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Coherence as resource in scattering 
quantum walk search on complete 
graph
Yun-Long Su1,2,3, Si-Yuan Liu1,3,4, Xiao-Hui Wang2,3, Heng Fan4,1,3 & Wen-Li Yang1,3

We investigate the behavior of coherence in scattering quantum walk search on complete graph under 
the condition that the total number of vertices of the graph is significantly larger than the marked 
number of vertices we are searching, N ≫ v. We find that the consumption of coherence represents the 
increase of the success probability for the searching, also it is related to the efficiency of the algorithm in 
oracle queries. If no coherence is consumed or an incoherent state is utilized, the algorithm will behave 
as the classical blind search, implying that coherence is responsible for the speed-up in this quantum 
algorithm over its classical counterpart. The effect of noises, in particular of photon loss and random 
phase shifts, on the performance of algorithm is studied. Two types of noise are considered because 
they arise in the optical network used for experimental realization of scattering quantum walk. It is 
found that photon loss will reduce the coherence and random phase shifts will hinder the interference 
between the edge states, both leading to lower success probability compared with the noise-free case. 
We then conclude that coherence plays an essential role and is responsible for the speed-up in this 
quantum algorithm.

Random walk is an important prototype for efficient classical algorithms1,2. As the quantum analogy of random 
walk, quantum walk is important in developing efficient quantum algorithms3. As we have known, the quantum 
algorithms may have great speed-up compared with their classical counterparts as shown by Shor’s algorithm and 
Grover search4,5. There are two kinds of quantum walk, discrete quantum walk and continuous quantum walk. 
Both of them show their advantages over the classical random walks6,7. A quantum search algorithm constructed 
from discrete quantum walk on hypercube demonstrates similar boost over the classical search algorithms as 
the Grover search algorithm8. A search algorithm based on continuous quantum walk has similar quadratic 
speed-up9. Quantum walk is not only studied in theory but also realized in experiment via various ways10–16. To 
implement quantum walk using linear optical elements, scattering quantum walk is proposed17. An search algo-
rithm based on such quantum walk is constructed and analyzed on complete graph explicitly, showing analogous 
quadratic speed-up18.

On the other hand, we know that quantum entanglement plays a significant role in quantum teleportation, 
super-dense coding and quantum phase transitions in many-body systems19,20. Also other quantum correlations, 
such as quantum discord, are critical in quantum information and many-body systems21,22. All of them can be 
assumed to be some kind(s) of resource(s) for quantum information processing20,23–25. Recently, the resource 
theory of quantum coherence is proposed, and has attracted much attention26–28. Remarkably, coherence is shown 
to be a valuable resource in several well-known quantum algorithms. Explicitly, it is shown that coherence is a 
resource in Deutsch-Jozsa algorithm based on quantum walk29. Also, coherence depletion is shown to be related 
with probability of success in Grover search algorithm30. Coherence is assumed as resource in deterministic 
quantum computation with one qubit31. The interference in quantum walk makes quantum walk differ from the 
classical random walk, so it is expected that coherence should play a key role in quantum walk algorithms. In 
particular, we wonder whether quantum coherence is directly responsible for the speed-up of the quantum walk 
search based on complete graph studied in the reference18.

In this paper, the role of coherence is studied systemically in a quantum walk search algorithm, the scattering 
quantum walk search18. We consider the condition that the total number of vertices N of the graph, which is the 
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scope of the data, is greatly larger than the marked number of vertices v we are searching, >N v 1. The quan-
tum search algorithm demonstrates great advantage over classical ones under this condition. Two measures of 
coherence are used to study the dynamics of coherence26 and relate the searching probability of success with 
coherence. In the progress of the algorithm, the coherence is decreasing with the increase of probability of suc-
cess. The coherence reaches its minimum when the success probability is maximal. When reducing the efficiency 
of the algorithm, while the minimum of coherence increases, the connection between the coherence and proba-
bility of success still exists. Besides, when there is no coherence consumed, this quantum search algorithm will 
have the same complexity as that of the classical blind search algorithm. If the consumption of coherence is below 
a proper value, the efficiency of the algorithm will be lower than classical search with memory. Furthermore, 
when initial states are incoherent, also N v, the probability of finding the targets almost keeps unchanged 
compared to that of the start stage. So we cannot use a state with no coherence to perform the search algorithm.

The effect of the decoherence on the performance of the algorithm is also investigated. An experimental pro-
totype for realizing scattering quantum walk search is depicted based on the optical networks and two realistic 
types of noises are considered, photon losses and random phase shifts. When the photon loss is considered, it 
leads to the decrease of the success probability along with the reduce of coherence. Random phase shifts hinder 
the interference between the edge states, resulting in the low success probability and large coherence. Based on 
those results, we conclude that the coherence plays an essential role and is responsible for the speed-up.

Brief Introduction of Scattering Quantum Walk On Complete Graph
The quantum walk search algorithm we studied here is the scattering quantum walk search18. Scattering quantum 
walk17 is one of the versions of discrete quantum walk and is unitary equivalent to the coined quantum walk32. It 
could be considered as the discrete quantum walk in optical network.

The scattering quantum walk is defined on a graph V E( , )  with V being the set of the total vertices and E 
being the set of edges connecting vertices. In this quantum algorithm, the particle walks on the edges of the graph 
rather than on the vertices. The Hilbert space in this algorithm is defined as

= | 〉 ∈ ∈l m l m l V ml E({ , , , }), (1)2

where state |m, l〉 is an edge state going from vertex m to l. The evolution of this quantum walk is defined by the 
local unitary operator for each vertex. Following the already used notation18, we denote Γ(l) as the set of vertices 
connected to vertex l and Γ(l; k) as the set of vertices connected to vertex l excluding vertex k. The local unitary 
operator for each vertex is defined as

∑| 〉 = − | 〉 + | 〉.
∈Γ

U k l r l k t l v, , ,
(2)

l l l

v l k( ; )

here rl and tl may be different for each vertex. This local operation transforms the state going into the vertex to 
the state scattering out of the vertex, illustrated in Fig. 1. For simplicity, we call the vertices we want to find as the 
marked ones and other vertices as the normal ones. Then, for normal vertices, we set

Figure 1. The blue dots are vertices and yellow dots can be regarded as walkers. Together with the black arrow, 
the yellow dots represent the edge states. This figure can be understood as a photon traveling to a vertex with 
probability of |r|2 being reflected back and |t|2 being transfered to other vertices.
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and for marked ones

= = − ϕt r e0, , (4)i

where |Γ(l)| is the number of vertices in the set Γ(l). The local unitary operators for the normal one and marked 
one are denoted as U l

0 and U l
1 respectively.

In search algorithm, oracles are widely used to tell us if the element giving the query is the marked one. In this 
algorithm, the elements are the vertices of the graph. If we denote the set of marked vertices as   and the set of all 
vertices as  , the oracle can be defined as a function of vertex

= ∈
∈

.{f x x
x

( ) 1
0 \ (5)

V
N N

In this quantum algorithm, a controlled unitary operator works as an oracle, i.e.

 | 〉 ⊗ | 〉 | 〉 ⊗ | ⊕ 〉V̂ x m x m f x: ( ) , (6)f

where the first one is a state of vertex and the second one is a qubit. When we run this algorithm, the oracle will 
send back the result according to Eq. (5) and store it in the second qubit. Because V̂f  acts on | 〉 ⊗ | 〉x m , two extra 
states, a state of the vertex and a qubit, are necessary to be added to the state of walker for the use of oracle. If we 
set the state of the walker as |ψn〉, the state of the whole system is the direct product of these states ψ| 〉 ⊗ | 〉 ⊗ | 〉0 0n , 
before iterating the algorithm. To implement the search, we use a controlled unitary operator Ŵ1 which maps the 
state |k, l〉 ⊗ |0〉 ⊗ |0〉 to |k, l〉 ⊗ |l〉 ⊗ |0〉. This step is required for the usage of oracle. Then the controlled unitary 
operator V̂f  will be applied to the state. When the result of the oracle is stored in the qubit, another controlled 
unitary operator Ûf

l
  will be applied. It will implement local unitary operator U f x

l
( ) on the edge states according to 

the two extra states. After doing this, we will reset the extra states | 〉 ⊗ | 〉l f l( )  to | 〉 ⊗ | 〉0 0  for the next run. This is 
one iteration of this algorithm which can be explicitly implemented with quantum circuits18.

We study the search on the complete graph with N vertices. Each vertex is connected with other vertices, so 
the dimension of the Hilbert space is N(N − 1) and |Γ(l)| = N − 1 for any vertex. The initial state of the walker is 
the equal superposition of all edge states, i.e.

∑ ∑ψ| 〉 =
−

| 〉.
= = ≠N N

a b1
( 1)

,
(7)a

N

b a b

N

0
1 1,

Considering the symmetry of the graph, the quantum walk on N(N − 1) dimension Hilbert space can be 
reduced to unitary evolution in a much smaller space consisting of four vectors18, such that
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here the marked vertices are labeled as 1, 2, …, v and normal vertices are labeled as v + 1, v + 2, …, N. These four 
vectors come from four subspace 1 2  3 4 , respectively, where

H N V

H V N

H N

H V

= | 〉 ∈ ∈ ∈

= | 〉 ∈ ∈ ∈

= | 〉 ∈ ∈
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({ , , , }),
({ , , , }),
({ , , , }),
({ , , , }) (9)
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2
2
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Note that if v = 1, it will lead to the absence of |W4〉. It is demonstrated that the efficiency of the algorithm will 
reach its maximum when the phase shift ϕ is set to π18. Then when phase shift is set to π and < v N1 , at any 
time, the state of the walker |ψn〉 is
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The components in vector in Eq. (10), from up down, are the amplitudes of vector |W1〉, |W2〉, |W3〉 and |W4〉, 
respectively. The vector |W3〉 is the equal superposition state of the edge states connecting two normal vertices. 
After measurement, if the walker stands on the edge connected to a marked vertex, a target is found successfully. 
Thus, the probability of finding a state |ψn〉 on an edge connected to only normal vertices is |〈W3|ψn〉|2, which 
is also the probability that we fail to find the marked vertices. Thus probability of finding the marked vertices is

ψ θ= − |〈 | 〉| = .P W n1 sin (11)s n3
2 2

Since θ = πn
2

, Ps = 1, the proper time to measure the walker is 







π N
v2 2

. When v = 1, |ψn〉 will not have the fourth 
component, but the evolution of Ps and the proper time to measure the walker will not change.

Result
Dynamic of coherence in quantum walk search. Two functions have been proven to be suitable meas-
ures of coherence26. One is the distance measure based on relative entropy and another one is the l1 norm, which 
are denoted as ρ̂C ( )r  and ρ̂C ( )l , respectively. The explicit expressions of them are

∑
ρ ρ ρ ρ ρ ρ ρ

ρ ρ

= − = − −

= | |
≠

ˆ ˆ ˆ ˆ ˆ ˆ ˆ

ˆ

C S S

C

( ) ( ) ( ) Tr( log log ),

( ) ,
(12)

r diag diag diag

l
i j i j

ij

2 2

, ,

where ρ̂ is the density matrix of the walker, ρ̂diag  is the matrix only having the diagonal elements of ρ̂ and ρij are the 
entries of the density matrix. At any time, the density matrix of the walker is

ρ ψ ψ= | 〉〈 |.ˆ (13)n n n

Note that the state of the walker is a pure state, so the ρ̂C ( )r  is reduced to ρ̂S( )diag . Applying Eq. (12) to the state 
of the walker and considering < v N1 , we have that

ρ θ θ θ= + +

−
−
− −

ˆC H n n N n Nv
v v

N N N N

( ) (sin ) cos log sin log 2
( 1)
( 1)

log 1
( 1) (14)

r n
2 2

2
2 2

2

2

and

ρ θ θ θ= + + | |ˆC Nv n N n Nv N n( ) 2 sin ( ) cos 2 sin(2 ) , (15)l n
2 2 2

where H(x) is the binary Shannon entropy.
From the above discussions, we can see that coherence and probability of success are both periodic. To reach 

a high efficiency (evaluated by queries of oracles), it is sensible for us to measure the state before or when proba-
bility of success reaches its maximum. So our discussion about probability of success and coherence is confined 
to the half-period until probability of success reaches its maximum. The first term in ρ̂C ( )r  is the binary Shannon 
entropy which is smaller than 1 and the sum of second term and third term (is) monotonically decreases before 
the probability of success reaches its maximum. Note that >N v 1, the dynamic of coherence is governed by 
the sum of second term and third term in Eq. (14) under ρ̂C ( )r  and second term in Eq. (15) under ρ̂C ( )l , so the 
coherence of the walker will decrease monotonically before the probability of success reaches its maximum. It 
shows that the walker has consumed the coherence of the initial state to complete the task of search. We define the 
depletion of coherence from the initial state to the state with maximal probability of success as the consumption 
of coherence. The connection between the coherence and the probability of success implies that coherence should 
be viewed as a resource in this algorithm. The results of analysis are also supported by numerical calculation pre-
sented in Fig. 2.

For Grover search algorithm, similar result has been obtained recently30. Since the quantum algorithm we 
studied is defined by local unitary operator, it is different from Grover search. For single particle quantum walk 
search, the state of walker is a single quantum state with multi levels, the methods of quantum entanglement and 
quantum correlations are in general not applicable, it is expected that the coherence is the resource in this algo-
rithm. If we choose single multi-level quantum state rather than multiple qubits to build quantum database and 
replace Walsh-Hadamard ⊗H n with U which transforms |0〉 to ∑ | 〉=

− i
N i

N1
0

1 , the situation will be the same in 
Grover search.

Connection between the efficiency of the algorithm and coherence. It has been shown that when 
ϕ is not π, the maximal probability will not be unit, indicating the decrease of the efficiency of the algorithm18. 
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We numerically calculated the dynamics of coherence of the processes with different ϕ. When ϕ is substituted by 
π − ϕ, U will change into U*. Note that |ψ0〉 is real, it is easy to see that (U*)n|ψ0〉 = (Un|ψ0〉)*. Then the norm of 
the amplitude of the state at any time will be the same when ϕ is changed to π − ϕ. Further more, the probability 
of success and coherence will not change. So we only consider ϕ in the region [0,π]. The value of coherence and 
probability of success are presented in Fig. 3. As we can see from the figure, when ϕ is no longer π, the corre-
spondence between the success probability and the coherence is preserved. However, the consumption of coher-
ence decreases with lower maximal probability of success. With very low probability of success, the coherence 
approaches the unit. When phase shift is close to 0, the probability of success is very low, leading to the false of 
finding targets. In this process, the coherence is stable. For a more clear presentation, we give the mean of local 
maximal probability of success and corresponding minimal coherence at that step for different ϕ in Fig. 4. In this 
figure, when maximal probability of success decreases, the minimal coherence increases. This result indicates that 
when the algorithm is less efficient, the consumption of coherence will decrease.

To show the connection between the consumption of coherence and the efficiency of the algorithm more 
explicitly, the number of oracle queries is chosen to evaluate its efficiency. The number oracle queries can be cal-
culated as follows. Firstly, we will let the particle walk m times, each time it will query for an oracle. Then we will 
measure the particle and reduce the state to one of the edge states. Two oracles will be used to evaluate whether 

Figure 2. The number of total vertices is 100 and the number of marked vertices is 2. The phase shift is set to π. 
The red line is the probability of success. The green line is the coherence under ρ̂C ( )r  and the blue line is the 
coherence under ρ̂C ( )l . The values of two measures of coherence are normalized to 1. The X axis is the iterations 
of this algorithm. The left Y axis is the probability of success and right Y axis is the value of normalized measure 
of coherence.

Figure 3. The total number of the vertices is set to 100 and the number of marked vertices is set to 2. The 
middle surface is the probability of success. The bottom surface and top surface are the coherence under ρ̂C ( )r  
and ρ̂C ( )l , respectively. The values of two measures of coherence are normalized to 1.
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the two vertices connected to the edge are the marked vertices. Suppose we find the marked vertex at the k-th run 
of the algorithm, the number of oracle queries will be k(m + 2). Since the maximal probability of success is not 
unit, the marked vertices can not always be found by a single run of the algorithm. Then an average number of 
oracle queries is defined as

∑= − + =
+

ϕ ϕ ϕ
ϕ=

∞
−Q P m P m k m m

P m
(1 ( )) ( ) ( 1) 2

( )
,

(16)
m

k

k
,

1

1

where Pϕ(m) is the probability of success when we measure the walker at m-th step. Here, m is chosen to minimize 
ϕQ m, . This quantity represents the efficiency of the algorithm. With fewer oracle queries, the algorithm will be 

more efficient. The result for the case of 100 vertices with 2 marked vertices is plotted in Fig. 5. It shows that the 
classical blind search provides a lower bound for the efficiency of the quantum search algorithm. The algorithm 
will be less efficient than the classical search with memory, if the consumption of coherence is below a proper 
value. This is similar to that the decoherence in quantum walk can cause a transition from the quantum walk to 

Figure 4. N = 100, v = 2. The red line is the maximal probability of success. The green line is the coherence 
under ρ̂C ( )r  and the blue line is the coherence under ρ̂C ( )l . The values of two measures of coherence are 
normalized to 1. The X axis is the angle of phase shift. Here we choose 25 values evenly distributed in the 
interval from 0 to π. The left Y axis is the maximal probability of success and right Y axis is the value of 
normalized measure of coherence.

Figure 5. N = 100, v = 2. The red line is the number of oracle queries. The green line is the coherence under 
ρ̂C ( )r  and the blue line is the coherence under ρ̂C ( )l . The values of two measures of coherence are normalized to 

1. The X axis is the angle of phase shift from 0 to π. The left Y axis is the average number of oracle queries and 
right Y axis is the value of normalized measure of coherence. The dash black line is the number of oracle queries 
of classical search with memory and black solid line is the number of oracle queries of classical blind search.
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classical walk, which can be directly shown by the stochastic quantum walk33. However, decoherence comes from 
noises, which is taken into account later, in the realistic implementation and there is no noise in our consideration 
now. These results tell us that coherence is responsible for the speed-up of this quantum search algorithm.

Walk with no coherence. In this section, we focus on the probability of success when the initial state is 
incoherent. An incoherent initial state26 should be expressed as

∑ ∑ρ = | 〉〈 |
= = ≠

P a b a b, , ,
(17)a

N

b a b

N

ab0
1 1,

where ∑ =P 1a b ab, . At any time, density matrix of the system is

ρ ρ= .†n U U( ) (18)
n n

0

This can also be viewed as that U is performed n times on ensemble {|a, b〉} with probability Pab for the state |a, b〉. 
With different states in the ensemble as initial state, the probability of success for state |a, b〉 is

∑ ∑| 〉 = − |〈 | | 〉| .
= + = + ≠

P a b n k l U a b( , , ) 1 , ,
(19)

s
k v

N

l v l v

N
n

1 1,

2

The success probability for an initial incoherent state would be

∑ ∑= | 〉 .
= = ≠

P n P a b n P( ) ( , , )
(20)

s
a

N

b a b

N

s ab
1 1,

The Eq. (19) shows that, if the states come from the same subspace, they will share the same value of Ps(|a, b〉, n). 
Then we define P n( , )s i , which is the probability of success with an initial state | 〉 ∈a b, i. As we stated above, 
there are four different subspaces (number of marked ones is more than 1). In the case of an incoherent initial state, 
the probability of success can be reformulated as

∑=
=

P n a P n( ) ( , ),
(21)s

i
i s i

1

4

where


∑= .

| 〉∈
a P

(22)
i

a b
ab

, i

Note that at the beginning, =P( , 0) 0s 3 , it is easy to obtain that a1 + a2 + a4 = Ps(0). For a state from the sub-
space 4 , it will transform between |a, b〉 and |b, a〉 with additional negative sign with implementation of U. Thus 
P n( , )s 4  will be 1 all the time. When we apply U on the state from 1, it will turn into one from 2  with additional 
phase shift π. Thus for the states from subspace 1  and 2 , it is easy to obtain that  = +P n P n( , ) ( , 1)s s2 1  with 
 =P( , 0) 1s 2 . We numerically calculate Ps(n) for states from subspace 2  and 3  and present the result in Fig. 6.
Then we can conclude that when N v, P n( , )s 1 , P n( , )s 2  will converge to one and P n( , )s 3  will be zero. 

This result is very reasonable. In another scheme of quantum search, quantum amplitude amplification, if A|0〉 is 
totally projected on the good subspace or bad subspace, the probability of success will be 1 or 0, respectively34. 
However, this only holds for N v in quantum scattering walk search. Recall that P n( , )s 4  is 1 all the time, the 
probability of success will be

= + + = .P n a a a P( ) (0) (23)s s1 2 4

The result above implies that the probability of success is only determined by the initial state ρ0. It means that 
the scattering quantum walk search totally loses its power on all incoherent initial states and further shows that 
coherence should be considered as a resource in this algorithm.

Experimental realization of scattering quantum walk search. The scattering quantum walk was 
initially proposed to realize the quantum walk using linear optical elements. Any U(N) operator can, in principle, 
be decomposed into sequence of SU(2) operators which describe the behaviors of linear optical elements, such 
as beam splitters and phase shifters35,36. Thus the local unitary operators used in the algorithm can be effectively 
implemented by linear optical elements via constructing optical networks. Because an optical network has N 
inputs and outputs, it is also called an optical multiports.

In the implementation of scattering quantum walk, the vertex can be represented by the multiports37. For 
example, a vertex with two edges corresponds to a multiports with two inputs and outputs. The states of inputs 
represent the edge states scattering into the vertex and the outputs are the edge state scattering out. The choice of 
the multiports depends on the topology considered in the question. In our work, the complete graph is studied. 
For a complete graph with N vertices, N multiports with N − 1 inputs and outputs are needed in the iteration of 
the algorithm.

A complete set of the experiment of the scattering quantum walk is shown below. First single photons are 
generated and sent into the preparation process to be transformed to the desired state. Then the photon enters the 
process of the algorithm. In this part, N multiports are put into an array and n such arrays are arranged in a line. 
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The multiports are designed according to the behavior of the local unitary operator for each vertex in the scatter-
ing quantum walk on the complete graph. By the time the single photons have been through one of the array, one 
iteration of the algorithm has been done. At the end, the measurement instrument is placed to detect the edge 
the photon standing on. By changing the number of arrays, we can set the iterations of the algorithm making the 
measurement of walker at any times possible via placing the measurement instrument at the end. Given the com-
plete graph with three vertices, an illustration of the realization is presented in Fig. 7.

To implement a U(N) operator, O(N2) discrete linear optical elements are required. It is extremely cum-
bersome to set and align the optical networks making the realization almost impossible. The integrated wave-
guides can be used to simplify the construction of the optical networks38,39. The optical networks can be entirely 
integrated onto a chip to be more optically stable. The integrated photonic chip has been widely used in the 

Figure 6. The red surface and green surface are the means of P n( , )s 2  and P n( , )s 3 , respectively. The surfaces 
above and below the red and green surface are the maximal and minimal values of P n( , )s 2  and P n( , )s 3  
respectively with different N and v in 20 steps. The Z axis is the probability of success.

Figure 7. This illustrates the set of experiment for three vertices complete graph. The blue block and orange 
block are the instruments used to prepare the state and measure it. In the middle part, it represents the iterations 
of the algorithm. Each yellow block is a multiports with two inputs and outputs. In each column, from up 
to down, they are vertex 1, 2 and 3, respectively. And each column is an iteration of the algorithm. There are 
numbers labeled on the yellow blocks which represents different ports. The numbers labeled on the left sides of 
the yellow block give which vertices should be connected to these ports and those on the right side decide which 
vertices these ports should connect to. All the multiports are yellow, which says that they are homogeneous, 
implementing the same local unitary operators. To carry out the search algorithm, we need to mark the target 
vertices. If vertex 1 is marked, the first row of multiports should be colored accordinglly rather than yellow, 
representing the different local unitary operations performed on them.
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implementation of quantum walk, boson sampling, quantum circuit12,40,41. Then it will be possible to check our 
result in the realization of the algorithm utilizing the integrated waveguides.

The effect of noises on the performance of the algorithm. Without regard for noise, we have given 
the connection between the coherence of system and success probability or the efficiency of the algorithm. 
However, a realistic quantum system must bear some type of noises. To check the role of coherence with noise 
in the system, two types of noises, photon loss and random phase shift, are considered for the realization of the 
algorithm using optical multiports. This consideration has already been taken in the study of effect of errors in 
quantum walk search on n dimensional hypercube37.

Photon loss is a common noise in optical networks, coming from the imperfection of multiports and the 
scattering and absorption during the propagation between the multiports. The effect of the photon loss is char-
acterized by the linear loss rate η depending on the arms of multiports. The operator D is defined to describe the 
state of walker suffering from the photon noise, such as

∑ ∑ η= | 〉〈 |.
= = ≠

D a b a b, ,
(24)a

N

b a b

N

a b
1 1,

,

Suppose the original density matrix of the walker is ρ, the state of walker involving the photon loss is

ρ ρ′ + − ′ | 〉〈 |tr[1 ( )] 0 0 , (25)

where ρ′ = Dρ and |0〉 is the vacuum state. It says that if the state is |a, b〉, then it may become a vacuum state, 
indicating the photon loss, with probability η−1 a b,

2 . Let us first consider a uniform distribution that ηa,b = η for 
any a and b at any time. The density matrix of the state with uniform linear loss rate is

ρ η ψ ψ η= | 〉〈 | + − | 〉〈 |t t t( ) ( ) ( ) (1 ) 0 0 , (26)t t2 2

where |ψ(t)〉 is the state in the perfect optical networks. When the walker is measured at the t-th step, the success 
probability is the original one multiplied by η2t. Since η < 1, the probability of finding the walker on the target 
state is extremely small in the limit of long iterations. The coherence of the system can be easily calculated accord-
ing to Eqs (14) and (15), such that

ρ η ψ η η

ρ η ψ

= | 〉 − − −

= | 〉 .

C t C t

C t C t

( ( )) ( ( ) ) (1 ) log (1 )

( ( )) ( ( ) ) (27)

r
t

r
t t

l
t

l

2 2
2

2

2

From above, we see that the original expression of coherence are both multiplied by η2t in Cr(ρ(t)) and Cl(ρ(t)), 
but there is an additional term −(1 − η2t) log2(1 − η2t) in Cr(ρ(t)) compared with the Cl(ρ(t)). The success proba-
bility and coherence under Cr(ρ) and Cl(ρ) are presented in the Fig. 8 with varied linear loss rate. Since the success 
probability is multiplied by a factor η2t with η < 1, it will undergo an oscillatory decay, which is shown in the 
figure. For a fixed η, the success probability is approaching to zero after a large number of iterations of algorithm. 
With higher probability of photon loss, the smaller value of η, the decay of success probability is in the faster 
pace. The akin phenomena can be observed for the coherence in the system under both measurement, indicating 
the leaking of coherence due to the photon losses. Because the operation of algorithm and the photon loss both 
contribute to the consumption of coherence, we can not always anticipate the validation of relation between the 
consumption of coherence and the increase of success probability. When the photon losses exit, the algorithm 
still still try to improve the success probability by consuming the coherence. However, the photon losses leak the 
coherence of the system leaving less coherence for the operation of the algorithm resulting in the low success 
probability which further shows that the essential role of coherence in the scattering quantum walk search.

Another noise taken into consideration is the random phase shifts. It arises from the stochastic changes of 
the designated optical path length which is the combination of thermal noise and imperfection of linear optical 
networks. The effect of this noise can be characterized by an operator R. After each iteration of the algorithm, the 
effect of random phase shift is equivalent to the application of the operator R. For the edge state |a, b〉, perfor-
mance of operator R will give

| 〉 = | 〉.φR a b e a b, , (28)i a b,

here, φa,b is a random phase which is different for distinctive edge states and changes at each iteration. The ran-
dom phase shift will generate a distribution, {φa,b}. Owing to the allowance of global phase factor in quantum 
mechanics, the average value of distribution can always be set as 0.

Given a special case, the coherence and success probability are numerically calculated and presented in Fig. 9. 
When the random phase shifts are slight, the success probability and coherence oscillate with decreasing ampli-
tude. With larger variance, they decrease in faster pace due to the stronger effect of random phase shifts. For even 
larger variance, the oscillations are negligible. After a long run, the value of success probabilities are close to the 
initial ones. Note that the coherence is invariant after the application of random phase shifts, which differs from 
the case of photon loss. Thus we can see that the connection between the coherence and the success probability is 
still valid. However, with the random phase shifts, the success probabilities approach to initial values in different 
paces depending on the variance of the distributions and a larger variance will result in a faster pace. It can be 
concluded that the random phase shift prevents the algorithm from consuming the coherence and with larger 
variance the fewer coherence can be used by the algorithm leading to the low success probability, which shows 
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the essential role of coherence. This also reveals that coherence is responsible for the acceleration of the algorithm 
because the algorithm losses its power when consumption of coherence is hindered by the random phase shifts.

Discussion
In this paper, we calculate the coherence in the scattering quantum walk search algorithm on complete graph and 
associate it with the probability of success under the condition >N v 1. We found that the coherence of the 
system decreases while the probability of success increases until reaching its maximum. It shows that coherence 
of the system is consumed to complete the task of search. Since the system we considered is a single quantum state 
with multiple levels, the methods of quantum entanglement and quantum correlations are in general not applica-
ble, the coherence clearly can be considered as the resource in this algorithm. Besides, with the value of phase shift 
varied, the decrease of maximal success probability causes the simultaneous decline of coherence consumption, 
which gives rise to the potential correspondence between the efficiency of the algorithm and the consumption of 
coherence. Choosing oracle queries to evaluate the efficiency of the algorithm, we find the consumption of coher-
ence is an monotonically increasing function of the efficiency of algorithm. If the coherence consumption is 
smaller than a given value, the quantum algorithm we investigated will be less efficient than the classical search 
with memory. Without coherence consumption, the quantum walk search algorithm will have the same efficiency 
as the classical blind search. That is to say, the coherence is responsible for the speed-up of this quantum algo-
rithm. We also consider the probability of success of this algorithm starting with an incoherent state and discover 
that it keeps unchanged compared with the initial time. Last but not the least, the photon loss and random phase 
shifts are studied to see the impact of noise on the performance of the algorithm. The photon loss causes the 
decrease of coherence, giving smaller success probability. The random phase shifts prevent the algorithm from 
consuming the coherence leading to low success probability. It clearly shows that the coherence is a key resource 
in this algorithm.

Decoherence is a hot topic in the study of quantum walk and a lot of work has focused on it. In terms of posi-
tion variance, the transition between the quantum walk and classical random walk exists by considering decoher-
ence of the coin42. The effect of noise is considered in the construction and a direct transition between quantum 
walk and classical random walk can be observed by changing the relative rate of the unitary and nonunitary pro-
cesses33. In these works, the rate of decoherence is associated with the performance of the quantum walk and with 
more decoherence the algorithm will have worse performance, indicating the key role of coherence in quantum 
walk. It is similar to the results of our work that the more coherence in the system will lead to better performance 
of the algorithm. However, the decoherence caused by the noises does not always cause unsatisfactory perfor-
mance. In some quantum walk tasks, it enhances the performance such as noise-assisted quantum walk in which 

Figure 8. Here the total vertices of the complete graph is 100 and there are 2 marked vertices. The red line is the 
probability of success. The green line is the coherence under ρ̂C ( )r  and the blue line is the coherence under ρ̂C ( )l . 
The values of two measures of coherence are normalized to 1. The liner loss rates are set as (a) 1 (b) 0.99 (c) 0.95 
(d) 0.91.
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the transport efficiency is improved43–45. This shows us that how coherence affects the performance of the algo-
rithm may vary in different quantum walks and further researches should be done in other quantum walk tasks.

Our work shows that coherence plays an essential role and is responsible for the speed-up in scattering quan-
tum walk search on complete graph. We believe that our method can be generalized to other quantum walk 
algorithms and may have applications in the quantum computation processing.

Method
Detailed analysis of the scattering quantum walk search on complete graph. Since the quantum 
walk is implemented on N(N − 1) edge states, which consists of a very large Hilbert space, hindering our analysis. 
In original work18, the analysis of the evolution of the scattering quantum walk search on complete graph is done 
by considering the symmetry of the graph. The group of automorphisms of the graph is denoted as . A element 
of the group , a is a mapping which maps two connected vertices to another two connected vertices, such that 
{v1, v2} is mapped to {a(v1), a(v2)}. The effect of an automorphism is equivalent to a unitary operator Ua on the 
edge states. It transforms |v1, v2〉 to |a(v1), a(v2)〉. In our work, elements of  are specific to leave the marked ver-
tices fixed. The Hilbert space of the quantum walk can be decomposed into four subspaces, i.e. = ⊕ =j j1

4   and 
j  are presented in Eq. (9). These subspaces are the smallest invariant subspaces under all automorphisms. The 

four vectors in Eq. (8) are invariant under the operations of all automorphisms, which are the only ones in corre-
sponding subspaces. Suppose the subspaces these four vectors consisted of are  = | 〉| =l W j{ 1, 2, 3, 4}j

2 , any 
state |ψ〉 belonging to   satisfies that Ua|ψ〉 = |ψ〉 for any a. It can be proved that [U, Ua] = 0 is satisfied for all a. 
Then it is easy to obtain that UaU|ψ〉 = U|ψ〉 for all a. This tells us that if a state |ψ〉 is from S then U|ψ〉 is also in 
that subspace. Since the initial state can be reformulated as

ψ| 〉 = | 〉 + | 〉 + | 〉 + | 〉−
−

− − −
−

−
−

W W W W( ) , (29)
v N v
N N

N v N v
N N

v v
N N0

( )
( 1) 1 2

( ) ( 1)
( 1) 3

( 1)
( 1) 4

the evolution of the quantum walk can be described in the subspace. The unitary operator of the walker can be 
represented as

Figure 9. Here the total vertices of the complete graph is 100 and there are 2 marked vertices. The red line is the 
probability of success. The green line is the coherence under ρ̂C ( )r  and the blue line is the coherence under ρ̂C ( )l . 
The values of two measures of coherence are normalized to 1. The {φa,b} is subjected to Gaussian distribution 
centered at zero. The variances are set to (a) π/24 (b) π/12 (c) π/6 (d) π/2.
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This is a four dimensional unitary operator, we can easily see the evolution induced by this operator via cal-
culating the eigenvalues and eigenvectors. Recall that the phase shift is chosen to be π to achieve the best perfor-
mance. In this case, at any time the state of the walker is

⟩ D

N n A

N n A

N v n B
C

2( 1) sin(2 1)
2

( 1)

2( 1) sin(2 1)
2

( 1)

2 ( 1) cos ( 1)
( 1)

,

(32)

n

n

n

n

n

ψ

θ

θ

θ

| =







− + + −

− − − + −

− − − −
−







where

A

B

C

D

,

,

,

,

tan (33)

v N v
N

v N v
N

v v N v
N v N

N v N
N v N

v N v
N v

( 1)
( 1)

( 1)
( 1)

( 1) (2 2)
( ) ( 1)

( ) ( 1)
(2 2)

(2 2)
1

2

2

2

2

2

2

2

θ

=

=

=

=

= .

− −

−

− −

−

− − −

− −

− −

− −

− −
− −

If the condition N v is satisfied, we can recover the Eq. (10).
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