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A single-nucleus RNA-sequencing pipeline to
decipher the molecular anatomy and
pathophysiology of human kidneys
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Defining cellular and molecular identities within the kidney is necessary to understand its

organization and function in health and disease. Here we demonstrate a reproducible method

with minimal artifacts for single-nucleus Droplet-based RNA sequencing (snDrop-Seq) that

we use to resolve thirty distinct cell populations in human adult kidney. We define molecular

transition states along more than ten nephron segments spanning two major kidney regions.

We further delineate cell type-specific expression of genes associated with chronic kidney

disease, diabetes and hypertension, providing insight into possible targeted therapies. This

includes expression of a hypertension-associated mechano-sensory ion channel in mesangial

cells, and identification of proximal tubule cell populations defined by pathogenic expression

signatures. Our fully optimized, quality-controlled transcriptomic profiling pipeline constitutes

a tool for the generation of healthy and diseased molecular atlases applicable to clinical

samples.
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The kidney and lower urinary tract in mammals have
undergone unique adaptations during evolution to main-
tain the composition of blood and homeostasis (water

conservation, acid, base and electrolyte balance, red blood cell
production, blood pressure regulation). To achieve this, the kid-
ney has a complex cellular architecture consisting of about a
million nephrons in humans1 that are comprised of more than 40
different cell types2. This includes an extensive tubular compo-
nent that shows a continuous epithelial lining from the beginning
of the filtration in the glomerulus, through different segments of
the nephron, into the collecting ducts that will ultimately drain
into the ureter and bladder. These epithelia provide complex,
specialized region-specific roles during this process and interact
with a highly complex and heterogeneous niche consisting of:
interstitium; a varied vascular network; lymphatics; resident
immune cells; the extracellular matrix; and nerves. Defects in this
process can have serious health issues, including chronic kidney
disease (CKD) and end-stage renal disease (ESRD) that affects
>25 million Americans, incurs more than $50 billion in health-
care costs and are significant causes of morbidity and
mortality3–6. Therefore, fully understanding the cellular compo-
sition and associated functional attributes that underlie normal
and aberrant kidney function is of high interest for efforts in
rebuilding an adult human kidney and for personalized medicine.
However, a major impediment to single-cell interrogation of such
solid tissues, characterized by high epithelial content and extra-
cellular matrix, remains to be the activation of gene expression
artifacts, poor viability and disproportionate cell-type recovery
following their enzymatic dissociation. To overcome this, tissues
can be effectively reduced to single-nucleus isolates that can
provide highly accurate cell-type expression profiles7–14 while
reducing dissociative artifacts12. Here we develop a robust tissue
processing and single-nucleus transcriptomic profiling pipeline to
interrogate cell-type diversity and establish a molecular “blue-
print” of adult human kidney tissue. Our approach demonstrates
feasibility of working with limited tissue on a scale compatible
with clinical biopsies, with the advantage of concurrent histolo-
gical registration of tissue content and pathology. Using this
approach, our analysis portrays remarkable cellular and mole-
cular heterogeneity and insights into kidney organization, func-
tion and disease. Additionally, we identify the expression of ~160
disease-associated genes in discrete kidney cell types, providing
new disease targets and unexplored avenues for adaptation or
maladaptation to adverse physiology, such as hypertension.

Results
A kidney tissue processing pipeline for cell type profiling.
Comprehensive cell-type discovery in adult human kidney
requires a robust approach that can allow accurate reflection of
physiological function while minimizing confounding influences
from tissue manipulation. To develop a method that can be
highly reproducible, applicable to biopsy-scale tissue, and max-
imizes assay success rates for adult kidney, we established a tissue
processing pipeline for assessing single nuclei using snDrop-seq8

(Fig. 1a). To this end, we procured kidney tissue from tumor-free
regions of nephrectomies and discarded deceased donor kidneys
having detailed preanalytical parameters (Supplementary Data 1)
and compared multiple preservation and processing methods
(Fig. 1a, Supplementary Data 2). This included cryopreserved and
fresh tissues that were partially dissociated enzymatically using
methods employed for single whole-cell studies (papain/col-
lagenase denoted dissocPC; trypsin/collagenase denoted dis-
socTC). Interestingly, we found that only nuclei from
cryosectioned (~40 µm thick) optimal cutting temperature (O.C.
T.)-embedded frozen tissues and dissociated fresh tissues were

compatible with snDrop-seq. This indicated a possible suscept-
ibility of the kidney nuclear membranes to damage during pro-
cessing, including stress forces needed for isolation from larger
kidney tissue segments. Consistent with this, we found that
fluorescent cytometry, successfully employed in the purification
of brain nuclei7,8, impeded snDrop-seq success on kidney nuclei
(Supplementary Fig. 1a). Therefore, both fresh dissociated and
frozen cryosectioned kidney tissues retained sufficient nuclear
RNA levels for snDrop-seq assays. We achieved further
improvement in cryosectioned tissue quality through preservation
in RNAlater (CryoR), compared with Wisconsin Cold Storage
Solution (CryoW) or maintenance on dry ice or at −80 °C
(CryoF) until nuclei were isolated (Supplementary Fig. 1b). This
permitted greater flexibility in sample processing, both in terms of
the physical locations at which different steps can be performed
and in the timing for execution of the molecular assay. The ability
to use cryosectioned material in these assays further permits
histological verification and spatial registration on adjacent sec-
tions to evaluate the composition of tissue being used for
downstream analysis (Supplementary Data 1). Therefore, these
results have important implications for highly scaled and colla-
borative tissue interrogation efforts across multiple sample pro-
curement and tissue interrogation sites.

To determine the performance of single-nucleus RNA-seq
expression estimates in generating an adult human kidney cell-
type molecular atlas, data from 27 different experiments and 15
different individuals from two different institutions (Washington
University and University of Michigan through KPMP con-
sortium) were combined for analysis (Supplementary Data 2−3).
After quality control filtering (Supplementary Fig. 2a), 17,659
nuclei sequenced to a depth for 1082 unique transcripts on
average detected per nucleus were found to resolve into 30
distinct cell clusters using PAGODA28,15 (Fig. 1b, Supplementary
Data 4). These represented common and rare cell types found in
the kidney, with the expected spatial distribution across cortex
and medullary zones, as well as known and newly discovered
kidney marker gene expression profiles (Figs. 1c, 2a, Supplemen-
tary Fig. 2b–c, Supplementary Data 5−7). We further confirmed
stability of these cluster assignments over varying clustering
parameters, consistent with the distinction of biologically relevant
populations (Supplementary Fig. 3). In this way, we identified all
major components of the glomerulus epithelium, endothelium
and interstitium. This includes: podocytes (POD); uncharacter-
ized epithelial cells (EPC); glomerular capillaries (EC-1, GC) and
mesangial cells (MC) (Fig. 1c). We also detected several renal
tubule populations extending from the proximal tubules (PT-1-5)
to the loop of Henle (LOH), including the descending thin limb
(DTL), thin ascending limb (ATL1-3) and thick ascending limb
(TAL-1-2), and finally through to the distal convoluted tubule
(DCT) (Fig. 1c). The DCT connects to the collecting duct (CD)
through a transitory population of connecting tubule cells (CNT)
that showed graded expression of markers for the DCT and CD
(Fig. 2). Our data delineate the complexity of the collecting
system cell types, including several principal cells (PC-1-3) and
intercalated cells (IC-A1-2, IC-B) consistent with prior
studies16,17, as well as molecularly distinct populations residing
between the cortex and medulla not previously recognized. In
addition to the major proximal and distal nephron populations,
we found: endothelial cells associated with afferent/efferent
arterioles and peritubular capillaries (AEA, EC-3) and both the
ascending and descending vasa recta (AVR, DVR; EC-2-3);
mesangial cells (MC, cluster 26), vascular smooth muscle cells or
pericytes (vSMC/P, cluster 27), interstitial cells (INT, cluster 28);
and tissue-resident macrophages (IMM, cluster 30). Correlation
analysis revealed expected cell-type associations (Supplementary
Fig. 4a, b) and a high correspondence with major cell types
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reported previously in mouse and human studies (Supplementary
Fig. 4c)17,18. However, our snDrop-seq method permitted a
greater resolution of nephric cell types and subtypes compared to
even large-scale human studies19, providing cluster resolution
more accurately representative of expected histological
composition.

Different regions and cell types of the kidney play unique and
key roles in regulating blood pressure by maintaining volume,
electrolyte, and acid-base homeostasis. Dysfunctions can be a
significant cause of CKD and hypertension. As such, several renal
sites are targets for existing antihypertensive treatments, includ-
ing the LOH (loop diuretics), DCT (thiazide diuretics), and the

CD (potassium sparing diuretics). In addition, inhibitors of the
renin angiotensin aldosterone system (RAAS), that regulates
blood pressure and fluid balance, show cardiovascular and renal
benefits, partly through targeting proteins expressed in specific
renal tubule segments20. However, despite advances, hyperten-
sion remains extremely common and uncontrolled blood pressure
is still associated with devastating cardiovascular and renal
outcomes. We next leveraged emerging large-scale genome-wide
data identifying target loci for these disorders to interrogate their
cell-type-specific expression. Our clusters showed significant
(adjusted p value < 0.05, Wilcoxon rank sum test) differential
expression of 111 out of 674 genes identified as expression
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Fig. 2 snDrop-seq clusters show distinct expression profiles. a Dot plot of select average gene expression values (log scale) and percentage of nuclei
expressing these genes within each cluster (Fig. 1b) for known (bold) and newly discovered cell-type marker genes (see Methods, Supplementary Data 7).
b Heatmap showing cluster-specific gene specificity scores (see Methods) for differentially expressed genes associated with CKD eQTL21 and
hypertension risk loci22 (systolic and diastolic blood pressure variants are indicated). The genes corresponding to these clusters are in Supplementary
Data 8. Asterisks indicate higher cluster enrichment (proportion of differentially expressed genes associated with each cluster) of CKD-associated eQTLs
in POD and hypertension risk factors in MC. Source data are provided as a Source Data file. CKD chronic kidney disease, eQTL expression quantitative trait
loci, POD podocytes
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quantitative trait loci (eQTL) associated with CKD21 and 56 out
of 220 genes that were recently linked to hypertension risk from
genome-wide analysis of over a million individuals22 (Fig. 2b,
Supplementary Data 8). Interestingly, we observed restricted
expression for several disease-associated genes in specific cell
types, with PODs and MCs showing the highest enrichment for
CKD and hypertension risk loci, respectively (Fig. 2b, Supple-
mentary Fig. 4d). This observed cell-type specificity, also shown
for mouse single-cell data21, suggests multiple unique function-
alities may contribute to dysfunctional kidney physiology and
hypertension. While validation would be needed to confirm any
causal roles, this analysis can aid in discovery of potentially
physiologically important factors. For instance, we find CNT-
specific expression of the gene encoding the voltage-gated sodium
channel SCN2A, previously found in the brain and critical for
post-natal survival23, yet having no known function in kidney.
Perhaps SCN2A has an uncharacterized role in CNT function, an
area important in salt regulation. Therefore, our single-nucleus
interrogation of the kidney finds not only coverage of major cell
types, but also subpopulations indicative of finer resolution
compared to prior studies on the adult human kidney18,19, and
cell types with enriched expression of CKD and hypertension-
associated loci.

To better understand subpopulations identified in our data and
assess biological from technical variations, we examined more
closely several metadata, quality assessment and quality control
metrics (Supplementary Figs. 5−6). Mitochondrial transcripts
(MT), while not expressed in nuclei and excluded from down-
stream analyses, were found in variable quantities (calculated
prior to MT transcript removal) associated with single-nucleus
data (Supplementary Fig. 5a–c), indicative of mitochondrial
association with the nuclear membranes. Given that elevated MT
can be associated with lower cell viability24, it was expected that
the level of MT in nuclei data may also reflect the quality of the
tissues during processing (Supplementary Fig. 5a). Consistently,
we observed the fewest MTs and stress-induced artifacts in cryoR
samples compared to cryosections processed differently (cryoW,
cryoF) or fresh dissociated samples (dissocPC, dissocTC), while
global gene and transcript levels appeared unaffected (Supple-
mentary Figs. 5a, 6). Interestingly, both the TAL population
(TAL-1, cluster 12) and the S3 PT (PT-5, cluster 7) (Supplemen-
tary Fig. 5b, c), regions with high metabolic demand and prone to
ischemia25, showed MT enrichment consistent with the nephrect-
omy procedure-related warm ischemia (Supplementary Fig. 5c,
d). Thus, knowledge of preanalytical tissue procurement and
processing parameters enabled better interpretation and analyses
of the snRNA-seq data. This allowed us to recognize artifacts and
determine cryoR preservation of archived O.C.T. frozen sections
as the optimal method for snRNA-seq interrogation.

We additionally examined clusters for potential sources of
variations (region, batch, individual, collection, sex) in our data
(Supplementary Fig. 5d, e). While medullary clusters, associated
with the LOH and CDs, were covered mostly from samples from
three individuals, cortical clusters were covered by 14 individuals
with negligible batch effects. However, we did find a PT cluster
that was predominantly derived from a single individual (PT-3,
cluster 5). This cluster was enriched in inflammatory genes
(Supplementary Fig. 6) and could reflect an altered state of this
PT population by underlying disease or procedure. Overall,
averaged expression values for cortex data was highly consistent
between experiments, with slightly greater correlation values
within individuals compared to between different individuals
(Supplementary Fig. 6a, b). Technical reproducibility within
snDrop-seq experiments was found to be very high, as were
expression values between the different sexes (Supplementary
Fig. 6b) and between samples obtained from different tissue

procurement sources (Supplementary Fig. 6c). To examine the
effect of the different tissue processing methods used, we
calculated average expression values for each condition for all
data, cortex and medulla data separately, and within specific cell
clusters or individuals (Supplementary Fig. 6e–j). In each case,
there was a high correspondence, with cryoW showing the lowest
correlation in gene expression values. Differential expression
analysis between the different methods revealed a stress response
signature (including FOS, FOSB, DNAJB1) that was specifically
associated with whole cell dissociative methods and which could
be found in most of the cell types detected (Supplementary
Fig. 6k). However, one CD cluster (PC-2, cluster 17) that showed
stress response gene expression (Supplementary Fig. 6k) was
found to be mostly attributed by dissocP/T processing methods
(Supplementary Data 6, Supplementary Fig. 5d, e) and as such
likely represented a dissociation artifact. CryoR samples showed
the fewest expression artifacts while also exhibiting higher
experimental success rates (>90%) (Supplementary Data 2),
thereby providing an optimized tissue processing through to
snDrop-seq pipeline applicable to large-scale single-cell inter-
rogation studies on solid tissues (see Methods).

Characterization of known and new kidney cell types in PTs.
After discovery of clusters with possible tissue processing, col-
lection or patient-derived artifacts (clusters 5, 12, 17), we ana-
lyzed the remaining populations to glean insights into molecular
anatomy and biology of the adult human kidney. During fetal
development, pretubular aggregates proliferate and mature into
anatomically distinct tubular segments of the nephron, including
PT, LOH and DCT. How these segments are molecularly inter-
connected in the mature kidney remains less well characterized.
Similarity Weighted Nonnegative Embedding (SWNE) analysis26

of renal tubular data revealed a spatial organization of tubular
component nuclei progressing from PT, through the thin limb
(TL) and TAL to the DCT, indicating a continuum of gene
expression progressing between the different nephron segments
(Fig. 3a, Supplementary Figs. 7−8, Supplementary Data 9). The
three main PT clusters (PT-1, PT-2, PT-5) further showed
ordering consistent with known S1, S2 and S3 PT segments, that
was supported by an unbiased trajectory analysis27 of the asso-
ciated nuclei (Fig. 3b). Differential expression along this trajectory
revealed potential segment-specific expression signatures asso-
ciated with differential uptake and metabolic processes (Fig. 3c,
Supplementary Fig. 8b, Supplementary Data 10), and permitted
identification of distinct markers, including PDZK1IP1 that
showed consistent protein localization to specific subsets of the
PTs consistent with the S2 segment marker ACSM328 (Fig. 3d–f).
However, genes encoding anion and cation transporters expected
to be enriched in the S2 segment (including SLC22A6 and
SLC22A8, Supplementary Data 5) were found within the PT-1 (3)
population, indicating: (1) PT-1 may represent a mixture of S1
and early S2 cells; (2) a possibility for underlying differences in
the human proximal tubule segments compared with lower
mammals; (3) some discrepancy in cell types defined molecularly
compared to those described from physiology. In addition to
these main PT clusters, we also found two additional S2 and S3
PT populations, Unk (29) and PT-4 (6) (Fig. 3d). Unk (29), while
not showing obvious PT marker expression (e.g. LRP2 or CUBN,
Fig. 2a), did show expression consistent with S2 segment markers
genes (Fig. 3d). This population also showed distinct expression
of the complement factor H (CFH) gene, encoding for a compo-
nent of the innate immune system involved in the defense against
invasive pathogens29 and that was found localized to a subset of
the proximal tubules similar to that seen for ACSM3 (Fig. 3e, f).
Interestingly, CFH genetic mutations have been associated with
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Fig. 3 Proximal tubule cell populations. a SWNE analysis of tubule clusters (3–14, 29) for cell types indicated (PT, DTL, ATL, TAL to DCT). Arrow indicates
progression of lineages corresponding with expected spatial ordering in vivo. SWNE factor-associated genes (Supplementary Data 9) and relative medulla/
cortex originations are indicated. b. Trajectory analysis of main PT clusters supporting their S1, S2 and S3 PT segment identities. c Heatmap of expression
(row Z-scores) for genes differentially expressed along the proximal tubule trajectory (Supplementary Data 10) shown in (b). d Dot plot showing select
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and S3 segments. e Protein immunostaining (Human Protein Atlas49, Supplementary Data 16) for select PT markers, including general PT (LRP2),
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25 µm. f UMAP plots as in Fig. 1b showing expression level (scaled from low—gray to high—blue) of S2 segment marker ACSM3 and Unk cluster 29 marker
CFH. Lower panels show protein fluorescent immunostaining (Supplementary Data 17) for CFH in a subset of PT co-stained with AQP1 expression in PT,
but not the PC marker AQP2 (arrows). Location of glomeruli (G) and scale bars (left panel—100 µm; right panel—50 µm) are indicated. Source data for
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kidney pathologies, including atypical hemolytic uremic syn-
drome (aHUS), C3-glomerulopathy (C3G) and end-stage kidney
disease (ESKD)30–32. These findings may implicate a subset of S2
PTs in the defense or clearance of affected tubular cells for
maintenance of normal kidney function. In addition to this
CFH+ population, we also find PT-4 (6) showing distinct
expression of LRP2 (Fig. 2a), having an expression signature
associated with the S3 segment, and that uniquely expressed
Fibrinogen Alpha (FGA) and Beta (FGB) Chain genes (Fig. 3d).
Consistently we find FGA protein localized to a subset of the
proximal tubules (Fig. 3e). FGA/FGB genes encode for fibrinogens
that may play an important role in inflammation and regenera-
tion following kidney injury33. However, if in excess, these may
impede recovery, with elevated urinary fibrinogen levels asso-
ciated with progression of CKD to ESKD34. Considering the
S3 segment has been found to be prone to acute kidney injury,
FGA/FGB may also contribute to AKI progression to CKD.
Therefore, we identified and validated two PT populations with
defining gene expression profiles that may represent possible
important roles in acute and CKD.

Defining proximal nephron to the collecting system transition.
The ureteric bud, a derivative of the anterior intermediate meso-
derm, produces the collecting ducts (PC, IC-A and IC-B cells) and
cap mesenchyme, while a derivative of the posterior intermediate
mesoderm produces the nephron segments (POD, PT, LOH,
DCT, CNT)35. Examination of LOH populations revealed four
distinct TL clusters, with markers consistent with potential DTL
(AQP1+, ID1+), and with ATL-1-3 (AQP1−CLDN10+) showing
expression consistent with the pre-bend (epithelium similar to
ascending limb), post-bend and ATL segments, respectively36,37

(Supplementary Data 5, Supplementary Fig. 8c). This is further
supported by spatial distribution of these populations using
SWNE (Fig. 3a). The subsequent joining of DCT with CDs
through CNT is critical for proper functioning of the kidney and
maintaining a contiguous urinary tract. However, molecular sig-
nals that define these transitions in the adult kidney remain poorly
resolved. Analysis of DCT, CNT, PC, IC clusters using SWNE
revealed that transitions from DCT to CNT through to CDs in the
cortex was predominantly represented by IC-B, IC-A1 and PC-1,
and further progression into the medulla was represented mainly
by PC-3 and IC-A2 (Fig. 4a). Closer examination of known ion
channels critical to the function of the DCT/CNT (Supplementary
Fig. 9a, b) showed consistent progressive expression in these
subpopulations. However, our data were unable to molecularly
distinguish separate DCT subpopulations (DCT1 and DCT2)
found previously38. These might underlie SLC12A3+/SLC8A1−

/HSD11B2− or SLC12A3+/SLC8A1+/HSD11B2+ cells found
transitioning between these populations in DCT cluster 14 (Sup-
plementary Fig. 9c). CD subpopulations mainly showed gene
expression profiles (Fig. 4b–e, Supplementary Fig. 9d, Supple-
mentary Data 11−12) consistent with CD physiology, as seen by
expression of genes encoding the chloride/bicarbonate exchanger
Pendrin (SLC26A4) in IC-B cells39 and water channels AQP2 and
AQP3 in the PC-3 cells40. SWNE revealed the genes that most
heavily contributed to the DCT to CD progression, with SLC8A1,
AQP2/HSD11B2, CALCA/TMEM213 and CLNK/ADGRF5 driving
to CNT/PC-1, PC-3, IC-A2 and IC-B/IC-A1 populations,
respectively (Fig. 4a, Supplementary Fig. 7). Among the two PC
cell types, PC-1 was mainly found in the cortex and its gene
expression highly correlated with the medullary CD PC-3 cluster
and CD populations from recent studies17,18 (Supplementary
Fig. 4c) suggesting its assignment as CD. However, the PC-1
cluster also exhibited expression of the CNT marker SLC8A1 in a
subset of cells with little overlap with AQP2, unlike observations in

rodent CNT where these marker genes strongly overlap28. This
suggests possible divergence in this population in humans or that
these cortical PCs might populate late CNTs and cortical CDs,
resolution of which will require further sampling. Expression of
the typical CD PC marker AQP2 was also seen in a subset of IC-
A2 cells, confirming the presence of IC-PC hybrid cells that have
been observed in mice16. Furthermore, the above discussed cluster
17 (PC-2), showing stress response gene activation, appeared to
arise from PC-1, indicating this population of cortical collecting
system cells might be particularly susceptible to enzymatic
dissociation-associated artifacts.

While IC subpopulations showed distinct expression profiles
(Fig. 4b), IC-A1 shared markers with both IC-A2 and IC-B,
supporting cell-type and functional transitions in IC populations
from cortical to medullary CDs. However, the IC-A2 cluster did
show unique expression of two biologically relevant genes, KIT
and CALCA. KIT encodes a receptor tyrosine kinase that
promotes self-renewal and survival in a number of tissues.
Recent evidence showed Kit as a surface receptor expressed on
mouse IC-A cells16 and that Kit+ cells isolated from the kidney
were capable of promoting repair and attenuation of POD injury
in mice41. Using immunofluorescence, we confirmed KIT protein
expression specifically within ICs of the medulla that coexpressed
TMEM213, but not the PC marker AQP2 (Fig. 4f, g). This
population also showed specific expression of CALCA that
encodes for calcitonin gene-related peptide (CGRP) that is well-
known for its roles in mediating responses to noxious stimuli,
pain and inflammation in the sensory nervous system42. CGRP is
mainly expressed by sensory neurons (and some immune and
epithelial cells) and acts as a potent vasodilator if released at nerve
terminals innervating the blood vessels. However, a potential role
for CGRP has not yet been reported in the kidney. Using
immunofluorescence staining, we confirmed CGRP expression in
CDs, although detected in both intercalated and principal cells
(Fig. 4h). Thus, expression of KIT and CGRP in IC-A2 cells may
poise them for several intriguing roles needing further investiga-
tion: sensing or mediating inflammatory or sensory responses to
uropathogenic infections in the CD; modulation of the medullary
blood flow by acting on the medullary blood vessels; and/or
promoting renewal or survival following injury.

Defining endothelial and interstitial cell populations. The
interplay between endothelial (Fig. 5a–c, Supplementary Fig. 10)
and interstitial populations (Fig. 5d–g, Supplementary Fig. 11a) is
critical for renal functionality. This is especially evident in the
renal corpuscle where glomerular capillaries and mesangial cells,
specialized glomerular pericytes, maintain appropriate filtration
capacity for fluids moving into the proximal portion of the
nephron. Consistently, we identified an EMCN+/HECW2+/CD93−

GC cell population (EC-1, Cluster 22) juxtaposed spatially with
POSTN+/PDGFRB+/ITG8A+/PIEZO2+ MCs (Cluster 26) within
the glomeruli, as indicated by immunostaining of their associated
proteins (Fig. 5c, g, i). We identified PIEZO2, encoding a stretch-
gated ion channel involved in mechano-sensation43, as a new
marker expressed in MCs (Fig. 5f). High-resolution confocal
immunofluorescence microscopy with POD and EC markers
support PIEZO2 protein expression in MCs adjacent to the
podocytes and endothelial cells (Fig. 5h–i, Supplementary Fig. 11b).
PIEZO2 expression in MCs suggests its possible role in mediating
responses to mechanical distensions during variations in blood
flow or pressure. Interestingly, PIEZO2 has recently been identified
as a novel hypertension locus22 (Fig. 2b and Supplementary
Data 8). Our identification of PIEZO2 gene expression by mRNA
and protein analysis in MCs is of particular importance given that
high blood pressure represents one of the leading causes of kidney
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failure and that MCs play a key role in regulating blood flow and
surface area of podocytes for filtration.

In addition to CD93− GCs, we identified CD93+ vasculature
leading into and out of glomeruli (AEA) and progressing into the
DVR (EC-3 or cluster 24) and finally to the AVR (EC-2, cluster
23) (Fig. 5a), the latter two marked by expression of PALMD and

DNASE1L3, respectively (Fig. 5b, Supplementary Data 13).
Consistently PALMD protein localized to vascular endothelium
lined by vSMCs that is characteristic of the DVR, but not the
AVR (Fig. 5c). The EC-3 population could further be subdivided
based on spatial origination of nuclei from either the cortex or
medulla (clusters 24C or 24M), permitting finer resolution of
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cortical vessels from DVR ECs (Fig. 5a), demonstrating their
distinct expression profiles (Fig. 5b, Supplementary Fig. 10b,
Supplementary Data 13). This includes enrichment of transcripts
for AQP1 in the blood vessels, which was supported by AQP1
protein localization (Supplementary Fig. 10c). This reinforces an
important role for AQP1 in ensuring that water reabsorbed by PT
segments and LOH can transport into the blood via cortical
capillaries and DVR. In addition to these known vascular cell
types, we additionally detected a MMRN1+/PROX1+ endothelial
population that could represent potential lymphatics or capillaries
due to their reported expression in endothelia of other
organs44,45. However, immunostaining with MMRN1, a secreted
protein, labeled rare cortical vessels distinct from D240-labeled
lymphatics (Supplementary Fig. 11c) and PROX1 immunostain-
ing was unsuccessful on our tissues due to nonspecific staining.
Interestingly, MMRN1-positive immunolabeling was also
detected in rare cells of the PTs (Supplementary Fig. 11c). Since
no appreciable level of MMRN1 transcripts were detected in our
PT clusters (Fig. 2a), this suggests possible transport of the
secreted protein from vessels into juxtaposed PT cells. Char-
acterization and function of these unique MMRN1+ cells in
endothelium, representing less than 0.1% of adult kidney cells in
our assay, requires further studies.

In addition to the MC population, we also detected DCN+

interstitial fibroblasts (INT) and TAGLN+/MYH11+/MCAM+

vSMC/P showing distinct expression profiles (Fig. 5e, f,
Supplementary Fig. 10b, Supplementary Data 14), as confirmed
by their associated protein immunostainings (Fig. 5g, Supple-
mentary Fig. 11a). However, known specialized subpopulations,
including the REN+ cells that are known to associate with the
juxtaglomerular apparatus, were only rarely detected within the
vSMC/P cluster based on REN transcript levels (Supplementary
Fig. 11a). This indicates that deeper sampling would be needed
for greater diversification of interstitial subpopulations detected
using this method.

Insights into heterotypic interactions. There are several exam-
ples supporting receptor-ligand signaling mechanisms in different
cell types of our data. We focused on integrins given their
importance as regulators of homeostasis. Integrins are critical
receptors that mediate attachment of the cell cytoskeleton to the
ECM to promote cellular processes of movement, survival, dif-
ferentiation and proliferation46. These functionalities rely upon
the distinct specificities of heterodimeric α and β subunit com-
binations to ECM components, including: vitronectin, collagen,
laminin and fibronectin (via the Arg-Gly-Asp or RGD motif).
Imbalances in integrin levels can directly influence matrix
deposition and intracellular signaling in disease. For example,
α3β1 associations are important for POD integrity and preventing
proteinuria, and feedback interactions between ɑ1β1 and ɑ2β1

play important roles in regulating collagen levels in MCs. Given
this, and a possible contribution of integrins to fibrosis in acute
and chronic kidney diseases, we examined their expression in the
distinct cell types and subtypes identified in our data (Fig. 6).
From this we found cell-type specificity for major integrins along
the different nephron segments and insight into their relevant
ECM ligands. PODs showed high expression of genes encoding
ITGA3 for laminin binding, ITGA1 for collagen binding, and
ITGAV-ITGB5 for fibronectin/vitronectin binding. Alternatively,
we found possible ITGAV-ITGB8 (for binding to TGFβ-latency
associated peptides) poised for MC matrix signaling. The LOH,
DCT, CNT and PCs were enriched in transcripts for ITGA2
(collagen) and ITGB6 (RGD domain binding), while ICs showed
high expression of transcripts for ITGA6 (laminin binding),
highlighting potential signaling mechanisms in these different cell
types in response to the surrounding ECM. Outside the nephron,
EC clusters showed highly specific expression of the gene
encoding ITGA9 (for binding to non-RGD ligands such as
ADAMS, OSN and VEGF) while the mesenchymal and inter-
stitial cells showed high expression of genes for ITGA1 (collagen),
ITGA11 (collagen) and ITGA8 (fibronectin/vitronectin). These
expression patterns suggest pairing of α1β1 and α11β1 in MCs for
their adherence to the collagen matrix in the glomerular base-
ment membrane (GBM) and for interaction with podocytes,
while α8β1 may permit transduction of signals from the mesan-
gial matrix. Therefore, these diverse integrin expression profiles
provide a better understanding of the interaction of major kidney
cell types with their milieu, as well as insights into how these
might be disrupted in disease.

Discussion
We provide an optimized single-nucleus RNA sequencing pipe-
line for clinical specimens with extensive quality assessments
from tissue procurement through to single-cell transcriptomic
analyses (Supplementary Fig. 12). This tissue processing and
interrogation work-flow is applicable to even limiting amounts of
challenging solid tissue samples, thereby maximizing inter-
pretable data while minimizing stress artifacts. Application on
adult human kidney has permitted extensive cell-type discovery,
including a spatial resolution of nephric subsegments and sup-
portive cell populations that has not yet been observed. This
includes the molecular events underlying tubular transition states
and insights into anatomical and physiological organization.
Further, we find PT populations mapping to specific segments
that have demonstrated expression of possible renal pathogenesis-
associated genes (CFH, FGA), demonstrating the ability of our
assay to identify molecular links for distinct cell types that
enhances our understanding of renal function and disease. This is
further supported by the discovery of a stretch-gated ion channel
PIEZO2, specifically expressed in glomerular MCs, that maps to a

Fig. 4 Cellular and molecular diversity of the collecting ducts. a SWNE analysis of cell clusters (14–21) from distal nephric tubule progressing through
collecting duct (DCT, CNT, PC, IC) showing spatial distributions comparable to that expected in vivo. SWNE factor-associated genes (Supplementary
Data 9) and relative medulla/cortex originations are indicated. b Dot plot showing select (see Methods) IC marker gene expression (averaged log scale
values and percentage of expressed nuclei). c Dot plot showing select (see Methods) cortex and medullary collecting system PC marker gene expression
(averaged log scale values and percentage of expressed nuclei). d UMAP as in Fig. 1b showing clusters used in (a). e Protein immunostaining (Human
Protein Atlas49, Supplementary Data 16) for the select PC and IC markers highlighted in (b) and (c) showing protein localization within the CNT/CD
(arrows). UMAP plots show corresponding RNA expression levels (scaled from low—gray to high—blue). Scale bar indicates 25 µm. f Protein fluorescent
immunostaining (Supplementary Data 17) for KIT, IC marker TMEM213 and PC marker AQP2 in the cortical collecting ducts. Scale bar indicates 50 µm.
g Protein fluorescent immunostaining for KIT, IC marker TMEM213 and PC marker AQP2 in the medullary collecting ducts. Arrows indicate representative
AQP2-negative cells showing colocalization of KIT and TMEM213. Scale bar indicates 25 µm. h Protein fluorescent immunostaining showing CGRP
enrichment in AQP2− medullary collecting duct cells (arrows). Scale bar indicates 20 µm. Source data for (a−d) are provided as a Source Data file. UMAP
uniform manifold approximation and projection, SWNE Similarity Weighted Nonnegative Embedding
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validated hypertension locus22, providing a possible link between
responses to mechanical changes due to variations in blood
pressure, glomerular filtration and kidney failure. The diversity of
integrin expression provides further insights into the potential
ligand interactions for specific kidney cells that may serve as a
benchmark for understanding disease pathologies. Therefore, our
pipeline allows for highly detailed molecular characterization of

cell types within the kidney that is key to inform on molecular
diagnoses and targeted therapies for kidney diseases.

While renal lineages were well represented in our data, we did
find limited coverage of immune cell populations outside the
tissue-resident macrophages (Supplementary Fig. 4c). This may
represent technical differences associated with whole cell or
nuclear dissociation strategies; differences in transcript detection
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levels between the nucleus and cytosol; or a limited immunolo-
gical reactivity in most of our samples as confirmed by patholo-
gical examination (Supplementary Data 1). Furthermore,
compared to the renal cortex, coverage of medullary cell types
was from fewer individuals of differing sampling depths (Sup-
plementary Fig. 5d, e). Sampling of more individuals and lower
anatomical structures could improve confidence in these identi-
fied clusters and permit detection of missing cell populations that
include the inner medullary collecting duct cells. Increased
sampling and three-dimensional molecular imaging will also
better inform on classifications for subsegments of the TL and
cortical collecting system that were difficult to assign based solely
on existing data from lower mammals.

Our study provides an initial step towards the creation of a
molecular and physiological atlas that portrays anatomical
nephron organization and that can serve as an important refer-
ence to identify deviations in various kidney diseases. Efficacy as a
normal reference, however, is limited by underlying diseases or
comorbidities often found in adult human specimens, as seen for
samples used in this study (Supplementary Data 1). Currently,
there is no readily available normal kidney tissue source that can
be ethically obtained without harvesting artifacts. Our approach
allows correlating pathology, preanalytical parameters and quality
control to identify sources of artifacts to best create a reference
associated with clinical and histopathological parameters (Sup-
plementary Fig. 12). This is demonstrated by a high consistency
observed across individuals and tissue sources (Supplementary
Fig. 6), detection of known markers in the appropriate cell types,
and validation of known and newly discovered markers using
protein analyses. Furthermore, by using an average of 6 mm3 of
kidney tissue in our assays (Supplementary Data 2), we ensured
compatibility with clinically relevant biopsy samples, allowing
parallel snRNA-seq, histological/pathological and in situ valida-
tions. Therefore, we demonstrate a valuable pipeline for cell-type
interrogation of limiting solid tissue samples that can glean
molecular insight into normal and pathologic functions.

Methods
Human samples and data. All human samples and data were collected by the
Kidney Translational Research Center (KTRC) for this study under a protocol
approved by the Washington University Institutional Review Board. Informed
consent was obtained for the use of data and samples for all participants at
Washington University and include living patients undergoing partial or total
nephrectomy or from discarded deceased kidney donors (Supplementary Data 1).
Samples from University of Michigan were obtained from tumor nephrectomies
harvested from consented patients by the Tissue Procurement Service as a part of
the Kidney Precision Medicine Project (KPMP) consortium (https://kpmp.org/)
and were approved as exempted by the University of Michigan Institutional Review
Board because they were anonymized. We have complied with all relevant ethical
regulations related to this study. All samples were dissected from tumor-free
regions and the composition and pathology was histologically confirmed (Sup-
plementary Data 1). In cases where both cortex and medulla were present (total

nephrectomies and deceased donor nephrectomies), cortex was coarsely dissected
at the grossly visible boundary between the medulla and the cortex, identified as the
junction between the broad base of the pyramid abutting the cortex with often
visible lumen of the arcuate arteries at the corticomedullary junction (CMJ).

Sample processing and nuclei preparation. Dissected tissue was embedded in a
cryomold in optimal cutting temperature compound (O.C.T.), frozen on dry ice
and stored at −80 °C until further processing (Supplementary Fig. 12 and https://
kpmp.org/resources/). For nuclei preparation, 7 × 40 µm-thick sections were col-
lected in the indicated processing solution and used for nuclei isolation. Since
about 2-mm-thick tissue pieces were embedded in these blocks, the exact content
of cortex varied in grossly dissected cortex at the renal CMJ. Therefore, to confirm
tissue composition, 10 µm sections that flank the thick sections used for nuclei
isolation were obtained for histology and relative amount of cortex and medulla
were determined (Supplementary Data 1). Adjacent formalin or 4% paraf-
ormaldehyde fixed, paraffin embedded or O.C.T. cryo-embedded tissue was used
for pathological evaluation and immunofluorescence validations, respectively. For
fresh tissue dissociation, we applied two-step enzyme treatment protocol modified
from Adult mouse DRG dissociation for FACS in GUDMAP Resources (https://
www.gudmap.org/chaise/record/#2/Protocol:Protocol/RID=N-H9B0). Briefly, for
the first step enzyme treatment, specimens were treated with Papain solution (15
U/ml in Hank’s Balanced Salt Solution with 10 mM 4-(2-hydroxyethyl)-1-piper-
azineethanesulfonic acid, HEPES) or Trypsin solution (0.05% Trypsin/ 0.02%
ethylenediaminetetraacetic acid, EDTA) for 10 or 20 min at 37 °C, followed by mild
trituration with P-1000 pipette tip with cut-end, and further treated with Col-
lagenase solution (1.6 mg/ml of collagenase (Catalog number C0130-100MG, batch
number SLBS9882, Sigma) in DMEM/F12 with 10% FCS) for 20 min or 40 min at
37 °C for the second step enzyme treatment. Two hundred micrograms of DNaseI
was added during Collagenase treatment to keep the cells dissociated and avoid
making clumps. After the enzyme treatment, the specimens were partially dis-
sociated by trituration with P-1000 pipette tip with cut-end, then with regular tip,
and stored in RNAlater at −20 °C until nuclei were isolated.

Nuclei were prepared from cells or tissues using nuclear extraction buffer (NEB)
using established methods7,8 with modifications for processing kidney tissue
samples, and are outlined below. A step-by-step protocol is also available at https://
kpmp.org/resources/. Tissue preparation for nuclei extraction: for whole tissue
samples, frozen kidney tissue was chopped briefly on ice; for cryosections, storage
buffers (if applicable) were removed, 1 ml NEB (containing 0.1% RNase Inhibitor)
was added and initial dissociation of the sections was performed by pipetting up
and down using a p1000; for dissociated cells stored in RNAlater, cells were
centrifuged at 3000 × g for 5 min, RNAlater was removed, NEB (containing 0.1%
RNase Inhibitor) was added to the cells or tissue. Nuclei isolation: nuclei were then
extracted on ice using a glass dounce homogenizer (Sigma) using 15−20 up-and-
down strokes in 1 ml of NEB. Samples were passed through a 30 µm filter (Sysmex
Partec) to remove undissociated tissues, incubated on ice for 0−10 min before
washing in PBS+ 2 mM EGTA (PBSE) and centrifuged at 900 × g for 5 min at 4 °C.
Nuclei pellets were then resuspended in PBSE supplemented with 1% fatty-acid
free bovine serum albumin (FAF-BSA, Gemini) containing 4′,6-diamidino-2-
phenylindole (DAPI) and either flow sorted (DAPI+ singlets using BD Influx,
Human Embryonic Stem Cell Core at Sanford Consortium for Regenerative
Medicine), used directly for droplet encapsulation, or stored in RNAlater at −20 °C
for future processing.

snDrop-seq library preparation, sequencing and analysis. snDrop-seq, from
library preparation through to mapping and digital expression matrix generation of
unique molecular identifier (UMI) counts for all genes and all cell barcodes, was
performed according to the Drop-seq protocol47 (http://mccarrolllab.com/wp-
content/uploads/2016/03/Drop-seqAlignmentCookbookv1.2Jan2016.pdf), with
modifications8 and are provided as supplementary software: https://github.com/
chensong611/Dropseq_pipeline. The step-by-step protocol is also available at

Fig. 5 Resolution of endothelial and interstitial lineages. a UMAP as in Fig. 1b showing EC clusters (22–25) and a schematic of the nephron vasculature.
b Dot plot showing select (see Methods) EC marker gene expression (log scale values and percentage of expressed nuclei). c Protein immunostaining
(Human Protein Atlas49, Supplementary Data 16) for the select EC markers highlighted in (b). Arrows indicate representative protein staining. UMAP plots
show corresponding RNA expression levels (scaled from low—gray to high—blue). Scale bar indicates 25 µm. d Protein fluorescent immunostaining
(Supplementary Data 17) for GC-specific NRG3 and AQP1 expressed in AEA (highlighted in b) and PT. Scale bar indicates 25 µm. e UMAP as in Fig. 1b
showing interstitial clusters (26–28). f Dot plot showing select interstitial marker gene expression (see Methods) and within-cluster detection rates.
g Protein immunostaining (Human Protein Atlas49, Supplementary Data 16) for the select markers highlighted in (f). Arrows indicate representative
protein staining. UMAP plots show corresponding RNA expression levels (scaled from low—gray to high—blue). Scale bar indicates 25 µm. h UMAP plots
as in Fig. 1b indicating high expressing cells for PIEZO2 (green) and PODXL or PECAM1 (CD31) (red), or both PIEZO2 and PODXL or PECAM1 together
(yellow). i Protein fluorescent immunostaining (Supplementary Data 17) for MC-specific PIEZO2, vascular marker PECAM1 and POD markers PODXL and
NPHS1. Arrows indicate representative PIEZO2 protein localized to the MC membrane adjacent to POD cells (PODXL) and localized between POD
processes (NPHS1). Location of glomeruli (G) and scale bars (left and middle panels—25 µm, right panel (top and bottom)—10 µm) are indicated. Source
data for (a, b, e, f, h) are provided as a Source Data file. UMAP uniform manifold approximation and projection
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https://kpmp.org/resources/. Primers used in this protocol are listed in Supple-
mentary Data 15. Briefly, following encapsulation of the nuclei, droplets were
overlaid with a layer of mineral oil; incubated at 72 °C (water bath) for 5 min;
transferred to ice and droplets broken by perfluorooctanol. Beads were then har-
vested; hybridized RNA was reverse-transcribed; and cDNA was PCR amplified for
16 cycles as described47. cDNA from each replicate library (Supplementary Data 2)
was then tagmented using Nextera XT using distinct Nextera index 1 primers,
pooled and sequenced on an Illumina HiSeq 2500 with Read1CustSeqB47 for
priming of read 1 (read 1 was 30 bp; read 2 (paired end) was 80 bp). Each cell
barcode was tagged by an associated library batch ID (Supplementary Data 2),
count matrices were combined across experiments and primary QC filters were
applied (Supplementary Fig. 2): only cell barcodes having >400 nonmitochondrial

transcripts were included; transcripts detected in <3 cells or that were mito-
chondrially expressed were excluded; and cell barcodes that detected >400 and
<5000 genes were kept for downstream analyses. Secondary QC filters and clus-
tering analysis was performed using PAGODA2 8 (https://github.com/hms-dbmi/
pagoda2): a gene/UMI ratio filter was applied to remove low-quality nuclei that
deviated from the group trend (confidence interval < 1E-10), counts were then
normalized to the total number of counts for each nucleus, and batch variations
were corrected by scaling expression of each gene such that the within batch
expression average matched the dataset-wide average. After variance normal-
ization, the top 2000 overdispersed genes were identified and used for principal
component analysis. Clustering was performed using an approximate k-nearest
neighbor graph (k= 30) based on a cosine distance of the top 150 principal
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Fig. 6 Integrin expression dynamics in the kidney. a Heatmap of averaged scaled gene expression values for integrins detected in the adult human kidney
clusters. Enrichment for specific integrins and their indicated binding partners (arrows) were found for specific cell types or nephron segments. Source data
are provided as a Source Data file. b Protein immunostainings (Human Protein Atlas49, Supplementary Data 16) for select integrins that showed cluster-
enriched RNA expression shown in (a). Arrows indicate associated cell types/structures showing enrichment predicted from snDrop-seq data (a). Scale
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components and cluster identities determined using the infomap community
detection algorithm. Sparsely populated clusters tend to represent low-quality data
and possible multiplets (typically occurring as outliers to the main cell-type clusters
when visualized using T-distributed Stochastic Neighbor Embedding or t-SNE). As
such, poorly clustered nuclei that formed clusters of less than 30 were excluded and
an additional round of clustering was performed. Again clusters having less than 30
nuclei were excluded to further remove low-quality data and doublets. To assess
stability of the clusters and the appropriateness of the k= 30 value used, cluster
identities were determined using the infomap community detection algorithm from
a series of k values (10, 20, 30, 40, 50) and Jaccard similarity was calculated using
the compare_annotate() function of the scrattch.hicat R package (https://github.
com/AllenInstitute/scrattch.hicat). For cluster visualization, uniform manifold
approximation and projection (UMAP) dimensional reduction was performed in
Seurat (version 2.3.4) using the top 150 principal components identified using
PAGODA2. One cluster of 120 nuclei failed to show distinct marker gene
expression (no genes showing within-cluster average gene expression values >1 log
fold change over averaged expression across remaining clusters) and so was
excluded as possible low-quality data. Remaining clusters were manually annotated
based on known cell-type marker genes (Supplementary Data 5). Subsequent
expression analyses (dot plots, violin plots, expression heatmaps, feature plots)
were performed using Seurat software (version 2.3.4, https://satijalab.org/seurat/)
where counts for all cell barcodes used in PAGODA2 clustering analysis were
scaled by total UMI counts, multiplied by 10,000 and transformed to log space.
Technical effects of batch and UMI coverage were regressed from scaled data using
the RegressOut function (Seurat). Differential expression analysis between clusters
was performed using a Wilcoxon rank sum test (Seurat) on all genes detected in at
least 25% of nuclei within a cluster. Marker gene selection criteria for plots gen-
erated in this manuscript: Figs. 2a, 3d—manually curated known marker genes
(Supplementary Data 5) and cluster-enriched marker genes (Supplementary
Data 7); Figs. 4b, c, 5b, f—manually curated known marker genes (Supplementary
Data 5), marker genes identified from differential expression analysis of all clusters
(Supplementary Data 7) and marker genes identified from differential expression
analysis of cluster subsets (Supplementary Data 11−14); Supplementary Figs. 2b, c,
9c, 10b—as specified in the figures and derived from Supplementary Data 7, 11, 12,
13, 14; Supplementary Fig. 8c—as specified in the figures and derived from Sup-
plementary Data 5 and 7. For correlation analyses between different experimental
conditions or individuals, averaged gene expression values were calculated on raw
counts in Seurat and Pearson correlation coefficients visualized using the corrplot
package in R.

For pairwise correlation of clusters and cluster association analysis, averaged
expression values for each cluster were calculated on scaled expression values for
the top 2000 variable genes identified using PAGODA2. A correlation heatmap was
generated using the corrplot package with sample ordering based on the
hierarchical clustering method ward.D. A cluster association graph was generated
from the cluster pairwise correlation matrix and visualized by the Fruchterman
−Reingold layout algorithm using the igraph package in R. Cluster dot size was
scaled to reflect the associated number of nuclei making up that cluster.

For integrin enrichment analysis, integrin genes were manually curated, and
averaged expression values were calculated for each cluster using Seurat. Genes
showing significant differential expression between clusters (adjusted p value <
0.05) were identified using the Wilcoxon rank sum test (Seurat), duplicated genes
were kept only for the cluster having the highest log fold change, and heatmaps of
averaged expression values were plotted using the gplots package in R.

SWNE and trajectory analyses. SWNE analysis26 was performed (https://
yanwu2014.github.io/swne/) on the indicated cluster subsets using the pre-
computed Pagoda2 object outlined above, with variant genes and principal com-
ponents from each cluster subset recalculated independently using Pagoda2 (as
described above) and nonnegative matrix factorization (NMF) run using the “ica”
initialization method. SWNE embedding was calculated using the following
parameters: alpha.exp= 1.8, snn.exp= 0.1, n_pull= 6, dist.use= “cosine” (or
“pearson” for nephron/CD combined clusters). For trajectory analysis using
Monocle (Version 2.6.4), analysis was performed in R according to the provided
documentation (http://cole-trapnell-lab.github.io/monocle-release/), and with UMI
counts modeled as a negative binomial distribution. Ordering genes were deter-
mined as the top 500 differentially expressed genes (expressed in at least ten nuclei)
that were identified using the differentialGeneTest function (Monocle). Reduction
to two dimensions was performed using the discriminative dimensionality reduc-
tion with trees (DDRTree) method. Genes showing significant variation by pseu-
dotime (q value < 0.01) were identified and plotted using the
plot_pseudotime_heatmap function (Monocle). Gene sets (Supplementary
Data 10) were identified by running the plot_pseudotime_heatmap function and
setting the number of clusters to three. Gene ontology analysis was performed
using the ToppGene Suite (https://toppgene.cchmc.org/).

Comparison of snDrop-seq data with published data. For comparison with
mouse whole-cell data17, the associated raw counts were downloaded from the
Gene Expression Omnibus (GSE107585) and processed using Seurat: samples
having greater than 20% mitochondrial transcripts were excluded; counts for all
cell barcodes were scaled by total UMI counts, multiplied by 10,000 and

transformed to log space; variable genes were identified using the mean variability
plot (x.low.cutoff= 0, x.high.cutoff= 3; y.cutoff= 0.8); technical effects of batch
and UMI coverage were regressed from scaled data using the RegressOut function.
Averaged scaled gene expression values for each cluster were then calculated
(Seurat) using a common set of marker genes (n= 262) identified by intersecting
the variable genes from the mouse data (n= 1460) with those identified by
Pagoda2 above (n= 2000). For comparison with published human single-nucleus
and single-cell data from a single tumor-free nephrectomy sample and a single
post-transplant biopsy sample, the associated raw counts were downloaded from
the Gene Expression Omnibus (GSE109564 and GSE114156) and cell-type clusters
and variable genes were identified using the Seurat parameters that were described
for this study18: samples having <300 (biopsy) or <400 (nuclei) and >4000 genes
detected and having greater than 20% mitochondrial transcripts (biopsy only) were
excluded; counts for all cell barcodes were scaled by total UMI counts, multiplied
by 10,000 and transformed to log space; variable genes were identified using the
mean variability plot (x.low.cutoff= 0.0125, x.high.cutoff= 6 (biopsy) or 3
(nuclei); y.cutoff= 1 (biopsy) or 1.2 (nuclei)); technical effects of mitochondrial
transcript percentage (biopsy only) and/or UMI coverage were regressed from
scaled data using the RegressOut function; t-SNE was performed on the first 20
(biopsy) or 9 (nuclei) principal components; and clusters identified using the
FindClusters function in Seurat (resolution= 1.2 (biopsy) or 0.6 (nuclei)). Average
scaled gene expression values for each cluster were calculated using a common set
of marker genes (n= 332, whole cell versus nuclei; n= 346, nuclei versus nuclei)
identified by intersecting the variable genes that were used for clustering each of the
data sets (2405 for published whole cell; 2247 for published nuclei) with those
identified by Pagoda2 above (n= 2000). Heatmaps of correlation values were
generated using the corrplot package in R. For cluster enrichment analysis for
eQTL associated with CKD21 and loci associated with blood pressure traits22: the
associated genes were obtained from published supplementary tables (indicated in
Supplementary Data 8); gene symbols were filtered to remove duplicated values;
Wilcoxon rank sum tests (Seurat) were performed to identify genes showing sig-
nificant differential expression between clusters (adjusted p value < 0.05, Wilcoxon
rank sum test, Supplementary Data 8); and duplicated gene values were kept only
for the cluster having the highest log fold change. To determine cluster enrichment,
gene specificity scores were calculated on expression values for the identified dif-
ferentially expressed genes using a method that accounted for inter-cluster dif-
ferences by weighting for cluster distance metrics48 (specificityScore function,
https://github.com/Steven-M-Hill/PCHiC-specificity-score-analysis). To assess
cluster enrichment for CKD or hypertension risk factors, the proportions of dif-
ferentially expressed genes identified for each cluster were calculated. Corre-
sponding heatmaps for gene specificity scores and cluster enrichment proportions
were plotted using the gplots package in R.

Protein expression data and immunostaining. Individual protein immunohis-
tochemical stains (Figs. 3e, 4e, 5c, g, 6b, Supplementary Figs. 8a, 10c, 11a) were
obtained from The Human Protein Atlas49 (http://www.proteinatlas.org) and
referenced in Supplementary Data 16. Fluorescent immunostainings (single or
combined) were performed on 4% paraformaldehyde-fixed cryopreserved sections
(10 µm) and visualized using confocal immunofluorescence microscopy50,51.
Briefly, slides were dried and post-fixed with 4% paraformaldehyde at room
temperature (RT) for 12 min, followed by washing twice in phosphate-buffered
saline (PBS). Blocking and permeabilization were with 1% BSA/0.2% skim milk/
0.3% Triton X-100 in PBS (PBS-BB) for 1 h at RT followed by overnight incubation
at 4 °C with primary antibody diluted in PBS-BB. After the primary antibody
incubation, slides were washed three times with 0.3% Triton X-100 in PBS (PBS-
Tr) at RT, each for 5 min. After the washing, slides were incubated for 1 h at RT
with secondary antibody mixture (1:200 dilution in PBS-BB) containing alexa-488,
cy3, or cy5 (or Dyelight-647) (Jackson Immuno Research). Slides were washed once
with PBS-Tr at RT for 5 min, followed by staining with bisbenzimide for nuclear
staining and finally washing twice with PBS-Tr, before mounting with ProLong
Diamond (Thermo Fisher Scientific). Images were obtained with Nikon C1 con-
focal system and analyzed with Nikon Elements software (Nikon). Full details on
the antibodies used are provided in Supplementary Data 17. All image panels were
assembled in Adobe Photoshop.

Reporting summary. Further information on research design is available in
the Nature Research Reporting Summary linked to this article.

Data availability
Raw snDrop-seq RNA sequencing data and annotated digital expression matrices are
available from the NCBI Gene Expression Omnibus, accession code GSE121862. All
relevant data are also available from the corresponding authors upon request. Previously
published data that was used in this study are also available from NCBI GEO:
GSE107585; GSE109564; GSE114156. Source data underlying Fig. 1d, Supplementary
Figs. 1a, 1b, 5e, 6b are provided as Source Data File 1. Source data underlying Figs. 1b, 2,
3a−d, 3f, 4a−d, 5a, b, 5e, f, 5h, 6a and Supplementary Figs. 2−7, 8b, c, 9, 10b, 11 are
provided as Source Data File 2. Additional phenotyping data on participants PPID 3351,
3395, 3411, 3412, 3414, 3431, 3432, 3434, 3435, 3444 are available upon reasonable
request to sanjayjain@wustl.edu.
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