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Abstract. Capping protein nucleates the assembly of 
actin filaments and stabilizes actin filaments by bind- 
ing to their barbed ends. We describe here a novel 
isoform of the/~ subunit of chicken capping protein, 
the/32 isoform, which arises by alternative splicing. 
The chicken/31 isoform and the t2  isoform are identi- 
cal in their amino acid sequence except for a short re- 
gion at the COOH terminus; this region of the/3 
subunit has been implicated in binding actin. Human 
and mouse cDNAs of the fll and t2  isoforms also 
were isolated and among these vertebrates, the 
COOH-terminal region of each isoform is highly con- 
served. In contrast, comparison of the sequences of 
the vertebrate fl subunit COOH-termini to those of 
lower eukaryotes shows no similarities. 

The t2  isoform is the predominant isoform of non- 
muscle tissues and the fll isoform, which was first 
characterized in studies of capping protein from 
chicken muscle, is the predominant isoform of muscle 

tissues, as shown by immunoblots probed with 
isoform-specific antibodies and by RNAse protection 
analysis of mRNAs. The/32 isoform also is a compo- 
nent of dynactin complex from brain, which contains 
the actin-related protein Arpl. Both/~-subunit isoforms 
are expressed in cardiac muscle but they have non- 
overlapping subcellular distributions. The fll isoform 
is at Z-discs of myofibrils, and the ~2 isoform is en- 
riched at intercalated discs; in cardiac myocytes grown 
in culture, the t2  isoform also is a component of 
cell-cell junctions and at sites where myofibrils con- 
tact the sarcolemma. The biochemical basis for the 
differential distribution of capping protein isoforms is 
likely due to interaction with specific proteins at 
Z-discs and cell-cell junctions, or to preferential as- 
sociation with different actin isoforms. Thus, ver- 
tebrates have developed isoforms of capping protein 
that associate with distinct actin-filament arrays. 

F UNI)AMeNTAt. processes of biological systems include 
generation of asymmetric shapes and movement. The 
actin cytoskeleton is an essential component of these 

processes, which are often dynamic and take on diverse 
forms in different cell types and tissues. Within a single cell, 
distinct populations of actin filaments can exist, some of 
which may be formed by a distinct actin isoform. The differ- 
ent actin filament arrays contain several different actin- 
binding proteins, which likely interact with actin to regulate 
its assembly. Many of the actin-binding proteins also are ex- 
pressed as isoforms which may contribute to generate diver- 
sity in the organization of actin filaments in cells and tissues. 

Capping protein is a candidate for regulating actin filament 
assembly in vivo. In vitro, capping protein nucleates filament 
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assembly and binds tothe barbed ends of filaments, prevent- 
ing actin monomer addition and loss (9, 12, 13). Evidence 
supporting these functions in vivo include the colocalization 
of capping protein with actin filaments in skeletal muscle (13, 
45), epithelia (47), and yeast (4). In addition, genetic studies 
in yeast indicate an interaction of capping protein with actin- 
binding proteins (1, 29). Furthermore, inhibition of capping 
protein's ability to bind actin dramatically alters the actin or- 
ganization in muscle cells undergoing myofibrillogenesis 
(Schafer, D. A., C. Hug, and J. A. Cooper, manuscript sub- 
mitred for publication). 

Chicken capping protein has been purified from skeletal 
muscle and is a heterodimeric protein composed of an ot 
subunit of Mrs36 kD and a fl subunit of Mr ,x,32 kD. Two- 
dimensional (2D) 1 gels of purified capping protein from 
skeletal muscle, which is also known as CapZ, resolve each 
subunit into two electrophoretically distinct components (9). 
The capping protein t~ subunits, cd and or2, are the products 
of different genes; mRNAs encoding the al and t~2 proteins 
are expressed in all chicken tissues (14). Even though multi- 
pie/~-subunit proteins are resolved on 2D gels of purified 
skeletal muscle capping protein (9) and of extracts of chicken 
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tissues (6), to date, only one eDNA for a capping protein 13 
subunit has been identified in chickens (10) and other species 
(3, 5, 25, 52). Southern blots of genomic DNA indicated that 
the 13 subunit of chickens is encoded by a single gene. North- 
ern blot analysis indicated that two mRNA transcripts were 
expressed in all chicken tissues (10). Interestingly, the sizes 
of the two RNA transcripts expressed in chicken muscle and 
non-muscle tissues differed slightly: in non-muscle tissues, 
the transcripts each were "~100 nucleotides smaller than 
those expressed in muscle tissues (10). 

To understand the biological function of capping protein, 
we have now cloned a novel isoform of the/3 subunit, called 
/32. The sequence of the/32 isoform differs from the/31 iso- 
form, which was characterized from skeletal muscle, only 
in a region of the molecule implicated in binding actin (28). 
The 131 isoform is the predominant isoform expressed in mus- 
cle tissues, whereas the/32 isoform is expressed in most tis- 
sues examined. In cardiac muscle, which express both/31 and 
/32, the/31 isoform is located at Z-discs of sarcomeres while 
the/32 isoform is enriched at intercalated discs. The different 
subcellular distributions for these two capping protein iso- 
forms suggests that the two isoforms have unique functions 
that are essential for the organization of actin filaments at 
different locations within a single cell. 

Materials and Methods 

Reagents were purchased from Sigma Chem. Co. (St. Louis, MO) or Fisher 
Chemical Co. (Pittsburgh, PA) unless stated otherwise. Dynaetin complex 
was purified from chick embryo brain as described (48). Aetin was purified 
from chicken pectoral muscle as described (49). 

Antibodies 
Affinity-purified goat polycIonai antibodies to skeletal muscle capping pro- 
tein were purified as described (45). Goat antibodies specific for the/3 
subunit that were used to screen the eDNA libraries, were purified on 
columns containing a fusion protein of glutathione-S-transferase (GST) and 
the/3 subunit of skeletal muscle capping protein (47). Rabbit antibodies 
specific for the/32 isoform were elicited in rabbits by Cocalico Biological, 
Inc. (Reamstown, PA). The immunogen was a bacterially expressed fusion 
protein containing GST and the 27 amino acids that are unique to the COOH 
terminus of the/32 isoform. These antibodies were affinity-purified using 
an Affigel affinity column containing maltose-binding protein (MBP) fused 
to the same 27 COOH terminus amino acids of the/32 isoform. Mouse 
monoclonai antibody (mAb) 1Bll and mAb 1E5, which are specific for the 
c~ subunit and/3 subunit, respectively, of chicken skeletal muscle capping 
protein were purified on protein A-ngarose as described (28). Monoclonal 
anti-vinculin and anti-A-CAM were purchased from Sigma Chem. Co. 
Fluorophore-conjugated antibodies used for indirect immunofluorescence 
experiments were purchased from Chemicon (Temecula, CA). 

Electrophoresis and Western Blotting 
One-dimension SDS gels were run as described by Laemmli (30). Two- 
dimensional electrophoresis was performed using a mini-isoelectric focus- 
ing apparatus according to the method of O'Farrell (37); ampholytes (Phar- 
maeia LKB Biotechnology, Piscataway, NJ) were used in a combination of 
pH 3-10 at 0.4% (wt/vol) and pH 5-8 at 1.6% (wt/vol). The second dimen- 
sion SDS gels were 10% aerylamide gels as described (30). Proteins were 
transferred to nitrocellulose as described (50) using 25 mM Tris, 192 mM 
glyeine, pH 8.3, containing 20% methanol. Blots were biocked in 2% fish 
gelatin, 5% heat-inactivated calf serum in TTBS (0.3 M NaCI, 20 mM 
TrisCl, pH 8.0 and 0.05% (vol/vol) Tween-20 and 0.01% NAN3), and in- 
cubated overnight at 4°C with primary antibodies diluted in the blocking 
solution. Blots were washed in TTBS and bound antibodies were detected 
using the appropriate species-specific alkaline phosphatase-eonjugated sec- 
ondary antibody (Tago, Burlingame, CA). Blots were developed to yield the 
alkaline phosphatase reaction product (20). 

Isolation of Chicken Capping Protein 
[3-Subunit cDNAs 
A Xgtll eDNA library (15) prepared from poly(A +) RNA from 10-d 
chicken embryos was kindly provided by Dr. Susan W. Craig of Johns Hop- 
kins University. Approximately 2 x 106 phage clones were screened using 
goat polyelonal anti-/3 subunit specific antibodies and swine anti-goat im- 
munoglobulin conjugated with alkaline phosphatase (Tngo) according to the 
method of Davis et al. (18). The cDNAs in hgtll were isolated from the 
phage after EcoR1 digestion and ligated into pBluescript (Stratagene, La 
Jolla, CA). A set of eDNA clones that were originally isolated from a 
chicken muscle eDNA library by screening with a 13 subunit eDNA as de- 
scribed (10) also were used in these studies, including eight/31 cDNAs (/316, 
/325, /327, /329, /333, /353, /372, and/374d), and one/32 eDNA (/378). 

Isolation of Mouse Capping Protein {3-Subunit cDNAs 
A fragment of chicken if2 eDNA was used to screen a kgtll eDNA library 
of newborn mouse (P0) skeletal muscle (kindly provided by Drs. Maria 
Donoghue, Joshua Sanes, and John Merlie, Washington University). 
Twenty-four eDNA clones were purified; the sequences at the ends of 22 
clones indicated that they were similar to chicken and human/3-subunit 
eDNAs. Additional internal sequence showed that 14 clones were analogous 
to the chicken/31 eDNA and eight clones were analogous to the chicken 
/32 eDNA. Two of the longest clones in each group were sequenced on both 
strands using a shotgun strategy. The sequences are in Genbank; accession 
numbers for the mouse/3-subunit eDNAs are #U10406 for/31, and #U10407 
for/32. 

Isolation of Human Capping Protein {3 Subunit cDNAs 
Two cDNAs with homology to the /3 subunit of capping protein were 
identified in searches of the non-redundant nucleic acid data bases at NCBI 
using BLASTX (2) and Client v. 1.7.5. This search identified two partial 
overlapping eDNAs, one from a HepG2 library (HUM0005409, accession 
number D12250, [38]) and one from a testis library (HUMTACEB, acces- 
sion number M2665g, [19]). The cDNAs are identical in their region of 
overlap, which includes the COOH-terminal portion of the coding region 
of the capping protein ~ subunit. Using this sequence, we constructed 
primers and performed PCR on a HepG2 eDNA library kindly provided 
by Dr. Mike Mueclder of Washington University (36). A clone matching 
the data base entries was recovered. Several sequential RACE PCR reac- 
tions were performed to extend the eDNA clones to full-length (22). The 
predicted amino acid sequence is very similar to that of the chicken/32 iso- 
form reported here. This analysis agrees with a more complete characteriza- 
tion of a human/3 eDNA by others (Barron-Casella, E. A., M. A. Torres, 
S. W. Scherer, H. H. Q. Heng, L.-C. Tsni, and J. F. CaseUa, manuscript 
submitted for publication). 

Nucleotide Sequencing of cDNAs 
DNA sequencing was performed by the dideoxy termination method (44) 
using Sequenase as described by the manufacturer (U.S. Biochemical 
Corp., Cleveland, OH) or by PCR cycle-sequencing using Taq polymer- 
ase (17). 

Plasmid Constructions 
pBJ-378 contains the 533 nt KpnI-EcoR1 fragment corresponding to the 3' 
half of the /31 eDNA inserted into pBS. pBJ-380 contains the 419 nt 
Kpn-EcoR1 fragment corresponding to the 3' half of the ~2 eDNA inserted 
into pBS. Plasmids encoding fusion proteins containing the 27 amino acids 
that are unique to the COOH terminus of the/32 isoform of capping protein 
/3 subunit (amino acids 246-272) and either GST or MBP were prepared 
by ligation of a PCR-derived DNA fragment encoding the 27 unique 
COOH-terminai amino acids into the EcoR1 site of either pGEX (Pharma- 
cia LKB Biotechnology) or pMAL-e2 (New England Biolabs, Beverly, 
MA), respectively. The resulting plasmids are designated pBJ-538 for ex- 
pression of GST-132-COOH terminus fusion protein and pBJ-458 for expres- 
sion of MBP-/T2-COOH terminus fusion protein. 

RNAse Protection Analysis 
Ribonuclease protection analyses were performed using the RPA II assay 
kit as described by the manufacturer (Ambion, Austin, TX). Poly(A +) 
RNA was isolated from chicken tissues as described (8). RNA probes were 
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prepared by in vitro transcription in a reaction that contained 0.25 t~g linear- 
ized DNA, 0.5 mM ATP, 0.5 mM CTP, and 0.5 mM UTP, 10 mM DTT, 
20 U RNAsin (Promega, Madison, WI), 40/~Ci 32P-labeled GTP (Amer- 
sham Corp., Arlington Heights, IL), 0.025 U T3 RNA polymerase 
(Stratagene), 50 mM Tris-HCl, pH 7.5, 6 mM MgCI2, 2 mM spermidine, 
and 10 mM NaC1. The DNA templates for preparation of the RNA probes 
were KpnI-digested pBJ-378 and pBJ-380 (described in the preceding sec- 
tion), for probe 533 and probe 419, respectively. 

Cardiac Myocyte Cultures 

Hearts from 6-d chick embryos were incubated in 2-3 rnl 0.05% trypsin in 
calcium- and magnesium-free I-IBSS for 5 rain in a 37"C shaking incubator. 
The suspension was vortexed at low speed for 10 s and the non-dissociated 
tissue was allowed to settle. The supernatant containing dissociated cells 
was removed and fresh trypsin solution was added. The trypsin digestion 
was repeated as described above six times. The first two supernatants were 
discarded; subsequent supernatants were added to 20 ml plating medium 
composed of MEM-Earle's salts, 5 % "selected" FBS, 2 mM glutamine, pen- 
icillin, and streptomycin. Dispersed ceils were preplated in a 100-ram cul- 
ture dish for 1 h at 37"C to deplete fibroblasts. Myocytes were plated at 2 × 
l0 s cells/35-mm dish containing a 22-ram × 22-ram coverslip in plating 
medium. Two days after plating, the medium was replaced with glutamine- 
free medium; this medium was replaced every other day thereafter. 

Imraunostaining 

Cryosections (5 #m thick) of adult chicken heart tissue were applied to 
gelatin-coated glass slides and fixed in 2 % paraformaldehyde in PBS (0.137 
M NaCI, 2.6 mM KCl, 1.5 mM KI-I2PO4, 8 mM Na2HPO4, 0.01% NAN3, 
pH 7.4) for 15 rain at room temperature. Excess aldehyde was quenched by 
10 win incubation in 1 rng/ml NaBI-14 in PBS. Slides to be labeled with 
mAb 1E5 also were treated for 10 min with methanol at -20"C followed 
by 5 rain in PBS. Sections were blocked in 10% heat-inactivated newborn 
calf serum and 3 % BSA prepared in TTBS for 30 min. For double labeling 
with the 152-specific antibodies and anti-vincolin, a mixture of the primary 
antibodies diluted in blocking buffer was applied to the sections for 4 h at 
room temperature. Slides were washed three times in TTBS and incubated 
with a mixture of fluorescein-conjugated donkey anti-rabbit IgG and 
rhodamine-conjugated donkey anti-mouse IgG for 2 h at room temperature. 
Slides were washed three times in TTBS and coverslips were applied using 
a mounting medium composed of 0.1% n-propylgallate in 10 mM TrisC1, 
pH 8.0, and 50% glycerol. Micrographs were obtained using an MRC-1000 
(Bio-Rad Laboratories, Hercules, CA) scanning laser confocal microscope 
equipped with a krypton-argon mixed gas laser. 

Cardiac myocyte cultures were rinsed in 30 mM Hepes, pH 7.0 contain- 
ing 70 mM KC1, 5 mM MgCi2, and 3 mM EGTA and fixed for 15 rain at 
room temperature in freshly prepared 2 % paraformaldehyde in the same 
Hepes buffer. Cells were permeabilized by incubation in 0.1% Triton X-100 
in the Hepes buffer for 15 rain and blocked in 10% heat-inactivated newborn 
calf serum and 3 % BSA prepared in TFBS. For double labeling with anti- 
/32-specific antibodies and mAb IE5, a mixture of the primary antibodies 
diluted in blocking buffer was applied to the cells overnight at 4°C. Cells 
were washed three times in TTBS and incubated with a mixture of 
fluorescein-conjugated donkey anti-rabbit IgG and rhodamine-conjugated 
donkey anti-mouse IgG for 2 h at room temperature. Cells were washed 
three times in TTBS and coverslips were mounted on slides using the 
mounting medium described above. Micrographs were obtained using a 
Zeiss Axioplan microscope equipped with a 63 × planapochromat objective 
lens (1.4 NA). T-max 400 ASA film (Eastman Kodak, Rochester, NY) was 
used for photography. 

R e s u l t s  

Three  observat ions suggested that the capping protein /3 
subuni t  of  chicken non-musc le  tissues was different f rom the 
/3 subuni t  of  capping protein isolated from skeletal muscle.  
First ,  polyclonal  ant ibodies  prepared against skeletal muscle  
capping protein  reacted well with the o~-subunit proteins on 
Western  blots of  extracts of chicken epithelial  tissues, but  
poor ly  with the/3-subuni t  proteins (47). Second,  the capping 
p ro te in /3  subuni t  of  epithelial  cell extracts has a slightly 
faster mobi l i ty  on  SDS gels than the /3  subuni t  of  capping 

protein from skeletal musc le  (47). Thi rd ,  reports on  a pro-  
tein cal led/3-act inin  (33), which has s ince been  found to be 
capping protein (34), indicated that some chicken tissues 
conta ined  a capping protein subuni t  that was most  l ikely a 
/3 subunit ,  but  which was electrophoretically dist inct  from 
the/3  subunits  of skeletal muscle  (6), 

To further characterize capping protein /3 subuni t  iso- 
forms, we investigated the dis t r ibut ion of the capping protein 
subunits  in chicken tissues using immunoblo t s  of  2D gels 
probed with polyclonal  ant ibodies  (45, 47) and monoc lona l  
ant ibodies (28) raised against  capping protein of  skeletal 
muscle.  To facilitate this discussion,  we have named  the ma-  
jo r  polypeptides detected on  the Western  blots of the 2D gels 
according to the d iagram in Fig. 1 a: the major  ot-subunits 
with M , ~ 3 6  kD are A1 (pI,~5.7) and A2 (pI,~5.9) and the 
major  /3 subunits  with M,~32 kD are B1 (pI '~5.5),  BI' 
(pI,~5.3), and B2 (pI,~6.0). These roman  letter designat ions 
are heurist ic and temporary. Once  a specific protein spot has 
been  de termined as the product  of a specific cDNA,  the pro- 
tein is henceforth referred to using a Greek  letter and a num-  
ber  that corresponds to the name  of its encoding eDNA.  

Figure 1. Western blots of two-dimensional gels of chicken tissue 
extracts probed with goat potyclonal anti-capping protein. This an- 
tibody detects all subunits of capping protein; however, because the 
antigen was skeletal muscle capping protein, the antibodies recog- 
nize the B1 and BY proteins better than the B2 protein. Panel a is 
a drawing indicating the mobilities and names of the major capping 
protein subunits detected by the antibody; the scale at the bottom 
indicates the approximate pH range of the first dimension gel. Tis- 
sue extract samples are: b, Skeletal (pectoralis) Muscle; c, Brain; 
d, Cardiac Muscle; e, Liver; f, Gizzard. Only the portion of each 
blot containing capping protein is shown. 
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A Novel Capping Protein/3 Subunit Is Expressed in 
Chicken Brain, Liver, Cardiac Muscle, and Gizzard 
Western blots of 2D gels containing whole tissue extracts of 
chicken brain, liver, pectoral muscle, cardiac muscle, and 
gizzard were probed with either the polyelonal antibodies 
(Fig. 1) or with a mixture of mAbs 1E5 and 1Bll (Fig. 2), 
which detect the/3 subunit and the a subunit (preferentially 
the A2 protein) of capping protein, respectively (28). mAb 
1E5 also reacts with the protein product of the previously 
characterized/3-subunit eDNA (10, 28). The distribution of 
the ot-subunit proteins, A1 and A2, was nearly identical in 
the tissues examined. In contrast, the distribution of t h e  
/3-subunit isoforms varied among different tissues. Three 
major isoforms of the/3 subunit were detected using the poly- 
clonal anti-capping protein preparation (Fig. 1). In pectoral 
muscle, cardiac muscle and gizzard, the B1 and BI' proteins 
were the major/3 subunits (Fig. 1, b, d, and f ) .  These pro- 
teins had similar mobilities on 2D gels as the/3-subunit iso- 
forms of capping protein purified from chicken pectoral 
muscle (9). The B1 and BI' proteins also reacted with mAb 
1E5 (Fig. 2, b, d, and f ) .  In brain, liver, cardiac muscle, and 
gizzard, proteins having a similar Mr in the SDS gels as the 
B1 and BI' proteins, but having more alkaline isoelectric 
points also were detected with the polyclonal anti-capping 
protein. Brain and liver were particularly enriched for a 
B-subunit isoform with a pI~6.0, designated here the B2 pro- 
tein (Fig. 1, c and e). mAb 1E5 did not react with the B2 pro- 
tein (Fig. 2, c, d, e, and f ) .  The lack of reactivity of the B2 
protein with mAb 1E5 suggests that this/3 subunit is either 
posttranslationally modified at the epitope bound by mAb 
1E5 or that the epitope is missing from this isoform. 

A Novel raRNA Encodes the/32 Isoform of Capping 
Protein/3 Subunit 
To investigate whether the B2 protein results from expression 
of a distinct mRNA, we screened a chick embryo cDNA ex- 
pression library for clones expressing protein recognized by 
affinity-purified polyelonal antibodies specific for all cap- 
ping protein/3 subunits but not by mAb 1E5. Approximately 
thirty clones were obtained in the initial screen. Four clones 
also hybridized at high stringency with a full-length/3-sub- 
unit eDNA probe previously isolated from a chicken muscle 
cDNA library (10). Sequence analysis showed that these four 
clones were overlapping and that two were identical siblings. 
The longest clone (EM7) encoded a full-length open reading 
frame; the consensus sequence of this eDNA, now named 
the /32 eDNA (Genbank accession number U07826), is 
shown in Fig. 3 A. The/32 eDNA was nearly identical to the 
previously identified/3-subunit eDNA, now named the/31 
eDNA (Genbank accession number J04959) (10), except that 
nucleotides 758-870 of the ~1 cDNA were deleted. The se- 
quence of the 5' untranslated region of the if2 eDNA exactly 
matched that of one 131 eDNA (/333) clone previously de- 
scribed (10). Fig. 3 B shows the relationship between the/31 
eDNA and the/32 cDNAs. 

The 113 nucleotides missing from the/32 eDNA include 
those encoding the 32 COOH-terminal amino acids and the 
stop codon for translation of the/31 protein. Thus, the protein 
predicted from the /32 eDNA sequence is identical at its 
NH2 terminus, including amino acids 1 through 245, to the 
NH2 terminus of the ~ protein. The amino acids eompris- 

Figure 2. Western blots of two-dimensional gels of chicken tissue 
extracts probed with a mixture of rnAb 1Bll, which recognizes the 
A2 protein strongly and the AI protein weakly, and mAb 1E5, 
which detects the B1 and Bl'proteins. Panel a shows a drawing indi- 
cating the capping protein protein subunits that react with this mix- 
ture of antibodies. Tissue extract samples are: b, Skeletal Muscle; 
c, Brain; d, Cardiac Muscle; e, Liver;f, Gizzard. These blots were 
reacted with a mixture ofmAb IE5 and mAb 1Bll in order to ob- 
serve the A2 a-subunit as point of reference for the mobilities of 
the/3-subunit isoforms. Only the portion of each blot containing 
capping protein is shown; the pH range of the first dimension gel 
is as indicated in Fig. 1 a. 

ing the COOH terminus of the putatitve/32 protein are en- 
coded by nucleotides that are present in the 3' untranslated 
region of the/31 eDNA, which contains a second stop eodon 
(Fig. 3 B). The organization of the/31 and/32 eDNAs sug- 
gests that the two/3-subunit mRNAs arise from a primary 
RNA transcript that is alternatively spliced, with the /31 
mRNA containing an exon corresponding to nueleotides 
758-870 of the/31 eDNA that is absent from the/32 mRNA. 
This notion is supported by the nueleotide sequences at the 
sites where presumptive splice junctions formed in both 
cDNAs, which fit the consensus sequence for exon-exon 
boundaries (35). For the presumptive splice junction in the 
/32 mRNA and at one site in the B1 mRNA, this sequence 
is AGG, where the underline indicates the first nucleotide of 
the acceptor exon; the sequence at the other presumed splice 
junction in the B1 mRNA is AGA. In addition, the exis- 
tence of alternatively spliced/3-subunit mRNAs is consistent 
with the facts that only one/3-subunit gene was detected by 
Southern blot analysis of genomic DNA and that the mRNA 
transcripts detected in muscle and non-muscle tissues differ 
in size by ,,o100 nucleotides (10). 

Several features can be deduced from the predicted pep- 
tide sequence of the 132 protein. First, the new COOH termi- 
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A 
GGGAGCGGAC CGGGAGCGCC GCCGTTGCCA CCGCCCAGCG CACGCCCGCC G~CCGCCAT 

M I  
GAGTGACCAG CAGCTGGATT GTGCCTTGGA TTTGAT~GG CGTCTGCCTC CGCAGCAGAT 1 ~  

S D 0 0 L D C A L D L R R R L P P 0 O [ 21 
AGAGAAG~T CTCAGTGACC TCATTGACTT GGTCCC~GC CTCTGTGAAG ATCTCCTCTC 1 ~  

E K N L S O L I D L V P $ L C E O L L S 41 
CTCT~TTGAT CAGCCATTQA AGATTGCACG AGAT~GGTG GTAGGAJU~G ~TATCTATT 2 ~  

S V D O P L K [ A R D K V V G K D Y L L 6 1  
GTGTGACTAC ~CAGAGATG GAGACTCGTA TAGATCACCG TGGAGT~CA AGTATGATCC 300 

C D Y N R D G D S Y R S P V S N K Y D P 81 
TCCCCTeGAA GACGGTGCCA TGCCATCTGC TCGCCTGCGC AAGCTGGAGG TGGAAGCCAA 360 

P L E O G A R P S A R L R g L E V E k N 101 
CAATGCCTTT GACCAGTATA GAGACTTGTA TTTCGAAGGT GGAGTCTCCT CTGTCTACCT 420 

N A F 0 O Y R D L Y F E e G V S S V Y L 121 
CTGGGATCTG GATCATGGTT TTGCCGGTGT GATCCTCATT AAGA/LAGCTG GAeATGGATC 4RlO 

W O L D H G F A G V [ L [ K K A G D G S 141 
AAAGAAGATT AAGGGATGCT GGGATTCCAT ¢CACGTGGTG GAGQTTCAGG AGAAATCCAG SqlO 

K K [ K G C ¥ O S I H Y Y E V 0 E K S S 161 
CGGCCGTACT GCTCATTACA AGCTGACCTC CACAGTGATG CTGTGGCTGC AGACTAATAA 600 

G R T A H Y K L T S T V R L W L 0 T N K 181 
AACTGGTTCT GGTACCATGA ACCTTGGCGG GAGCCTCACC AGACAGATGG AGAAAGATGA 660 

T G S G T R N L G G S L T R Q II E K D E 201 
GACTGTGAGC GACTCTTCTC CGCACATAGC CAATATTGGA CGCTTGGTAG AGGACATGGA 720 

T V S D S S P H I A N ! G R L V E D II E 221 
AAACAAAATC AGAAGTACAC TGAATGAGAT TTATTTTGGA AAAACAAAGG ACATCGTGAA 760 

N K I R S T L N ( [ Y F G K T K O [ V N 2ql 
TGGGCTGAGG TCTGTGCAGA CTTTTGCAGA CAAATCAAAA CAAGAAGCTC TTAAAAATGA IIq, O 

G L R S V 0 T F A D K S K Q E A L K N D ~61 
CCTGGTGGAG GCTTTGAA, GA GAAAG;CAGCA AAGI'~'AAA~T ACTCTTCATG CTAACAAGAC 900 

L V E k L K R K 0 0 S • 272 
ATGCCATGCA CTCGTTAGAT TCCTTTCTTA GAAAACTCAT CCCCCTGACC TTTTCTGTTA 
CGTCACGTCA CAATTTGCAT CCAATACTAT TCATGCAACG CCATCTTCTC CCCATGAATA 1020 
AAGCTGTACA AACTTTAAAA AAAAAAAA 1048 

B 
ATG 757 14ol) 871 

I I I I 131 ©ONA 
ATG 

I I "  p2 eDNA 

C 

GGAG&GCCAC AGACGCCGGG &¢AGGGACCG TCGCCGCCGC CGCCACCATG AGCGATCAGC 60 
M S D 0 q 

AGCTGGACTG CGCCTTGGAC CTGATGAGGC GCCTGCCTCC ACAGCAGATT GAGAAGAACC 120 
q L D C A L 0 L M R R L P P O O I E K N 2q 
TCAGCGATCT GATCGACCTG GTCCCCAGTC TGTGTGAAGA TCTCCTGTCA TCTGTTGACC t80 
L S D L I O L V P $ L C E O L L $ S V O q~, 
AGCCCCTGAA AATTGCCAGA GACAAGGTGG TGGGCAAGGA TTACCTTTTG TGTGACTACA 2q0 
0 P L K I A R D K V V G K O Y L L C O Y 6q 
ACAGAGACGG GGACTCCTAT AGGTCACCGT GGAGTAACAA GTATGACCCT CCTTTGGAAG 300 
N R O G O $ Y R $ P V $ N K Y 0 P P L ( 8q 
ATGGGGCCAT GCCATCTGCT CGGCTCAGAA AGCTGGAGGT AGAGGCCAAC AATGCCTTCG 360 
D G A H P $ A R L R I< L E V E A N N A F 10 u, 
ACCAATACCG AGACCTGTAT TTTGAAGGTG GGGTCTCATC AGTCTACCTC TGGGATCTTG q20 
D Q Y R 0 L Y F ( G G V S S V Y L V O L 12q 
ATCATGGCTT TGCTGGAGTG ATCCTCATAA AGAAAGCTGG AGATGGATCC AAGAAGATCA qSO 
0 H G F A G V ] L [ K K A G D G $ K K l Iqq 
AAGGCTGCTG GGATTCCATC CACGTGGTGG AAGTGCAGGA GAAGTCCAGC GGCCGTACTG ,~0  
K G C V O S I H V V E V Q F K S S G R T 16q 
CCCATTACAA GTTGACCTCC ACGGTGATGC TATGGCTGCA AACCAACAAA TCCGGCTCGG 600 
A H Y K L T $ T V M L V L O T N K S G S 18q 
GCACCATGAA CCTGGGAGGC AGCCTAACCA GACAGATGGA GAAAGACGAA ACTGTGAGTG 
G T M N L G G $ L T R O M E K 0 ( T V $ 20~ 
ACTGTTCCCC ACACATAGCC AACATCGGGC GCCTGGTGGA GGACATGGAA AACAAAATCC 720 
D C S P H l A N I a R I. V E D M E N K I 22q 
GAAGCACGCT GAATGAGATC TACTTTGGAA AAACAAAGGA CATCGTCAAC GGGCTGAGAT "780 
R S T L N [ l Y F G K T K D I V N G L R 2qq 
CTCTTGATGC TATCCCCGAC AACCACAAGT TTAAGCAGTT GCAGAGGGAA CTTTCTCAAG BII0 
$ L O A I P D N H K F K 0 L O R E L $ O 26q 
TGCTGACCCA GCC, CCAGGTC TACATCCAGC £TGATAATTG AC~CCGACCCA GGTCTGTGCA 900 
V L T 0 R O V Y l O P O N • 277 S V O 
GACGTTTGCA GACAAATCAA AGCAAGAAGC GCTTAAGAAC GACCTGGTGG AGGCCTTGAA 960 

T F A O K S K O E A L K N O L V E A L K 
GAGAAAGCAG CAGTGTTGAA GACCTCTGCT TCACGCTAAC CGGACACGCC ATGCACTCGT 1020 

R K O 0 C * 272 
TAGGTTCCTT TCTTTAGAAA ACTCGTTTTC TGCTCCTTTT CCCTCTTCCT TTCCCGCCCT 1080 
GACAGGTCAC ATAACAGTTT GCATCGACCA CGCAGCGCCA TCTCTCCCCC AAAATAAAGT I IqO 
CCGATAACCA CCCTCCTCTG GCTCCAAGGC CTGCTTCCCA CGACGTTTCC ATAGAGACCG 1200 
TGTGGTTTTG TTCGCCTGTC CCCCTTCCTT CCCTTGCCCA TTTATAGGCA CAGATACACT 1260 
GTCTGACACC GCTCCCTCCA TCTTTTTGTT ACATTGGTGT AAAAAATGTA AAACAAAAAA 1320 
TTTTATGAAC TAACTGGTGT GTGAGAGAAG AAACTGGAGA TCTGATCCGT GTGTGTGTGG 1380 
GAGTTGCTTG GAGTCAGGGC TGGGGACAGG GGACAGCAGT GGAGGAAGGA GTGATGTCCT IqqO 
CAGCACTGTC CTGCACAGGT GGACCCTTGT CCCAAGGAGA CCATGCTGGG GTGGGGTGGG 1500 
GCTGGCGACC GGCTGCTCTT CAGGCCAGGT GCTTTTCTGT CAATTTTTAT GGAATGCAAA 1660 
AGGAGTTTTT TGTTTTATTT TGGTTTTTTT TTGTAAAGCT TAAACAGACA AAAAAATCTA 1620 
CATCTTCTAC TTGAGCCTCC ATACTTAAAA AAAAAAAAAA A 1661 

Figure 3. (A) Consensus nucleotide sequence of the chicken 82 
eDNA and the amino acid sequence of the 82 isoform. A consensus 
polyadenylation signal is at nucleotides 1017-1022; the stop codon 
is indicated by an asterisk. These sequences are in GenBank (acces- 
sion number U07826). (B) Diagram showing a comparison of the 
81 and 82 cDNAs. The positions of the start codon (AIG) and the 
stop codon (stop) are indicated. Nucleotides 758-870 of the 81 
eDNA, which are missing from the 82 eDNA, are indicated by the 
dashed lines. (C) Consensus nucleotide sequence and predicted 
protein sequence of mouse 8-subunit cDNAs. The nucleotide se- 
quence of a 81 eDNA (GenBank accession number U10406), is 
shown with the predicted amino acid sequence underneath. A 82 

Figure 4. Western blots of two-dimensional gels of chicken tissue 
extracts probed with a mixture ofmAb 1Bll, which detects primar- 
ily the A2 subunit, and affinity-purified 82-subunit specific anti- 
bodies. Panel a shows a drawing of the proteins that react with this 
mixture of antibodies. Tissue extract samples are: b, pectoral mus- 
cle; c, Brain; d, Skeletal Muscle; e, Liver;f, Gizzard. These blots 
were reacted with a mixture of mAb 1B11 and the 82-specific anti- 
bodies in order to observe the A2 c~ subunit as point of reference 
for the mobilities of the 8-subunit isoforms. Only the portion of 
each blot containing capping protein is shown; the pH range is as 
indicated in Fig. 1 a. 

nus predicted for the f12 protein no longer contains the epi- 
tope for mAb 1E5, which was mapped within 25 amino acids 
of  the COOH terminus of the ~ protein (28); thus, the lack 
of reactivity of  mAb 1E5 with the B2 protein on Western 
blots of 2D gels is consistent with the absence of  the epitope. 
Second, the isoelectric point predicted for the protein en- 
coded by the/~2 eDNA is 5.8, which is close to the observed 
isoelectric point of the B2 protein on 2D gels, and different 
from the isoelectric point of  5.3 predicted from the sequence 
of  the E1 protein and observed for the B1 protein on 2D gels. 
Third, the molecular mass predicted for the 82 protein is 
slightly smaller than that predicted for the B1 protein (30,613 
kilodaltons for/32 vs 31,367 daltons for/~1); this is con- 
sistent with the slightly faster mobility of the B2 protein in 
SDS gels. 

cDNA (GenBank accession number U10407) differs from the se- 
quence shown in that nucleotides 801-913, underlined here, are 
deleted. This deletion gives the alternative predicted protein se- 
quence for the COOH terminus of the B2 isoform as indicated un- 
der the nueleotides 913-997. Stop eodons are indicated with aster- 
isks. In addition, the 82 eDNA has a slightly shorter 5' untranslated 
sequence, starting at nucleotide 52, and uses an alternative polyad- 
enylation site after nucleotide 1177. A similar alternative polyade- 
nylation site was also observed for some 81 eDNAs. A polyadenyla- 
tion signal at 1155-1160 is underlined. 
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Verification That the [32 eDNA Encodes the B2 Protein 

To verify that the [32 eDNA encodes the B2 protein, we pre- 
pared affinity-purified antibodies specific for the 27 amino 
acids predicted from the B2 eDNA to be at the COOH termi- 
nus of the B2 protein. These antibodies recognized only the 
B2 protein on Western blots of 2D gels of brain, liver, 
cardiac muscle, and gizzard tissue extracts (Fig. 4, c, d, e, 
and f ) .  On the basis of its reaction with the B2-specific anti- 
bodies, we designate the B2 protein observed on the Western 
blots as the/52 isoform. The/52-specific antibody did not re- 
act with the B1 or BI' proteins; thus, no/5 subunit was de- 
tected in extracts of skeletal muscle using the B2-specific an- 
tibody (Fig. 4 b). In brain (Fig. 4 c), a minor species having 
a slightly more acidic isoelectric point than the B2 protein 
also was detected by the B2-specific antibody. 

The minor forms of the/5 subunits, designated here as the 
BI' and BT proteins, react with mAb 1E5 and the B2-specific 
antibodies, respectively. Most likely these subsets of /5 
subunits (B1/BI' and B2/B2~ are related by posttranslational 
modifications that result in forms of each protein that differ 

slightly in isoelectric point. Different levels of phosphoryla- 
tion could explain the different isoelectfic points, however, 
no phosphate (<0.1 mol/mol) was detected in purified cap- 
ping protein of skeletal muscle, which contains the BI' pro- 
tein (9). 

Expression of the [32 mRNA Correlates with the 
Expression of the [32 Protein 

To correlate the expression of the [32 mRNA and the/52 pro- 
tein, we analyzed the expression of the/51 and/52 mRNAs 
in a variety of chicken tissues using RNAse protection analy- 
sis (Fig. 5). The RNA probes used in these experiments were 
designed to detect/5-subunit mRNAs that either contained or 
lacked the 113 nucleotides that distinguish the/51 mRNA 
from the/52 mRNA (Fig. 5 C). Hybridization of probe 419 
(Fig. 5 A) to [31 mRNA yields two fragments of 240 nt and 
174 nt, and hybridization to/52 mRNA yields one fragment 
of 410 nt. Likewise, hybridization of probe 533 (Fig. 5 B) 
to/~1 mRNA yields one fragment of 533 nt, and hybridiza- 
tion to/52 mRNA yields two fragments of 244 nt and 174 

Figure 5. RNAse protection assay for 
identification of the/31 and/32 mRNAs 
in chicken tissues. Samples of poly(A +) 
RNA used in the assays are: Sk, Skeletal 
Muscle; B, brain; Sp, spleen; G, giz- 
zard; L, liver; t, yeast tRNA. A shows 
samples hybridized with probe 419; B 
shows samples hybridized with probe 
533. Lanes labeled 533 and 419 contain 
samples of probe 533 and probe 419, 
respectively. 32p-labeled DNA size 
markers obtained from Hpall-digested 
pBR322 are in lanes marked Mand their 
sizes in nucleotides are indicated on the 
side of each panel. (C) Diagram of the 
131 and/32 lnRNAs and their expected 
patterns of hybridization with probe 533 
and probe 419. Probe 533 (stippled 
bars) hybridizes completely with B1 
mRNA and protects •533 nt; probe 533 
partially hybridizes with/32 mRNA and 
two products of 174 nt and 244 nt are 
protected. Probe 419 (hatched bars) 
hybyridizes completely with B2 mRNA 
and protects a fragment of ,'o419 tat; 
probe 419 hybridizes with B1 mRNA 
such that fragments of 240 nt and 174 nt 
are protected. 
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nt. In striated muscles, such as pectoral muscle and cardiac 
muscle (not shown), an mRNA corresponding to the /5'1 
mRNA was the major form of/5-subunit mRNA expressed; 
a small amount of an mRNA corresponding to the B2 mRNA 
also was detected in these tissues. In gizzard, the ratio of B1 
and B2 mRNAs was approximately 2:1. In liver, intestine 
(not shown), and spleen, only the B2 mRNA was detected; 
in brain, the/52 mRNA was the predominant transcript, but 
a small amount of/51 mRNA also was detected. In addition, 
several cDNAs previously isolated by Us from chicken skele- 
tal muscle (10), were sequenced in the relevant region to de- 
termine which 3-subunit isoform each encoded; 9 of 10 were 
B1 cDNAs and one was a/52 eDNA based on the absence of 
the 113 nucleotides found exclusively in the B1 eDNA. Thus, 
the/52 mRN is expressed in non-muscle tissues and in vary- 
ing amounts in muscle tissues, which primarily express the 
B1 mRNA. 

Mouse and Human Capping Protein [3 Subunits Are 
Nearly Identical to the B-Subunit Isoforms of  Chicken 
Capping Protein 

We isolated several complete cDNAs for mouse capping pro- 
tein B subunit from a newborn mouse skeletal muscle library 
by screening with a chicken 32 eDNA. Sequencing of these 
cDNAs indicated that two different types of /5-subunit 
cDNAs were isolated: one was similar to the chicken/51 
eDNA and the other was similar to the chicken/52 eDNA. 
The proposed splicing sites are the same in mouse and 
chicken. The sequences of the mouse /51 eDNA, the 
predicted protein sequence of the mouse ~ isoform, and that 
predicted for the COOH terminus of the mouse/52 isoform 
are shown in Fig. 3 C. In addition, two partial eDNA se- 
quences for a putative capping protein/52 subunit of human 
liver and testis were identified in the Genbank data base by 
searching for proteins homologous to the/31 protein using 
BLASTX (2). Additional cDNAs for this human/5 subunit 
were isolated from a HepG2 eDNA library. 

The COOH-termini predicted for the chicken/52 isoform, 
the mouse 32 isoform and the human/52 isoform are 96% 
identical; those for the human and mouse/52 isoform are 
100% identical (Fig. 6 A). Likewise the COOH-termini 
predicted for the/~1 isoforms of chicken and mouse are 88 % 
identical (Fig. 6 B). In contrast, the COOH-termini of the 
chicken 31 and/52 isoforms are only 22 % identical. This 
finding is particularly remarkable because the COOH- 
termini of capping protein/5 subunits also are not conserved 
in comparisons to lower species. In this region of the protein, 
vertebrates, Dictyostelium, budding yeast, and nematode 
share only 17-36% identity. However, outside this region, 
within the NH2-terminal ~245 of * 275 amino acids, the 3 
subunits are 47-90 % identical among the different species. 

Capping Protein Isoforms in the Dynactin Complex 

Dynactin complex is composed of a number of polypeptides, 
including the dynactin polypeptides p160/p150 (24, 48), the 
aetin-related protein, Arpl (formerly named actin-RPV), 
(31, 42), and capping protein (46). Western blots of 2D gels 
demonstrate that capping protein of chick brain dynactin 
complex contains the/52 isoform (Fig. 7). mAb 1E5 did not 
react with anyproteins of dynactin complex (data not 
shown). 
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Figure 6. Alignment of amino acid sequences of the COOH- 
terminal region of capping protein B subunits of different species. 
(A) Amino acid residues identical to the chicken/32 isoform are 
shown in inverted style (white letter on a black background). (B) 
Amino acid residues identical to the chicken/31 isoform are shown 
in inverted style. The arrow indicates the position where the se- 
quence of the chicken B 1 and B2 isoforms diverge due to alternative 
splicing; their NH2-terminal sequences are identical preceding 
this position. The sequence alignments were produced by the 
CLUSTAL V method (26) using MegAlign (DNAstar). The stip- 
pled box above each set indicates a region that is strongly predicted 
to form an cx helix in all the sequences as determined by the profile 
network prediction program v. 11.93 (43). The subset of the predic- 
tion with most accuracy (>82 %) is reported. Note that the COOH- 
termini of the chicken, human, and mouse B2 isoforms are nearly 
identical (96 % identity) as are the COOH-termini of the chicken 
and mouse ~1 isoforms (88% identity). In contrast, this COOH- 
terminal region is only 17-36% identical in comparisons of the B1 
and B2 isoforms and the ~ subtmits ofD. discoideum, S. cerevisiae, 
and C. elegans. In contrast, the NH2-terminal regions of these B 
subunlts are 47-90% identical (3, 25, 52). 

Figure 7. Western blots of 
two-dimensional gel of puri- 
fied dynactin complex probed 
with (a) polyclonal anti- 
capping protein and (b) a mix- 
ture of mAb IBll and rabbit 
~2 subunit-specific antibod- 
ies. The capping protein of the 
dynactin complex is com- 
posed of the A1 and A2 
subunits and the B2 subunit. 
Only the portion of the blot 
containing capping protein is 
shown; the pH range is as in- 
dicated in Fig. 1 a. 
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The [31 and {32 Isoforms Are Differentially Localized 
in Cardiac Myocytes 

Cardiac muscle contains both capping protein/3-subunit iso- 
forms (Figs. 1, 2, and 4). We used mAb 1E5, which is 
specific for the/31 isoform, and affinity-purified rabbit/32- 
specific antibodies to determine the locations of the/3-sub- 
unit isoforms in cryosections of adult chicken cardiac ventri- 
cle and in cultured cardiac myocytes. The specificity of these 
antibodies for proteins in whole cell extracts of chicken tis- 
sues and of cultured cardiac myocytes is shown in Western 
blots in Fig. 8. Only a single band corresponding to a cap- 
ping protein/3 subunit was detected by these antibodies in all 
extracts tested. The/31 protein was enriched in skeletal and 
cardiac muscles, whereas, the/32 protein was enriched in 
brain and liver (Fig. 8 A). Both/3-subunit isoforms were 
detected in extracts of cardiac myocytes grown in culture 
(Fig. 8 B). 

In cryosections of adult chicken cardiac muscle, capping 
protein containing the /31 isoform was located at Z-discs 
(Fig. 9 a) and the/32 isoform was enriched at intercalated 
discs (arrowheads in Fig. 9 b). The localization of the/32 iso- 
form at intercalated discs, which are the sites where the ter- 
minal sarcomere of each myofibril associates with the sar- 
colemma at the fascia adherens junction (21, 53), was 

confirmed by double-labeling with anti-vinculin (40) (arrow- 
heads in Fig. 9, b and c). The/32 isoform also was detected 
in a punctate pattern throughout the cytoplasm, some of 
which was observed as bright, linearly arrayed foci (adjacent 
to bracket in Fig. 9 b). This punctate staining suggested that 
some/32 isoform was associated with the myofibril bundles. 
Some of the cytoplasmic staining also may correspond to 
capping protein of dynactin complex. Costameres, which 
also contain vinculin (41), were not intensely labeled with 
the/32-specific antibodies, however, we cannot rule out the 
possibility that some/32 isoform may be a minor component 
of costameres and that we do not detect it by immunola- 
beling. The pattern of immunolabeling obtained using the 
/32-specific antibodies was similar with preparations of 
affinity-purified antibody from two different rabbits; immu- 
noglobulins from preimmune sera of these rabbits did not 
stain the cardiac tissue. 

Many features of the subcellular distributions of the/3-sub- 
unit isoforms in cardiac myocytes grown in culture were 
similar to their distributions in cardiac tissue. The/31 iso- 
form was assembled at Z-discs of myofibrils (Fig. 10, a, c, 
e, and g); some/31 isoform was diffusely distributed through- 
out the cytoplasm. The /32 isoform was not at mature 
Z-discs, but was located at cell-cell junctions and at plaque- 
like structures that were typically located at the ends of the 

Figure 8. Characterization of the/~1- and 
/32-specific antibodies on Western blots 
of one-dimensional SDS gels containing 
whole cell extracts of chicken pectoral 
muscle, cardiac muscle, brain, liver, 
and of extracts of cultured chick cardiac 
myocytes. (A) Blots of 10% SDS gels 
loaded with samples of chicken tissue 
extracts were probed with mAb IE5, 
which identifies the/31 protein, alfinity- 
purified/32-specific antibodies and im- 
munoglobulins isolated from the preim- 
mune serum from the rabbit that 
provided the anti-/32. Lanes are loaded 
as: pectoral muscle (lane S), cardiac 
muscle (lane C), brain (lane B), and 
liver (lane L); M indicates the molecular 
mass markers which include proteins of 
97, 66, 55, 52, 40, 31, and 21 kD. The 
small amount of the/32 protein present 
in cardiac muscle is not detectable with 
the amount of total protein loaded in this 
lane of the one-dimensional gel. Note, 
however, that the two-dimension gels of 
Fig. 1 d and Fig. 4 d show the/32 isoform 
in cardiac muscle; we consistently ob- 
serve a difference in the sensitivity of de- 
tection ofB subunits on 1D and 2D gels. 
A Coomassie blue-stained gel of the 
proteins in the tissue extracts is labeled 
CB. (B) Samples of a whole cell extract 
of cultured cardiac myocytes was loaded 
on a 10% SDS gel and Western blots 
were probed with mAb 1E5 (1E5),/32- 
specific antibodies (B2), and pre- 
immune immunoglobulin (Pre-). Mo- 
lecular mass markers are the same as 
described in A. 
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Figure 9. Immunofluores- 
cence localization of the cap- 
ping protein /31 and /32 iso- 
forms in cryosections of adult 
chicken cardiac muscle. Sec- 
tions were labeled with mAb 
1E5, to detect the/31 protein 
(a) or/Y2-specifie antibodies 
(b); the section shown in b was 
also labeled with anti-vinculin 
(c). The/~1 protein is local- 
ized at Z-discs (a). The #2 
protein is enriched at the in- 
tercalated discs (arrowheads 
in b) and is distributed in a 
punctate pattern throughout 
the cytoplasm; some punctate 
stainino was in linearly arrayed 
foci (bracket in b). Double im- 
munofluorescence labeling for 
vinculin confirms the identi- 
fication of the intercalated 
disc (arrowheads in b and c). 
Bar, 10 #m. 

myofibrils (Fig. 10, b, d,f ,  h, and j ) .  In the most mature myo- 
cytes with many Z-discs, the/$2 isoform was predominantly 
at cell-cell junctions (arrows in Fig. 10, a, b, c and d). In 
myocytes with fewer Z-discs, the/$2 isoform was detected 
at plaque-like structures that are likely to be myofibril- 
membrane attachment sites. By observing different focal 
planes, it appeared that the plaque-like structures were lo- 
cated near the sarcolemma, most often at the bottom surface 
of the myocytes. The association of the/$2 isoform at these 
sites varied depending on the maturity of the myofibrillar 
structures. In some myocytes, the/$2 isoform was associated 
with irregularly spaced, plaque-like structures along myo- 
fibrils (arrows in Fig. 10, g and h) or along non-striated 
fibrillar structures that were continuous with striated myo- 
fibrils (arrow in Fig. 10, e and f ) .  In myocytes that were just 
beginning to form Z-discs, the ~2 isoform was continuously 
distributed along fibrils but was absent from regions where 
/$1-containing Z-discs were forming (arrows in Fig. 10, i 
and j ) .  

The localization of the/32 isoform at cell-cell junctions 
was confirmed by double labeling with anti-A-CAM (Fig. 11, 
a and b). In the myocyte shown in Fig. 11 a, the/$2 isoform 
also was detected along the cell perimeter that was not in 
contact with other cells. The/$2 isoform also was detected 
at periodically arrayed structures that are likely sites of con- 
tact between nascent myofibrils and the membrane (small ar- 
rows in Fig. 11 a). In myocytes with few myofibrils, the/$2 
isoform was observed at structures that resembled sub- 
sarcolemmal adhesion plaques (SAPs) which also contain 
vinculin (32) (arrows in Fig. 11, c and d). Interestingly; the 
/$2 isoform was not a component of the vinculin-containing 
attachment plaques of cells in the myocyte cultures that 
lacked myofibrils (Fig. 11, e and f ) .  In these cells, which are 
presumably fibroblasts or undifferentiated myocytes, the/$2 
isoform was distributed in a punctate pattern throughout the 
cytoplasm. A similar punctate distribution was observed for 
the B2 isoform in chick embryo fibroblasts isolated from 
skin; neither focal contacts nor stress fibers were labeled by 
anti-B2 in fibroblasts (not shown). 

Discussion 

Our analysis of chicken capping protein indicates that two 
/$-subunit isoforms, named/$1 and/$2, are expressed and 
arise from alternatively spliced/$-subunit mRNAs. The ~1 
isoform is the predominant, but not exclusive, isoform of 
muscle tissues and the/$2 isoform is the predominant, but 
not exclusive, isoform of non-muscle tissues. In cardiac myo- 
cytes, which express both/$-subunlt isoforms, the isoforms 
are localized to different structures. The differential localiza- 
tion of the capping protein /$-subunit isoforms in cardiac 
myocytes suggests that each isoform performs specific func- 
tions to organize the actin filaments of myocytes. 

The two capping protein/$-subunit isoforms differ only in 
amino acids at their COOH-termini, thus, any differences in 
the functions of these isoforms, including the differential 
sorting to structures in cardiac myocytes, may be attributed 
to this region of the molecule. From an evolutionary per- 
spective, it is remarkable that the COOH terminus of the 
chicken/$2 isoform is nearly identical to the COOH-termini 
of the homologous capping protein/$ subunit of humans and 
mice. Likewise, the COOH-termini of the chicken and 
mouse/$1 isoforms are nearly identical. This region of the 
/$ subunit is of particular interest because the COOH termi- 
nus of the chicken/$1 isoform is implicated in binding actin 
(28). In contrast, no significant similarity is found in com- 
parisons of the COOH-termini of the/$1 and/$2 proteins to 
each other or to the known invertebrate/$ subunits, even 
though the NH2-termini of the/$ subunits, which comprise 
the bulk of the molecule, are similar among all species. The 
very high similarities among the COOH-termini of the 
chicken, mouse and human/$2 isoforms and between the 
chicken and mouse ~1 isoforms, suggest that the ~-subunit 
isoforms participate in cellular functions that are important 
and specific for vertebrates. 

Double immunolabeling using isoform-specific antibodies 
showed that the/$-subunit isoforms were distributed to dis- 
tinct structures in cardiac muscle and myocytes. One possi- 
ble trivial cause for the differential localizations of the two 
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Figure 10. Double immunofluorescence localization of the 31 and 32 isoforms in cultured cardiac myocytes using mAb 1E5 to identify 
the/31 isoform (a, c, e, g, and i) and/32-specific antibodies to identify the 32 isoform (b, d,f ,  and j ) .  The/31 isoform of capping protein 
was localized at Z-discs and was diffusely distributed in the cytoplasm. The 32 isoform was not a component of mature Z-discs but was 
enriched at cell-cell junctions (arrows in b and d) and at sites where myofibrils contacted the sarcolemma (arrows in b and h). The ~2 
isoform also was detected along non-striated fibrils that are contiguous with striated myofibrils (arrow in e and f)  and at plaque-like struc- 
tures along nascent myofibrils (arrows in h)). In some myocytes with few mature Z-discs, the/32 protein was distributed continuously 
along fibrillar structures (i and j ) ;  however, as Z-discs formed along these fibrils (arrows in i), the/32 protein appeared to be cleared from 
those regions with nascent Z-discs (arrows in j ) .  Bar, 10 ~m. 

The Journal of Cell Biology, Volume 127, 1994 462 



Figure 11. Double immunofluorescence localization of the/32 isoform (a, c, and e) and either A-CAM (b) or vinculin (d and f). The/32 
isoform was distributed along cell-cell junctions labeled by anti-A-CAM (a and b). The/32 isoform also was found at regions along the 
cell perimeter that were not in contact with other cells; a nascent myofibril appeared to be forming along one region of the cell edge, 
where the/32 isoform was arrayed in a periodic pattern (small arrows in a). The/32 isoform was localized in myocytes with vinculin at 
sub-sarcolemmal adhesion plaques (SAPs) (arrows in c and d), which are thought to be sites where nascent myofibrils attach to the plasma 
membrane (32). The vinculin-containing focal contacts of cells in the myocyte cultures that are presumably fibroblasts do not contain the 
/32 isoform (e and f). In these cells, the/32 isoform was in a diffuse, punctate pattern. Bar, 10 ftm. 
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/3-subunit isoforms is that the isoform-specific antibodies 
may have varying accessibilities to their respective antigens 
at different cellular locations. To minimize this possibility, 
we tested several protocols for fixation and cell permeabili- 
zation before the double-labeling experiments. Under no 
condition was the/32 isoform detected at mature Z-discs in 
cardiac myocytes or the/31 isoform enriched at intercalated 
discs or cell-cell junctions. Furthermore, since the isoform- 
specific antibodies each bind epitopes in the unique, COOH 
terminus of their respective protein antigen, we expect that 
this region of each protein should have equal access to its 
specific antibody. However, we cannot exclude the possibil- 
ity that a molecule may interact specifically with the COOH 
terminus of only one of the isoforms at a specific location, 
therebyblocking the binding of antibodies to that isoform at 
the location and preventing detection of the isoform by im- 
munolabeling. 

In cardiac myocytes, the/31 isoform is assembled at Z-discs, 
whereas the/32 isoform is located at cell-cell junctions, at 
sites of myofibril-sarcolemma attachment, particularly inter- 
calated discs, and throughout the cytoplasm. One can specu- 
late about possible reasons for the striking differential distri- 
bution of these isoforms. Actin filaments of sarcomeres and 
those of cell junctions may require capping protein isoforms 
with different functional properties. For example, actin illa- 
ments of cell junctions may be more dynamic than actin illa- 
ments of the sarcomere, and the capping protein isoform at 
cell junctions may bind actin less tightly or have a unique 
regulatory function not required of sarcomeric capping pro- 
tein. The two ot-subunlt isoforms of capping protein pre- 
pared as cd/31 and o~2/31 heterodimers by in vitro translation 
bind actin filaments with different affinities (11). Whether the 
ot-subunit isoforms preferentially associate with specific 
/3-subunit isoforms in vivo and whether the od/32 and ot2/32 
heterodimers also show differential actin-binding properties 
are not known. 

Since the COOH terminus of the 131 isoform was impli- 
cated as part of the actin-binding site for capping protein of 
skeletal muscle (28), differential binding of the 131 and/32 
proteins to different actin isoforms is another pogsible reason 
for the differential localization of the capping protein iso- 
forms. A common feature of the distribution of the/32 iso- 
form is its localization at sites where actin filaments contact 
the plasma membrane. The/32 isoform may interact prefer- 
entially with the barbed end of filaments composed of non- 
muscle actin isoforms, which have been found to be enriched 
at the plasma membrane of a variety of cells. B-Actin is en- 
riched in regions of the membranes of erythrocytes, en- 
dothelial cells, vascular pericytes and 3T3 fibroblasts (27), 
and in skeletal muscle, the cortical actin filaments are 
enriched in non-muscle 3,-actin as compared with the myo- 
fibrils (16, 39). Preliminary actin polymerization assays indi- 
cate that capping protein composed of the/32 isoform inter- 
acts with conventional muscle tx-actin (Schafer, D. A., and 
J. A. Cooper, unpublished) and human capping protein pre- 
pared as tx2/32 by in vitro translation binds actin (Barron- 
Casella, E. A., M. A. Torres, S. W. Scherer, H. H. Q. Heng, 
L.-C. Tsui, and J. E Casella, manuscript submitted for publi- 
cation). Analysis of this question, including tests using 
different actin isoforms, will require additional work. 

An alternative possible reason for the differential localiza- 
tion of the capping protein isoforms is that each isoform may 

specifically interact with other proteins that exist exclusively 
at one location or another. For example, the/32 isoform may 
interact with a component of cell junctions, such as cadherin 
(23, 51) or a catenin, and either nucleate the formation ofac- 
tin filaments or stabilize the barbed end of the actin filaments 
at that location. Likewise, the/31 protein may bind to a com- 
ponent of the Z-disc, such as titin or nebulin, and, thereby, 
organize the actin filaments of the sarcomere. 

Some of the cytoplasmic/32 isoform may be associated 
with dynactin complex, which also was distributed in a punc- 
tate pattern in chick embryo fibroblasts (24). The identifica- 
tion of the/52 isoform of capping protein in dynactin com- 
plex, and its location at one end of the short Arpl-containlng 
filament that comprises part of dynactin complex (46), raises 
the possibility that capping protein also interacts with actin- 
related proteins. However, dynactin complex also contains 
1 mol/mol conventional aetin (46) and the capping protein 
may bind this molecule, which then interacts with Arpl to 
form the short filament. 

The association of the/32 isoform with nascent myofibril- 
lar structures in cardiac myocytes in culture suggests a role 
for this capping protein isoform in the early stages of 
myofibrillogenesis. In myocytes in culture that contained 
abundant, mature myofibrils, the/32 isoform was concen- 
trated at cell-cell junctions where myofibrils associated with 
the plasma membrane. However, in myocytes with fewer ma- 
ture myofibrils, the/32 isoform also was associated with peri- 
odically arrayed structures that resembled nascent Z-bodies 
and with plaque-like structures that appeared to be sites of 
contact between the myofibrils and the sarcolemma. The 
detection of the/32 isoform at these vinculin-c0ntaining myo- 
fibril-substrate adhesion plaques, which have been called 
SAPs (32), and its absence from focal contacts of non- 
myogenic cells suggests that the /$2 isoform functions to 
stabilize the barbed end of membrane-associated actin fila- 
ments at the ends of nascent myofibrils. Electron micro- 
scopic examination of similar myofibril-membrane attach- 
ment sites in rat cardiac myocytes shows that the filaments 
comprising these sites are not striated and contain thick actin 
cables that associate laterally with the membrane at electron- 
dense plaques (7). Capping protein may nucleate actin fila- 
ment formation at these sites or may stabilize the barbed end 
of actin filaments at these sites. 
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