FcγRIIb, 
the intracelllular tail is identical to FcγRIIa and contains an 
activating motif (202). Due to the proposed expression of FcγRIIc 
on B cells, it may downregulate the negative feedback provided by 
FcγRIIb (202). Interestingly, FcγRs are known to crosstalk with 
Toll-like receptors, particularly during bacterial infections. This 
leads to T cell polarization (204), but it is unclear if this crosstalk 
is in any way relevant for platelets and/or in the context of ITP. 
Considering the strong correlation with infections in the onset of 
ITP, investigating the FcγR-TLR crosstalk could be interesting.

Additional evidence that FcγR-mediated pathways are impor-
tant in ITP pathogenesis was shown by the therapeutic use of 
IVIg, which may bind FcγRs by its Fc-portion (205), and is one of 
the successful cornerstone treatments for ITP to rapidly increase 
platelet counts. It was recently shown that IVIg does not modulate 
FcγR expression directly but inhibits the phagocytic capabilities of 
splenic macrophages (206). In addition, a previous pilot study has 
also shown that Syk-inhibitors, which affect downstream FcγR 
signaling, can improve ITP (207). While IVIg does not work in 
all patients, the efficacy may be predicted by specific FcγR poly-
morphisms (208). As such, various FcγR polymorphisms provide 
the most compelling evidence that genetics may affect ITP, both 
by predicting higher risk of disease development and treatment 
outcomes. In addition, the role of FcγRs on platelets and other 
immune cells has now been firmly implicated in ITP pathogenesis. 
Nevertheless, FcγR-independent mechanisms may exist as well.

FcγR-independent eradication of Platelets
A recent study has implicated a FcγR-independent pathway in 
an experimental mouse model (209), which was hypothesized 
to occur simultaneously aside FcγR-mediated clearance by 
splenic macrophages. Autoreactive antibodies against GPIb were 
hypothesized to induce platelet activation and degranulation, 
which leads to sialidase release (210). This induces desialylation 
of platelet membrane glycans, which can subsequently lead to 
recognition of platelets by the AMR in the liver thereby accelerat-
ing platelet clearance (27, 209). Interestingly, there are a few cases 
of ITP patients with abnormal platelet surface sialic acid levels 
(211, 212). Oseltamivir, which is a sialidase inhibitor used to treat 
influenza, has been found to increase platelet sialic acid content 
(213) and in two cases was successful in ameliorating thrombocy-
topenia whereas conventional therapy was not (212, 214). Platelet 
desialylation was also found to correlate with non-responsiveness 
to first-line therapies in ITP (215). Finally, CD8+ Tc have also 
been suggested to induce platelet desialylation and to facilitate 
platelet clearance similar to the earlier mentioned mechanisms 
(155). While the importance of sialic acid in the platelet life 
cycle has long been established (14), it is unclear whether the 
experimental findings in mice can be translated to a human and/
or clinical setting. Ongoing studies are needed to establish the 
importance of platelet desialylation in ITP.

C-Reactive Protein and Reactive Oxygen 
Species
Recently, a role for inflammatory acute-phase protein C-reactive 
protein (CRP) has also been implied in ITP pathogenesis (216). 
CRP levels were elevated in ITP patients and enhanced platelet 
phagocytosis in presence of anti-platelet antibodies in vitro and 
in vivo. This effect was ameliorated by IVIg treatment, suggesting 
that this mechanism may at least in part be mediated via FcγRs 
(216). Phosphorylcholine, a CRP ligand present on cell surfaces, 
was exposed after antibody-induced oxidative stress. Oxidative 
stress induced by ITP autoantibodies has also been shown in two 
separate studies on ITP (217, 218) and appears to be a suitable 
biomarker for ITP (219). Additionally, the pathophysiological 
role of reactive oxygen species has long been implied in a model of 
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HIV-initiated ITP (64, 65, 67). In this model, reactive oxygen spe-
cies induced by platelet antibodies were able to directly lyse plate-
lets, leading to platelet fragmentation. This appears to involve the 
platelet NADPH pathway and is complement independent (65). 
Interestingly, treating platelets with dexamethasone was shown 
to inhibit NADPH oxidase components that partially prevented 
induction of reactive oxygen species (67). Further studies will be 
required to elucidate the exact role of CRP, oxidative stress, and 
autoantibodies or autoreactive CD8+ Tc in ITP.

MODeL FOR iTP PATHOGeNeSiS

As knowledge on the pathogenesis of ITP develops, definitions 
become outdated, and lines between primary and secondary ITP 
are beginning to blur. In other autoimmune diseases, infections 
are increasingly recognized as one of the primary initiating 
events that can lead to an autoimmune response. This is not the 
case for ITP, where it is regarded as a secondary form. However, 
even in what is called primary ITP, there must be some sort of 
initiating event that triggers the autoimmune response and 
exposes platelet antigens. This initiating event will obviously still 
have consequences for clinical treatment of ITP, whether it is an 
infection, blood transfusion, drug, or an unknown other trigger. 
Nonetheless, infections should no longer simply be regarded as a 
secondary form considering their potential as an initiating event 
or trigger to expose platelet antigens.

The number of people developing ITP directly after an infec-
tion is small, which suggests that additional factors have to be 
present during an infection to develop persistent autoimmunity. 
Individuals with a known autoimmune disease are more prone to 
develop ITP, indicating that dysregulation of immune homeosta-
sis may contribute to the onset of ITP. Interestingly, most pedi-
atric patients only develop transient thrombocytopenia, which is 
eventually resolved when the viral antigen is cleared. Meanwhile, 
similar to other autoimmune disorders, chronic ITP is more 
prevalent in adult patients, and the incidence increases with age. 
Based on the currently available data, we propose a simplified 
model of ITP in which both exposure of platelet antigens and loss 
of tolerance are required to induce ITP (Figure 3). The specific 
type of trigger likely determines whether a CD4+ T cell-assisted 
B cell response develops or whether CD8+ Tc targeting platelets are 
induced. Transient forms of ITP may develop if insufficient CD4+ 
T cell help is available for the generation of class-switched, fully 
affinity matured, strongly binding anti-platelet antibodies. Such 
antibodies are likely produced by bone marrow-residing plasma 
cells in a fully developed CD4+ T cell-assisted B cell response. We 
furthermore propose that platelet directed CD8+ T cell responses 
develop following presentation of pathogen-derived peptides on 
MHC class I that may evoke the formation of CD8+ Tc that (cross) 
react with peptides presented on MHC class I on platelets.

FUTURe ReSeARCH

emerging Concepts and Opportunities to 
Unravel the Pathogenesis of iTP
Limited information is available on the autoantigens in ITP and 
their importance for recognition by immune cells once bound by 

autoantibodies. Epitopes targeted by platelet autoantibodies seem 
to differ between patients, coinciding with different responses to 
therapy and different bleeding phenotypes. The molecular basis 
for the variable bleeding diathesis in patients with ITP has not yet 
been fully elucidated. Investigators have primarily made use of 
ITP sera or plasmas to study the role of autoantibodies. However, 
these can contain multiple autoantibodies, some potentially 
undetected by the current methods. Similar to the elegant studied 
by Roark and co-workers (110), specific autoantibodies should 
be isolated to further study their effects on platelets, possibly 
combining characteristics like subclass characterization, epitope 
specificity, and glycosylation patterns.

iTP versus Other Autoimmune Diseases: 
Lessons to Be Learnt
In other autoimmune disorders such as rheumatoid arthritis, 
systemic lupus erythematosus, or type 1 diabetes, it has been 
shown that post-translational modifications of autoantigens 
can elicit the formation of CD4+ T cell responses as well as cre-
ate neo-epitopes that are recognized by B  cells. In view of the 
common mechanisms involved in loss of tolerance against self, 
these findings may open novel avenues for dissecting pathways 
contributing to the onset of ITP.

Evidence has been obtained for post-translational modifica-
tions of platelet proteins. Phosphorylation and particularly gly-
cosylation of platelets have been well studied (29, 210, 220, 221), 
and the importance of platelet glycans is increasingly appreciated. 
Furthermore, platelets and peripheral blood contain different 
glycosyltransferases to modify platelet glycans (221), but their 
relevance in normal platelet physiology is still unclear and their 
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potential relevance for the onset of ITP has not been established. 
A role for desialylation triggered by platelet autoantibodies or 
CD8+ Tc has been postulated, but it is unknown if this can also 
lead to the generation of neo-epitopes on the platelet surface (155, 
209). Recently, it was also shown that formation of oxidative stress 
induced neo-epitopes on platelets promotes binding of the acute 
phase protein CRP resulting in enhanced phagocytosis of IgG-
coated platelets (216). It is unclear whether the autoantibodies 
found in ITP patients are able to recognize such neo-epitopes in 
similar fashion.

Besides post-translational modifications, platelet membranes 
are highly dynamic with respect to the expression of cell-surface 
receptors. GP expression on the platelet surface is tightly regulated 
by different metalloproteases, such as ADAM10 and ADAM 17 
that facilitate receptor shedding (222, 223). Additionally, platelet 
granules release their content to rapidly increase receptor density 
on the membrane, such as the well-established activation marker 
P-selectin (223). These processes are important in both health 
and disease (224); however, it is unknown if the dynamic shuf-
fling of receptors on the platelet surface is in any way relevant to 
formation of neo-epitopes in ITP.

The difference between post-translational modifications in 
other autoimmune diseases and ITP is that most of the modifica-
tions mentioned above are induced by autoantibodies in ITP, while 
modifications in for example the autoantigens that are implicated 
in rheumatoid arthritis precede the formation of autoantibodies 
(225–227) and are postulated to be one of the key events that trig-
gers their generation. In fact, infection-induced post-translational 
modifications of target proteins, such as citrullination of fibrin, 
are thought to initiate a continuous inflammatory environment, 
which eventually leads to autoimmunity (225–227). Interestingly, 
the autoantigens in rheumatoid arthritis are usually located on 
“static” long-lived cartilage and/or joint proteins, such as fibrin. 
This is different in ITP, where the autoantigens are located on GPs 
on platelets that have a limited lifespan. Currently, no information 
is available with respect to the potential of post-translational modi-
fications of platelet antigens to trigger autoimmune responses. In 
view of the prominent role of post-translational modifications 

in the onset of autoimmunity, we speculate that this will provide 
a novel and interesting avenue for future research to dissect the 
mechanisms that contribute to the onset of ITP.

CONCLUSiON

We suggest a simplified model of ITP in which both exposure of 
platelet antigens and loss of tolerance are required for the onset 
of ITP, thereby promoting CD4+ T cell-assisted B cell responses 
against platelets. Additionally, we propose that infections result-
ing in the presentation of pathogen-derived peptides on MHC 
class I may induce the formation of CD8+ Tc that (cross) react 
with peptides presented on MHC class I on platelets. Specific trig-
gers likely determine the type of autoimmune response against 
platelets. We speculate that post-translational modifications of 
platelet antigens harbor potential to generate neo-epitopes that 
trigger autoimmune responses in ITP, as they do in other autoim-
mune disorders. Future studies interrogating these hypotheses 
may yield novel insights into the mechanisms that underlie the 
development of ITP.
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