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Introduction
Mitochondria are organelles of eukaryotic cells which play an 
important role in producing energy in the form of adenosine 
triphosphate (ATP) by ATP synthase complex.1 The complex 
of ATP synthase in mammals is composed of 2 parts, which are 
F1 that has a catalytic site for ATP synthesis and hydrolysis and 
F0 that has proton channel to translocate proton across the 
mitochondrial membrane.2 Two subunits of F0, ie, ATPase6 
(subunit a) and ATPase8 (A6L), are coded by mitochondrial 
DNA (mtDNA), whereas the rest of subunits are coded by 
nuclear DNA.3 Therefore, mutations in mtDNA, especially 
that of subunits a and A6L, would affect the cell metabolism in 
producing energy that is crucial for all organs in human body.4 
There are 2 mutations of mtDNA which are related to type 2 
diabetes mellitus (DM type 2) that complicated with cataract 
disease, ie., A3243G and C12258A.5 Thus, mitochondrial dis-
order–related diseases are interesting to be studied. In 2014, 
World Health Organization reported that Indonesia is the 
fifth and the second largest country regarding a number of dia-
betes and cataract cases, respectively.

In 2010, Maksum reported 6 mutations in mtDNA which 
specifically occurred in patients having type 2 DM and cata-
ract. Among the mutations, m.9053G>A was located at respi-
ration complex protein, ATPase6, and was found to be unrelated 

to neuromuscular diseases, eg, myopathy and deafness.6 
ATPase6 plays a role as proton translocation channel in the 
mitochondrial matrix through the rotation of F0 ring and hence 
triggers the change of catalytic site of F1 for ATP synthesis.7 
Maassen et  al8 suggested that mitochondrial disorder was 
related to diabetes due to the decreasing of insulin secretion as 
a result of the low concentration of ATP.

This study aims to investigate the changes of structural 
properties of ATPase6 due to m.9053G>A mutation (S167N) 
using bioinformatics methods. The structure of ATPase6 was 
built using homology modeling technique. Furthermore, the 
electrostatic properties of protein were calculated using 
Adaptive Poisson-Boltzmann Solver (APBS) program. The 
water affinity on the proton translocation channel was pre-
dicted using molecular docking by AutoDock Vina.

Methods
Homology modeling of human ATPase6

A structure of bovine mitochondrial ATP synthase, resolved 
by electron microscopy, was used a template for homology 
modeling (Protein Data Bank [PDB] ID 5FIL).9 The 
sequence of the human ATP6 gene was retrieved from 
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MITOMAP (https://www.mitomap.org/MITOMAP). 
Furthermore, the structure of human ATPase6 and its 
mutant was modeled using MODELLER.10 At the amino 
acid level, the mutation of m.9053G>A was the substitution 
of serine by asparagine at the position 167 (S167N). The 
Discrete Optimized Protein Energy (DOPE) score, a statis-
tical potential used to assess homology models in protein 
structure prediction, was calculated for the structure model. 
The structure with the lowest DOPE score was selected as 
the best model. The quality of both models was assessed 
using Ramachandran plot by PROCHECK in PDBsum 
server (Laskowski et al, 1997).

Atomic electrostatic calculations

The atomic electrostatic charge of both models was calculated 
using APBS method in PDB2PQR Web server (http://nbcr-
222.ucsd.edu/pdb2pqr_2.1.1/).11 The PARSE force field was 
selected, and the internal naming scheme of PDB2PQR was 
used. The resulted structure was downloaded, and its atomic 
charge was visualized using Discovery Studio Visualizer.12

Molecular docking of water on the proton 
translocation channel

AutoDock Vina13 was employed to predict the water binding 
at the proton translocation channel in both wild-type and 
mutant models of human ATPase6. The structure coordinate 
was first transformed, parallel to the z-axis using Discovery 
Studio Visualizer. AutoDockTools 1.5.614 was used to deter-
mine the position and the size of grid box, which is required for 
docking. The grid box was centered at x = 1.317, y = −3.018, and 
z = 8.242 with size of 45 Å × 18.75 Å × 18.75 Å in x-y-z dimen-
sion. The grid box was adjusted to cover the surface of the sec-
ond proton translocation channel from R150 to the mutation 
point (S/N167). The docking was repeated until 25 times to 
generate 500 of possible water binding poses on the proton 
translocation channel. The maximum number of binding 
modes of each docking was 20.

Results and Discussions
Structural model of ATPase6

Sequence alignment of human ATPase6 showed 77% of simi-
larity to that of bovine’s ATP synthase, and 96% of this 
sequence was covered without any gaps. For this reason, the 
structure of bovine’s ATP synthase (PDB ID 5FIL) was used 
as a template for homology modeling. Five models were gener-
ated using MODELLER. A model with the lowest DOPE 
score was selected for further analysis. The quality of the model 
was assessed with Ramachandran plot (Figure 1). It is shown 
that 94.3% of residues were in most favored regions. As many 
as 4.1% and 0.5% of residues fell into the additional allowed 
regions and generously allowed regions, respectively. In general, 
a protein structure with more than 90% residues in allowed 

region is considered as a good model.15 It is noted that the 
mutant model shows similar quality with the wild type, in 
which more than 90% residues in the allowed region.

The effects of S167N mutation to the structure of 
ATPase6 and proton translocation

The mutation of S167N is located at the proton translocation 
channel (Figure 2), more specifically at the second channel 
from rotor protein (subunit c) to the cytoplasm, starting from 
residue R150 toward the direction of position 167. For this rea-
son, S167N mutation is predicted to disrupt the translocation 
of proton to cytoplasm. In general, the overall structure of 
ATPase6 in wild type and mutant was similar. Further analysis 
was conducted to the region around the mutation point. 
Asparagine has a bulkier side chain as compared with serine in 
wild type. Therefore, a possible sterical hindrance was pre-
dicted. However, due to the positively charged nature of pro-
ton, there might be another factor that can influence the proton 
movement, ie, atomic charge throughout the proton transloca-
tion channel. Both the wild-type and mutant structures were 
submitted to PDB2PQR server to calculate the atomic charge 
using the continuous implicit solvent model by APBS method.

Interestingly, a patch of partial negative charge on the sur-
face of proton translocation channel was observed. It was com-
posed of carbonyl oxygen of the backbones of I142, A146, 
R150, A153, A157, L161, H163, L164, A168 and also oxygen 
atoms of the side chains of Q143, N154, S167, and E194. 
Therefore, it is predicted that the H+ is conducted through a 
proton hopping mechanism, ie, the proton hopped from a lone 
pair of electrons on oxygen to the next acceptor oxygen atom.16 
Because the side chain of S167 was part of the patch of partial 
negative charge, a possible disruption due to S167N mutation 
was further studied. In the S167N model, the 2 hydrogen 

Figure 1. Ramachandran plot of the best ATPase6 model.
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positive (+0.2) as compared with the partial negative charge of 
oxygen in S167 (−0.4) (Figure 3).

The mechanism of voltage-gated proton channel has been 
reviewed by DeCoursey.17 There are several mechanisms of 
proton selectivity through the membrane proteins, eg, hydro-
gen-bonded chain, histidine as a selective filter, and the frozen 
water hypothesis. In an original hydrogen-bonded chain model, 
a proton is passed through the channel by hopping from one 
serine to another serine group. However, the other amino acids 
containing an oxygen atom as a proton acceptor, either on the 
backbone or on the side chain, are also able to transfer the pro-
ton at a particular condition. Based on the current findings, it is 
predicted that the exposure of partial positive charged atoms 
(N167) on the surface of proton translocation channel would 
disrupt the proton translocation process. As a result, the flow of 
proton which is needed for ATP production might be compro-
mised by S167N mutation.

Besides the hydrogen-bonded chain hypothesis, the involve-
ment of water molecules in proton hopping mechanism was 
also investigated in this study using molecular docking method. 
AutoDock Vina was used to predicting the possible binding of 
water molecules on the surface of proton translocation channel 
of the human ATPase6 model. A total of 500 docked poses was 
generated using different random seeds. Interestingly, a differ-
ence in water binding between R150 and S/N167 in both mod-
els was observed (Figure 4). In the wild-type model, the docked 
water molecules between R150 and S167 were arranged in the 
shorter intermolecular distance (ranged from 2.4 to 4.7 Å) as 
compared with S167N mutant (ranged from 2.5 to 6.5 Å). Due 
to the longer intermolecular distance between waters, it might 
be indicated that the proton hopping in S167N mutant would 

Figure 2. The structure of ATP synthase complex (adapted from Protein 

Data Bank ID 5FIL). The S167N mutation is located at the subunit a 

(ATPase6), at the proton translocation channel. This figure was generated 

using Discovery Studio Visualizer.

Figure 3. Schematic of proton translocation across ATPase6. The partial positive charge of N167 is exposed on the surface of proton channel, instead of 

the partial negative charge of S167.

atoms of NH2 group of N167 side chain were exposed on the 
surface. The charges of these 2 hydrogen atoms were partially 
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be less effective than in the wild type. The docking result sug-
gested that water was more attracted to the asparagine than the 
serine. Asparagine has a higher number of polar atoms than ser-
ine and hence providing more possibility to form hydrogen 
bonds with the water. Out of 500 docking poses, the numbers of 
water molecules that are situated within 3.00 Å from S167 (wild 
type) and N167 (mutant) were 39 and 54, respectively. As a 
result, the probability of water to bind to the surface in between 
R150 and N167 in S167N mutant was decreased.

The possible effects of S167N mutation to the proton trans-
location, based on the hydrogen-bonded chain and water bind-
ing hypothesis, have been explained in this study. Nevertheless, 
further experiments such as ATP-based assay are required to 
strengthen the hypothesis of S167N mutation effect in ATPase6 
to the disruption of ATP synthesis, which might lead to DM 
type 2 and cataract diseases. The relationship between ATP and 
DM type 2 is associated with its function to stimulate insulin 
secretion by exocytosis, through the membrane depolarization 
involving ion channels (K+ and Ca2+) in pancreatic β cells.18 In 
2016, it has been reviewed that the antioxidant targeting mito-
chondria is a powerful therapeutic platform to treat cataract dis-
ease.19 The known role of mitochondria in energy metabolism is 

well established. Mitochondrial DNA mutation which leads to 
ATP depletion might affect the ATP-dependent chaperone 
content of the eye lens. The failure in protein renaturation in the 
eye lens would result in the aggregation of insoluble and light-
scattering protein, which caused cataract development.20

The mutation of Mm.9053G>A was found in patients with 
DM type 2 and cataract, together with Mm.3243A>G muta-
tion.21 The mutant template of Mm.3243A>G has been suc-
cessfully produced as a positive control in PASA-mismatch 
three bases of mtDNA mutation analysis.22 Therefore, the 
result of this study is hoped to be useful to the development of 
a new specific genetic marker for the 2 diseases.

Conclusions
Previously, an S167N mutation on the ATPase6 was found 
specifically in patients carrying DM type 2 and cataract. 
Therefore, this study was conducted to investigate the possible 
mutation effect of the structure of ATPase6, as part of the ATP 
synthase complex, using bioinformatics approach. The result 
showed that S167N mutation point was located at the proton 
translocation channel, which composed of a continuous patch 
of negative charges. Instead of a negatively charged OH group 

Figure 4. The docking result of water binding on the proton translocation channel of ATPase6 in wild type (top) and S167N mutant (bottom). The water 

molecule in wild type and mutant are presented in red and green colored oxygen sphere, respectively. R150 and S/N167 are visualized in space-filling 

model. The unit of intermolecular distance of water is Å.
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serine in wild-type protein, a positively charged of NH2 group 
of N167 was exposed to the surface of adenosine triphos-
phatase in mutant type. Therefore, this might lead to the dis-
ruption of proton translocation process during ATP synthesis. 
Furthermore, the possible effect of S167N mutation to the 
water binding in proton translocation channel was observed 
using molecular docking study. For the first time, the effect of 
S167N mutation to the structure of proton translocation chan-
nel in ATPase6, from the point of view of surface charges and 
water binding, was presented in this study.
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