
RESEARCH ARTICLE

A dual-feedback loop model of the

mammalian circadian clock for multi-input

control of circadian phase

Lindsey S. BrownID
1, Francis J. Doyle IIIID

1,2*

1 Harvard John A. Paulson School of Engineering and Applied Sciences, Harvard University, Cambridge,

Massachusetts, United States of America, 2 Division of Sleep Medicine, Harvard Medical School, Boston,

Massachusetts, United States of America

* frank_doyle@seas.harvard.edu

Abstract

The molecular circadian clock is driven by interlocked transcriptional-translational feedback

loops, producing oscillations in the expressions of genes and proteins to coordinate the tim-

ing of biological processes throughout the body. Modeling this system gives insight into the

underlying processes driving oscillations in an activator-repressor architecture and allows

us to make predictions about how to manipulate these oscillations. The knockdown or upre-

gulation of different cellular components using small molecules can disrupt these rhythms,

causing a phase shift, and we aim to determine the dosing of such molecules with a model-

based control strategy. Mathematical models allow us to predict the phase response of the

circadian clock to these interventions and time them appropriately but only if the model has

enough physiological detail to describe these responses while maintaining enough simplicity

for online optimization. We build a control-relevant, physiologically-based model of the two

main feedback loops of the mammalian molecular clock, which provides sufficient detail to

consider multi-input control. Our model captures experimentally observed peak to trough

ratios, relative abundances, and phase differences in the model species, and we indepen-

dently validate this model by showing that the in silico model reproduces much of the behav-

ior that is observed in vitro under genetic knockout conditions. Because our model produces

valid phase responses, it can be used in a model predictive control algorithm to determine

inputs to shift phase. Our model allows us to consider multi-input control through small mole-

cules that act on both feedback loops, and we find that changes to the parameters of the

negative feedback loop are much stronger inputs for shifting phase. The strongest inputs

predicted by this model provide targets for new experimental small molecules and suggest

that the function of the positive feedback loop is to stabilize the oscillations while linking the

circadian system to other clock-controlled processes.
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Author summary

The circadian clock helps to regulate many biological functions, including the sleep-wake

cycle, metabolism, the cardiovascular system, and the immune response, so we can pro-

mote better health by aligning the internal body clock to the phase of the external environ-

ment. At the cellular level, the circadian clock is driven by the interactions of a core set of

genes and proteins, presenting inputs to manipulate the clock. Mathematical models

allow us to predict which inputs can best be used to shift the internal clock to align with

the environment. In this paper, we develop a model, consisting of a system of differential

equations, to describe the molecular level components which drive circadian rhythms and

test the model to show it captures experimental observations. We then use this model to

determine what parametric changes have the strongest resetting effect on the clock, sug-

gesting which mechanisms the development of new experimental small molecules should

target to most efficiently shift circadian phase. We demonstrate the efficacy of this

approach in a model predictive control simulation. Although we build a model specific to

the circadian clock, the techniques we describe for modeling and control of the circadian

oscillator can be applied to many oscillating systems.

Introduction

Oscillations are a feature of many biological systems at a range of different timescales, includ-

ing the cardiac cycle on the order of a second to the estrous cycle on the order of a month. For

this reason, we want to identify mechanisms through which we can act on these oscillators in

order to control the timing of these physiological processes. The circadian clock is an endoge-

nous oscillator with a period of about a day, which coordinates the timing of many biological

functions with the environment at the organismal and tissue levels. These higher level rhythms

are driven by the molecular level clock in each cell, where two interlocked transcription-trans-

lation feedback loops form the core architecture for the mammalian circadian clock (Fig 1).

The connections between these two feedback loops are exemplary of an activator-repressor

system, one of the basic genetic architectures shown to produce oscillations, so can provide

insight into approaches for controlling other systems with similar architectures. In particular,

we aim to control the phase of the oscillator through a model-based control approach to deter-

mine the dosing of different drugs to this system, as has been shown to be successful in other

medical applications such as diabetes. Such an approach requires a suitable model that cap-

tures the effects of the inputs on the controlled variables and is conducive to online optimiza-

tion. Thus, by modeling these loops, we are able to analyze how each loop contributes to the

resulting features of the oscillator, and as a result of the sensitivity of these features to the

parameters governing the different loops conclude which processes provide the most effective

targets for controlling these oscillations.

In order to build a control-relevant model of the circadian system, we focus our model on

the core components of the circadian clock. In the negative feedback loop, the repressor, the

mRNAs Per and Cry are transcribed in the nucleus by an Ebox bound to CLOCK:BMAL1.

These genes are translated into the proteins PER and CRY in the cytoplasm where they dimer-

ize before reentering the nucleus. The PER:CRY dimer then binds to CLOCK:BMAL1 where it

represses Ebox controlled transcription. In the positive feedback loop, the activator, Ror and

Rev-erbα are also regulated by the Ebox. The proteins ROR and REV-ERBα competitively bind

to the RORE promoter site, controlling the rate of Bmal1 transcription, which slows when

REV-ERBα is bound and accelerates when ROR is bound [2]. This interlocked architecture of
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the two feedback loops results in oscillations in the expression level of the core clock genes and

proteins, which then influence other genes and proteins in other biological systems to appro-

priately time daily functions, including the sleep wake cycle, alertness, metabolism, and the

immune response. The centrality of this underlying molecular oscillator to daily function

makes it critical to analyze the effects of alterations and different inputs to the clock in order to

promote better health and appropriately time interventions [3].

While many mathematical models use a limit cycle oscillator to describe the circadian

clock, the order of the systems of differential equations varies from basic oscillator models

with only 2 to 3 states [4, 5] to models with over 70 states [6]. Such models are valuable because

they allow us to make predictions about the behavior of the circadian clock in response to

molecular level inputs. For example, the Hirota model [1] was used to help elucidate the

action of KL001, demonstrating that it acts by decreasing the degradation rate of nuclear

cryptochrome.

We are particularly interested in using these models to understand where and how to act

on the molecular circadian clock to shift circadian phase, so we want a model that provides the

necessary scope of control-relevant targets to identify the key processes that inputs to shift

phase should target at the molecular level. This would potentially allow us to align the clock

with the environment faster than light based interventions [7]. The dosing of these molecules

can be formulated as a control problem, and recent work has explored the small molecule con-

trol of the circadian clock using KL001 as input using the Hirota model [1]. This model is lim-

ited in that it only describes the negative feedback loop, so we can only model small molecules,

such as KL001 and longdaysin, that act on the negative arm of the clock [1, 8]. However, there

Fig 1. Molecular architecture of the mammalian circadian clock. Two transcription-translation feedback loops drive

the oscillations of the mammalian circadian clock at the cellular level. We show the architecture for the core clock

species of a single cell, where the grey oval represents the nucleus of the cell. The negative loop (warm colors, solid

arrows) contains the mRNAs Period and Cryptochrome and their associated proteins. The positive loop (cool colors,

dashed arrows) contains Rev-erb, Ror, and BmalmRNAs and the associated proteins. Hollow circles represent mRNAs

and filled circles represent proteins of the different clock species. Arrowheads represent increased production, while

flat arrows represent inhibited production. The dashed lines in the positive feedback loop represent interactions that

were not included in the Hirota model [1] but that were added to our extended dual loop model to provide additional

control targets acting on the core circadian clock architecture.

https://doi.org/10.1371/journal.pcbi.1008459.g001
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are many other small molecules that have been discovered, including KK-S6, FBXW7-αmodu-

lators, and GSK-3β inhibitors, which target the species of the positive arm, which cannot be

captured by this model (Table 1). Furthermore, increasing the complexity of the feedback loop

structure results in models that are more flexible for achieving desired evolutionary features,

including robustness of the oscillations and temperature compensation of the period length

[9]. Similarly, additional loops have been implicated for helping to preserve the stoichiometric

relationships needed for robust oscillations [10]. Thus, both the underlying biological behavior

that our model should capture and the desire to act on the clock through multiple known tar-

gets motivate a model containing both the positive and negative feedback loops.

For this reason, we developed a more detailed model of the mammalian molecular circa-

dian oscillator, expanding the eight state Hirota model [1] of the negative feedback loop to a

14 state model with both feedback loops so that the model is just complex enough to capture

the action of these additional inputs. Thus, our model focuses on producing the essential

behavior necessary for suitable control action while retaining enough simplicity so that we can

identify the key processes which are needed to generate circadian oscillations and increasing

the tractability of determining the most effective inputs to shift the clock. Once these key pro-

cesses have been identified, more detailed models of these specific mechanisms could be

employed for the development of small molecule inputs to the clock. We outline the advan-

tages of our model over other models of similar size in the discussion. One advantage of this

model is that validation showed that this expanded model captures much of the behavior of

the core circadian clock. The new model allowed us to explore ways to enhance control of the

circadian oscillator through a multi-input approach by providing additional known targets for

control input that act on both feedback loops of the clock, which are omitted in some previous

models or do not show the correct knockout behavior in other models. By comparing the sen-

sitivity of the model period to the different model parameters, we determined which parame-

ters would be most effective in controlling circadian phase. We found that sensitivities to the

parameters governing the negative feedback loop were much higher, suggesting that these

would be stronger targets for control and implicating the role of the positive feedback loop for

robustness and in the timing of other biological functions.

Materials and methods

Equation derivation

We developed a model to describe the transcription, translation, and degradation of the core

clock mRNAs and proteins, which constitute the core positive and negative feedback loops of

the clock. We used a biologically based model, which allows for the parameters of the model to

be interpreted in terms of different processes so that the action of different small molecules

Table 1. Action of known small molecules on the molecular clock. Several small molecules are known to impact the

clock by acting on core clock model species. These actions may be represented by changing a corresponding parameter

of the model.

Small Molecule Action Model Parameter(s)

KL001 [1] stabilizes nuclear CRY vd,C1N, vd,C2N

Longdaysin [8] inhibits PER degradation vd,P

KK-S6 [11] reinforces REV-ERBα Ktxn,REV

FBXW7-α [12] degrades REV-ERBα vd,REV

GSK3-β
inhibitors [13]

degrades CRY2,

stabilizes REV-ERBα
vd,C2, vd,REV

https://doi.org/10.1371/journal.pcbi.1008459.t001
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can be reflected by changing a model parameter. For example, the small molecule KL001

decreases the degradation rate of nuclear cryptochrome, so by modifying the parameter corre-

sponding to this rate, we can simulate the action of this small molecule with our model.

The Hirota model [1] successfully captured the action of this small molecule, but the model

was limited only to the eight species of the negative feedback loop, preventing the analysis of

the known small molecules that act on the positive feedback loop for control. In order to

expand this model from the original eight states to our fourteen state model of both feedback

loops, we analogously assumed that the mRNA and protein species decay according to

Michaelis-Menten kinetics, since experimental evidence has found that enzymes contribute to

the decay of these species, and that all other reactions follow mass action kinetics. In this way,

each parameter of our model can be related to a specific biological process, allowing the model

to be physiologically interpretable, which is beneficial in identifying which pathways new

drugs should target. By explicitly modeling the gene, protein, and heterodimer of crypto-

chrome, we have created a series of states which results in the time delay known to be required

for oscillations but without explicitly specifying a time delay as in other models [14]. While

models with explicit time delays may require fewer states and parameters, these models lose

physiological interpretability and are more challenging for a multivariable model-based con-

trol framework.

The key difference between our model and the previous Hirota model [1] is the incorpo-

ration of the species in the positive feedback loop, which requires modification to several of

the equations. First, unlike in the previous model, we found that we do not need to introduce a

Hill term to the degradation because the addition of the positive feedback loop to our model

provided sufficient nonlinearity to drive oscillations [15]. Second, since the Hirota model [1]

did not explicitly model BMAL1, it was assumed that there was always sufficient concentra-

tions of CLOCK:BMAL1 to bind the Ebox. Our model incorporated Bmal1 and BMAL1 so

this is no longer a valid assumption, and we derived an expression for the transcription of the

Ebox controlled genes (Per, Cry1, Cry2, Rev-erbα, and Ror). Assuming the biochemical reac-

tions are at equilibrium, we found the transcription rate to be

r ¼
vr

Kr þ
Kb
½B� þ ½C1N� þ ½C2N�

; ð1Þ

where vr, Kr, and Kb are constant model parameters and [B], [C1N], and [C2N] are the concen-

tration of BMAL1 and the heterodimers of CRY1 and CRY2 with PER in the nucleus. The

form of this expression showed that BMAL1 is necessary for the production of the Ebox regu-

lated mRNAs to create oscillations.

In order to describe the transcription of Bmal1, we had to account for the competitive bind-

ing of REV-ERBα and ROR to the RORE binding site of the promoter. When REV-ERBα is

bound to this site, the rate of transcription of Bmal1 is reduced by 57–80% of the unbound

rate, but when ROR binds to this site, the transcription rate is significantly increased [2].

Again assuming equilibrium, we derived the rate of transcription of Bmal1 to be

rb ¼
v1½ROR� þ v2

1þ K1½REV� þ K2½ROR�
; ð2Þ

where v1, v2, K1, and K2 are constants, and [ROR] and [REV] are the concentrations of ROR

and REV-ERBα.

Using these expressions for the transcription rates and the assumptions of Michaelis-Men-

ten kinetics and mass action kinetics, we formed a fourteen state ordinary differential equation

model to describe the evolution of the concentration of our model species, given by the
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following system of equations:

d½p�
dt
¼

vtxn;p
Ktxn;p þ

Kb
½B� þ ½C1N� þ ½C2N�

�
vdeg;p½p�

Kdeg;p þ ½p�
ð3Þ

d½c1�
dt
¼

vtxn;c1
Ktxn;c þ

Kb
½B� þ ½C1N� þ ½C2N�

�
vdeg;c1½c1�
Kdeg;c þ ½c1�

ð4Þ

d½c2�
dt
¼

vtxn;c2
Ktxn;c þ

Kb
½B� þ ½C1N� þ ½C2N�

�
vdeg;c2½c2�
Kdeg;c þ ½c2�

ð5Þ

d½ror�
dt
¼

vtxn;ror
Ktxn;ror þ

Kb
½B� þ ½C1N� þ ½C2N�

�
vdeg;ror½ror�

Kdeg;ror þ ½ror�
ð6Þ

d½rev�
dt
¼

vtxn;rev
Ktxn;rev þ

Kb
½B� þ ½C1N� þ ½C2N�

�
vdeg;rev½rev�

Kdeg;rev þ ½rev�
ð7Þ

d½P�
dt
¼ Ktln;p½p� �

vdeg;P½P�
Kdeg;P þ ½P�

� va;CP½P�½C1� þ vd;CP½C1N�

� va;CP½P�½C2� þ vd;CP½C2N�
ð8Þ

d½C1�

dt
¼ Ktln;c1½c1� �

vdeg;C1½C1�

Kdeg;C þ ½C1�
� va;CP½P�½C1� þ vd;CP½C1N� ð9Þ

d½C2�

dt
¼ Ktln;c2½c2� �

vdeg;C2½C2�

Kdeg;C þ ½C2�
� va;CP½P�½C2� þ vd;CP½C2N� ð10Þ

d½ROR�
dt

¼ Ktln;ror½ror� �
vdeg;ROR½ROR�

Kdeg;ROR þ ½ROR�
ð11Þ

d½REV�
dt

¼ Ktln;rev½rev� �
vdeg;REV ½REV�

Kdeg;REV þ ½REV�
ð12Þ

d½b�
dt
¼

vtxn;ROR½ROR� þ vtxn;REV
1þ Ktxn;REV ½REV� þ Ktxn;ROR½ROR�

�
vdeg;b½b�

Kdeg;b þ ½b�
ð13Þ

d½B�
dt
¼ Ktln;b½b� �

vdeg;B½B�
Kdeg;B þ ½B�

ð14Þ

d½C1N�
dt

¼ �
vdeg;C1N ½C1N�

Kdeg;CP þ ½C1N� þ ½C2N�
þ va;CP½P�½C1� � vd;CP½C1N� ð15Þ

d½C2N�
dt

¼ �
vdeg;C2N ½C2N�

Kdeg;CP þ ½C1N� þ ½C2N�
þ va;CP½P�½C2� � vd;CP½C2N� ð16Þ

PLOS COMPUTATIONAL BIOLOGY A dual-feedback loop model of the mammalian circadian clock

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008459 November 23, 2020 6 / 25

https://doi.org/10.1371/journal.pcbi.1008459


The description of the symbols for the model species is given in Table 2. A version of the

model in python, parameterized with the optimal parameter set determined as described in

the next section, is available on github at https://github.com/lindseysbrown/brown_circadian_

dual-feedback_loop.

An evolutionary algorithm for parameter fitting

For the model to be biologically relevant, we wanted the patterns of gene and protein expres-

sion levels to reflect experimental observations, by accurately reproducing peak to trough

ratios, relative abundances, and phase differences of the different model species. We also

required that the model preserve the correct behaviors in the Cry1 and Cry2 knockout cases

that were produced by the Hirota model [1] since this is a desired response to a well studied

control input. We used experimentally observed values, noted in Table 3, as the desired values

for these features. With the exception of the Cry1 and Cry2 knockout cases, we did not fit our

model to experimental results on the knockout of various model species, and instead, used this

data to validate our model.

To ensure the model captured these features of the expression patterns, we fit the 45 param-

eters of the model using a cost function. This cost function returns a maximum value if the

model does not produce limit cycle oscillations, and otherwise the cost function is the sum

over all of the features of a difference function of the model produced value and our desired

features multiplied by the weight in Table 3. For the numeric values, we use the squared error

as the difference function, and for the inequalities, we take the difference function as 0 if the

parameter set correctly met the criteria and 1 otherwise. We chose the parameter set which

minimizes this cost function. Because the cost function is not convex and we were optimizing

a high dimensional parameter set, traditional gradient based algorithms would not be effective.

Instead, we used a genetic algorithm, similar to that used in [16]. We initialize a population of

10,000 parameter sets, where initial values for the parameters which correspond to those previ-

ously fit in the Hirota model [1] were chosen distributed about the best fit for that model and

new parameters are initialized to be a similar order of magnitude to corresponding processes.

We implemented this algorithm using the python package DEAP and then allowed it to iterate

over 50 generations, where at each iteration, random mutations of individual parameter sets

Table 2. Model species. Definition of the symbols for the species of our model.

Symbol Model Species

p Per mRNA

c1 Cry1 mRNA

c2 Cry2 mRNA

ror Ror mRNA

rev Rev-erbα mRNA

P PER protein

C1 CRY1 protein

C2 CRY2 protein

ROR ROR protein

REV REV-ERBα protein

b Bmal1 mRNA

B BMAL1 protein

C1N PER:CRY1 heterodimer in the nucleus

C2N PER:CRY2 heterodimer in the nucleus

https://doi.org/10.1371/journal.pcbi.1008459.t002
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Table 3. Desired model features. The desired values of the model features with the weights used in the cost function

compared with the values of these features produced by the model fit with the lowest cost parameter set.

Peak to Trough Ratio Weight Desired Model Feature

Per 5 >20 51.19

Cry1 3 2.1 2.64

Cry2 3 2.2 2.48

Ror 3 4.1 3.62

Rev-erbα 5 >10 18.90

Bmal1 5 >10 2.77

PER 5 >20 487928

CRY1 3 3.7 2.66

CRY2 3 1.8 2.43

ROR 5 <5 4.12

REV-ERBα 5 <5 19.41

BMAL1 3 2.9 2.97

Relative Abundance Weight Desired Model Feature

PER:PER+CRY1+CRY2 10 .11 .28

CRY1:PER+CRY1+CRY2 10 .56 .36

CRY2:PER+CRY1+CRY2 10 .34 .36

BMAL1:CRY1 3 .19 .17

ROR:REV 3 1.02 1.05

Ror:Rev-erbα 3 .78 .75

Bmal1: Per 3 .78 .46

Bmal1: Ror 3 1.01 .85

Bmal1: Rev-erbα 3 .78 .64

Per: Ror 3 1.29 1.86

Per: Rev-erbα 3 .99 1.40

Phase Difference (%Period) Weight Desired Model Feature

Per and PER 10 75 90

Cry1 and CRY1 5 75 90

Cry2 and CRY2 5 67 90

Bmal1 and BMAL1 5 0 7

Ror and ROR 5 67 92

Rev-erbα and REV-ERBα 5 58 82

Bmal1 and Per 15 54 52

Bmal1 and Cry1 15 25 56

Bmal1 and Ror 5 29 57

Bmal1 and Rev-erbα 5 67 79

Rev-erbα and PER 50 50 63

Rev-erbα and Ror 5 79 77

Per and Cry2 5 0 4

CRY1 and CRY1N 5 0 14

CRY2 and CRY2N 5 0 13

Cry Knockout Weight Desired Model Feature

Cry1 sensitivity 50 <0 -2.46

Cry2 sensitivity 50 >0 18.0

Cry1 knockout period 100 <.95 .95

Cry2 knockout period 100 >1.15 1.16

https://doi.org/10.1371/journal.pcbi.1008459.t003
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and random crossovers between pairs of parameter sets occur. We found that the algorithm

was sensitive to the choice of initial condition as we observed that in many cases the algorithm

converged rapidly (in approximately 10 generations) to a local minimum, and so we repeated

this process at several different resampled initial points. From these different algorithmic

runs, we used the lowest cost parameter set for the model; these parameter values are given in

Table 4.

Sensitivity analysis

We used sensitivity analysis to understand the features of the model that have the greatest

impact on different features of the model’s performance. Of particular interest was how differ-

ent parameter changes, which could correspond to small molecule inputs, impact the period of

the circadian clock and the amplitude of the different species. These effects are captured by the

period sensitivity, dTdpi
where T is the period of the oscillator and pi is some model parameter,

and the amplitude sensitivity
dAx
dpi

, where Ax is the amplitude of species x. We computed each of

these sensitivities independently for each parameter locally about the optimal parameter values

as determined by the genetic algorithm. The period sensitivity reflects a change in time for the

entire oscillation, so is independent of the timepoint at which it is calculated. In contrast, the

amplitude sensitivity is dependent on where in the cycle a perturbation occurs, and because we

were primarily interested in changes in overall amplitude, unless otherwise stated, we com-

puted the amplitude sensitivity at the peak of the particular species. The methods compute

both of these quantities infinitesimally, so that the quantities are independent of choice of

range of parameter change and do not need to be normalized by parameter value, are detailed

in [17]. Such analysis has been used to understand the robustness properties of different clock

architectures [18] and to determine the strongest inputs for control [7]. Based on these results,

we were able to make inferences regarding the role of the positive loop of the circadian clock,

detailed in the discussion.

Model predictive control to shift circadian phase

Our model used a system of differential equations to describe the evolution of the expression

levels of the different genes and protein species and can be more succinctly expressed by

dx
dt
¼ f ðxðtÞ; p; uðtÞÞ ð17Þ

where xðtÞ 2 R14
are the expression levels of the model states, p 2 R45

, and u(t) represents a

control input to the model, possibly multi-dimensional. We developed our model with the

goal of being able to shift the phase of the circadian clock and required that our model have an

attractive limit cycle so that we can assign a phase to each point based on the limit cycle, Γ. For

a point x0(t) 2 Γ, we assign a phase ϕ(x0(t)) 2 [0, 2π) such that points equidistant in time are

also equidistant in phase. Because we required Γ be attractive, we can asymptotically assign

phase to any point based on the point to which it converges on the limit cycle, where we define

ϕ(xa(t)) = ϕ(x0(t)) for x0(t) 2 Γ satisfying

lim
t!1
kf ðxaðtÞ; p; 0Þ � f ðx0ðtÞ; p; 0Þk ¼ 0 ð18Þ

One advantage of developing a model to mathematically describe the control of the circa-

dian clock was the ability to predict what inputs could be used to shift the clock and how much

these different inputs might shift the clock without having to test the exponentially many com-

binations of different input combinations, doses, and timing in vitro. The most effective
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Table 4. Model parameters. The parameter set with lowest cost. Because we did not fit the model explicitly to a specific

period or to a specific concentration of one of the model species and instead only used relative time differences and rel-

ative abundances, the units for both time and species concentration are arbitrary. The amplitude and period can both

be arbitrarily scaled to specific experimental results. Units for the rates, denoted with a “v” are arbitrary concentration

units per arbitrary time units.

Parameter Value

vtxn,p 0.26726

Ktxn,p 0.33468

Kb 0.00117

vdeg,p 0.55011

Kdeg,p 0.00146

vtxn,c1 0.08212

vtxn,c2 0.07313

Ktxn,c 0.28353

vdeg,c1 0.58013

vdeg,c2 0.52993

Kdeg,c 1.98812

vtxn,ror 0.08178

Ktxn,ror 0.23693

vdeg,ror 0.51117

Kdeg,ror 1.20013

vtxn,rev 1.15003

Ktxn,rev 0.09945

vdeg,rev 25.99980

Kdeg,rev 2.69984

Ktln,p 2.00001

vdeg,P 4.65000

Kdeg,P 0.00031

va,CP 0.00882

vd,CP 0.05999

vdeg,C1 1.59984

Kdeg,C 2.08639

vdeg,C2 1.51491

Ktln,ror 0.35918

vdeg,ROR 1.29973

Kdeg,ROR 1.95961

Ktln,rev 0.25461

vdeg,REV 1.29951

Kdeg,REV 1.96010

vtxn,ROR 1.81951

vtxn,REV 2.01031

Ktxn,REV 1.72406

Ktxn,ROR 1.07518

vdeg,b 1.93448

Kdeg,b 0.55369

Ktln,b 0.37069

vdeg,B 1.86141

Kdeg,B 2.71612

vdeg,C1N 0.07588

Kdeg,CP 0.05499

vdeg,C2N 0.23010

https://doi.org/10.1371/journal.pcbi.1008459.t004
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combinations could then be tested in vitro. Open-loop optimal control policies using light as a

single input at the organismal level to shift phase have been developed from model-based pre-

dictions of the phase response to light for a simpler model [19]. Because we are interested in

developing a multi-input strategy at the molecular level, and because we must contend with

the inevitable model uncertainty, we have chosen to apply a multivariable feedback control

strategy, model predictive control.

We assumed that the mechanism through which a small molecule input to the clock acts

can be represented by changing one or more of the model parameters, allowing us to predict

the phase response of the circadian clock to an input by using the infinitesimal parametric

phase response curve [20],

PRCpið�Þ ¼
@

2
�

@t@pi
ð�Þ ð19Þ

where ϕ is the current phase of the model and pi is the model parameter affected by the input.

Using a first order Taylor expansion, we can then approximate the phase response to an

input ui which acts through pi by

d�̂ðtÞ
dt
¼ oþ PRCpið�ÞuiðtÞ ð20Þ

where ω is the natural frequency of the oscillator, reducing our model to a phase only model

to simplify its use in control [21]. We tested that this linear approximation was reasonable in

Results. This allows us to use model predictive control (MPC), a closed-loop technique that

solves a finite horizon optimal control problem at each stage, to determine an input strategy

to shift the phase of the oscillator to align with a reference oscillator ϕr through the following

algorithm for the multi-input case:

1. Find a series of control inputs u for a time horizon of Np prediction steps which mini-

mizes

XNp

i¼1

ðwið�̂ðtÞ � �rðtÞÞ
2
þ
XJ

j

qi;jui;j

" #

ð21Þ

subject to the constraint that ui,j 2 [0, umax,j] where ui,j is the jth control input at the ith

timestep and wi and qi,j are weights. To perform this optimization, �̂ is evolved according

to Eq 20, where we perform the optimization using sequential least squares programming

in the scipy optimization package, but any optimization algorithm would suffice.

2. Apply the control inputs u1,j for all J control inputs to the full model.Rather than using

the linearized phase dynamics for �̂, which simplifies the optimization, we use the full

model dynamics to evolve the state of the model to the next time step, using the python

package CASADI to perform the integration of the nonlinear differential equations.

3. Measure the current phase of the model.We determine the phase of the current state of

the model as defined by Eq 18 by integrating the model from the current state forward in

time until it reaches within a small Euclidean distance (�.001) of the limit cycle.

4. Repeat steps 1–3 for the next timestep.

Our implementation of this algorithm is also available in the previously cited github

repository.
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We used this algorithm to compare the trajectories in silico. To quantitatively compare the

performance of different inputs and the resulting phase trajectories, we used settling time,

defined as the earliest time after which the difference between the phase of the model and the

phase of the reference trajectory remains within some threshold. (In this work, we choose a

threshold of 0.1 radians.) This metric allowed us to compare the speed of different control

strategies to align the model with the reference.

Results

Model fit and validation

As outlined in Methods, we found the lowest cost parameter set for the model. The resulting

oscillations of the 14 model species are shown in Fig 2. It should be noted that the period of

the model is not approximately 24 h as would be expected for a circadian oscillator because

we did not explicitly fit the model period. If a certain period is desired, the necessary parame-

ters could be appropriately rescaled in order to rescale time. (The optimal parameter set here

without rescaling of time resulted in a period of 27.1 h.) Table 3 shows the features of the

expression patterns using this parameter set compared to the desired features as measured

experimentally. Since peak to trough ratios, relative abundances, phase differences, and sensi-

tivity to cryptochrome knockout were explicitly included in the cost function, we found that

the optimal parameter set gave a good fit to these features. The fit is particularly strong to the

peak to trough ratios with relative abundances as areas where the fit could most be improved.

Depending on the features of the model which are most important for the performance we

consider, such features may be better fit by changing the weights in the cost function.

As a test of robustness of the model fit, we individually varied each parameter by up to 50%

to determine the robustness of the fit of the model. We found that 64% of the parameters

Fig 2. Output oscillations of the model. The output oscillations in expression concentrations of the model

parameterized with the lowest cost parameter set show that the model produces a limit cycle. Each model species is

represented by a different color line. The x-axis is in arbitrary time units since time can be rescaled to any desired

period. From the expression curves, one can visualize the different model features, including peak-trough ratios,

relative abundances, and phase differences, used to fit the parameters. Despite similar underlying physiological

processes (transcription, translation, and degradation) corresponding to similar equations, each species has a different

resulting waveform, presenting a potentially important model outcome for comparison to other models as

experimental techniques improve to have better time-resolution for these expression curves.

https://doi.org/10.1371/journal.pcbi.1008459.g002

PLOS COMPUTATIONAL BIOLOGY A dual-feedback loop model of the mammalian circadian clock

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1008459 November 23, 2020 12 / 25

https://doi.org/10.1371/journal.pcbi.1008459.g002
https://doi.org/10.1371/journal.pcbi.1008459


could be varied in a range of 25% or more without significantly increasing the cost by losing

oscillations or the correct responses to cryptochrome knockout, the most heavily weighted fea-

tures of the cost. Only five parameters (Ktxn,p, vdeg,p, vtxn,c1, Kdeg,c, vdeg,C1N), which govern the

negative feedback loop, could be varied by less than 1% while keeping the cost low. Using a

finite difference approach, we estimated the sensitivity of the cost function to each parameter

individually. The parameters to which the cost function is more sensitive could be varied in a

smaller range before the cost increased steeply. These dramatic increases are often the result of

requiring that the model preserves the correct response to the cryptochrome knockout condi-

tions, so without these conditions, the model fit may be dramatically different. However,

within the range of parameters that meet these conditions, the value of the cost function

increases by less than 140% suggesting that within a range of different choices of weights for

the other model features, the optimal parameter set would still fall near the set we found

through the genetic algorithm.

With the exception of the cryptochrome knockout conditions, all of these features were

from in vitro recordings of non-genetically modified cells. Thus, in order to validate our

model, we used in vitro observations from experiments which altered the expression of the spe-

cies in our model. In particular, we test the behavior of our model under knockout conditions

by setting the appropriate transcription rate parameters to zero. The results of these validation

tests are shown in Table 5.

Period sensitivity. Since we were primarily interested in the implications of the model for

shifting circadian clock phase, it was particularly important for our model to show the correct

period sensitivities to the knockout of different species. In order to ensure that period sensitivi-

ties to Cry1 and Cry2 knockout were preserved from the Hirota model [1], these features were

Table 5. Performance on model validation tests. Comparison of the performance of different models on different validation tests. To analyze period (T) changes to

increased expression levels of some species, we examine the period sensitivity, expressed as partial derivatives, to the corresponding parameter. Positive sensitivities corre-

spond to an increased period.

Model Validation Test Dual Loop Model Leloup and Goldbeter Model Relogio et al.

Model

Model period sensitivity to Cry degradation (negative

for Cry1, positive for Cry2)

@T
@vdc1

< 0
@T
@vdc2

> 0

Positive for both degradation

mechanisms

( @T
@kdmc > 0,
@T

@dvmc > 0)

@T
@y2 > 0

Cry knockout period (shorter for Cry1 KO, longer for

Cry2)

Cry1 KO T
original T < 1
Cry2 KO T
orginal T > 1

double KO arrhythmic

arrhythmic arrhythmic

Increased BMAL1 leads to increased T @T
@klB > 0 @T

@ksb > 0 @T
@kp5 > 0

Increased PER leads to decreased T @T
@klp < 0 @T

@ksp < 0 @T
@kp1 < 0

REV-ERBα KO leads to decreased T# REV� ERBa KO T
original T < 1 arrhythmic arrhythmic

REV-ERBα KO leads to decreased Cry1 amplitude no change in peak, increased peak to trough ratio arrhythmic arrhythmic

Bmal1 KO causes arrhythmictiy# arrhythmic arrhythmic arrhythmic

Ror KO leads to decreased Bmal1, no Per amplitude

change

Decrease in peak to trough ratio of Bmal1 but peak

increases, no Per change

N/A arrhythmic

Bmal1 antiphase with Per and Cry� yes, incorporated in cost function yes yes

Per KO is arrhythmic�# yes oscillations possible with increased

cooperativity

yes

# Indicates a test used by Relogio et al. [22] for model validation.

�Indicates a test used by Leloup and Goldbeter [23] for model validation.

https://doi.org/10.1371/journal.pcbi.1008459.t005
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explicitly incorporated into the cost function with a high weight. As a result, our model contin-

ued to display the correct behavior; the knockout of Cry1 results in a shortened period while

the knockout of Cry2 lengthens the period. We did not explicitly fit the model to other knock-

out conditions. Experiments show that increased BMAL1 concentrations result in an increased

period, while increased PER results in a decreased period [24]. For both of these cases, the sen-

sitivity of the period length relative to the translation rate of these species has the correct sign,

so the model correctly reflects this qualitative behavior. Under Rev-erbα knockout conditions,

the circadian oscillator shows a decreased period (by about 0.5 h in mice or�2% [25]), while

our model showed only a very slight decrease (<1%).

Knockout rhythmicity. Experimental evidence shows that some genetic knockouts ren-

der the circadian clock arrhythmic, while in other conditions, oscillations continue, but with

changes in period and amplitude. Our model correctly predicted arrhythmicity in Bmal1
knockout conditions. Under Rev-erbα knockout conditions, our model predicted continued

oscillations of the negative feedback loop as desired. However, in these conditions Bmal1
becomes arrhythmic in fibroblast cells, but continues to oscillate in our model [26]. This may

result from the fact that the majority of the data used to parameterize our model was based on

expression data from liver cells, and recent modeling work on more simplified models suggests

that different parameter sets may describe the oscillations of the clock in different organs [27].

Amplitude sensitivity. While our model accurately predicts period sensitivity and rhyth-

micity for most cases, our model was not as successful at predicting amplitude changes under

knockout conditions. Cry1 amplitude should decrease for Rev-erbα knockout as well as Ror
knockout, but there was no change in peak expression with a slight increase in the peak to

trough ratio. In the Ror knockout case, we also expected reduced Bmal1 expression, but

although the peak to trough ratio decreases, the amplitude of the peak increased. In this case,

the model did correctly predict no change in Per amplitude [25, 26]. For consideration in con-

trol of circadian phase, the correct amplitude sensitivity may not be as important. However,

the model may not be as reliable in its predictions for applications in which we are also inter-

ested in controlling the amplitude of the circadian clock. For cases in which amplitude sensi-

tivity is important, the model could be refit with these amplitude sensitivities explicitly

included in the cost function.

Model sensitivities

One way to determine which targets may be the most effective for control is to consider period

sensitivity to different model parameters. We found that the period of the model is orders of

magnitude more sensitive to changes in the parameters of the negative feedback loop than the

positive feedback loop (Fig 3). We did not observe any trends of sensitivity to different species

within each loop, nor did we find sensitivity differences by function of the parameter, unlike

the patterns of sensitivity observed in a model of the circadian clock in Drosophila [28].

Similarly, we observed that amplitude sensitivities to changes in different model parameters

were also much more sensitive to changes in the parameters governing the negative feedback

loop. The parameters to which the period was the most sensitive corresponded to those which

amplitude was most sensitive as has been observed in other models [18]. We analyzed the

amplitude sensitivities of each species at the peak expression of that species to each parameter

and also found that the similarities in amplitude sensitivity are clustered by species and loop.

Unsurprisingly, the amplitude sensitivities of mRNA and proteins were highly correlated as

the protein is produced from the mRNA. With the exception of the Ror species, we found a

separation of the positive and negative feedback loops again when considering amplitude

sensitivity (Fig 4). We similarly found that the cost function was also most sensitive to the
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parameters governing the negative feedback loop, again demonstrating that most of the

dynamic features are driven by the negative feedback loop.

These different sensitivities predict strong differences in the efficacy of different targets for

control. We found that the period sensitivities were well correlated with the area under each

Fig 3. Period sensitivities to model parameters in each loop. For every parameter in the model, we plotted the period

sensitivity calculated locally at the optimally fit parameter value versus the fit parameter value. The period sensitivity to

the parameters in the negative feedback loop (blue) were orders of magnitude greater than those of the positive

feedback loop (orange). Since these sensitivities were infinitesimal, the period sensitivity was largely independent of the

magnitude of the fit parameter and depended much more strongly on which feedback loop the parameter governs.

https://doi.org/10.1371/journal.pcbi.1008459.g003

Fig 4. Correlation of amplitude sensitivities of different species to model parameters. For each model species, we

computed the amplitude sensitivity for each of the model parameters. The positive correlations between the amplitude

sensitivities for each species showed that the amplitude of different species are most sensitive to similar parameters. As

expected, these correlations were strongest between the mRNA and protein of the same species. Strong correlations

were also seen within the negative feedback loop. These correlations suggested that the targets which are most effective

in controlling amplitude for a single species will similarly be strong targets in affecting the amplitude of the other clock

species.

https://doi.org/10.1371/journal.pcbi.1008459.g004
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lobe of the phase response curve (r = −0.92 for the positive area and r = .68 for the negative

area). For this reason, we found that the species of the negative feedback loop were able to shift

phase much more rapidly with each clock cycle than the positive feedback loop species as

described in the next section. More research may consider whether the positive targets are

valuable for a more gradual resetting in situations where the light environment cannot be rap-

idly changed if the shifts from dosing a target of the negative feedback loop are too strong.

Moreover, the positive feedback loop targets could be used to make small adjustments to

amplitude of the clock as discussed in the next section comparing the phase and amplitude

response curves to parameters governing each loop.

Use of the model for multi-input control

Recent work from our group and others has developed methods for circadian control using a

single control input to shift the phase of the clock based on the effects of KL001, which affects

the degradation of the PER:CRY1 and PER:CRY2 nuclear heterodimers (corresponding to

model parameters vd,C1N and vd,C2N), components of the negative feedback loop [29]. The

work of [29] uses the Hirota model [1] so is limited to controlling the clock through small mol-

ecules that act on the species in the negative feedback loop. The model developed here allowed

us to also use small molecules which act on the species of the positive feedback loop, such as

KK-S6 and FBXW7-αmodulators, which act by reinforcing or degrading REV-ERBα respec-

tively (corresponding to changes in Ktxn,REV or vd,REV) [11, 12]. Furthermore, inhibitors of

GSK-3β act on both arms of the clock, degrading CRY2 and stabilizing REV-ERBα (vd,C2 and

vd,REV) [13], requiring a model of both feedback loops of the clock (Table 1).

As seen in the phase and amplitude response curves of the parameters corresponding to the

actions of these small molecules (Fig 5), the magnitude and direction of the phase or amplitude

response differs depending on the phase at which the input is applied. This nonlinear response

motivated our choice in applying MPC to control circadian phase. From these plots, we also

saw the phases at which these different molecules have the greatest impact on the phase or

amplitude of the clock differ. This may provide a larger window during which control can be

applied to affect the clock. Moreover, these molecules could have complementary effects in

controlling for both phase and amplitude; changes to the parameters in the negative feedback

loop result in greater magnitude phase responses but also cause changes in amplitude, while

changes to the parameters in the positive feedback loop allow for changes in amplitude with

minimal impact on phase.

As outlined in Methods, we used a linear phase-only model to predict changes in phase as

the result of control inputs. In Fig 6, we showed that this approximation is valid by comparing

the phase change predicted by the phase-only model from the PRC to the phase change of the

full model when we manipulated the parameters which correspond to known potential control

inputs by 10% for 1

24
of the period (simulating an hour change). In the single input case, we

found a slope of 1.03 with an r2 of .89, suggesting that this approximation is valid for a single

input. Likewise, we found that the linear approximation also held in the case of two inputs,

with a slope of 1.05 and r2 of .89, suggesting that the interaction between the two changes is

not significant for phase prediction, allowing us to use this assumption in our MPC algorithm.

We demonstrated the efficacy of the MPC approach with our model to predict phase

through simulation of a protocol where a 5 h advance occurs at 12 h into the study and then a

11 h delay is introduced 72 h later using different combinations of inputs (Fig 7). The initial

condition of the simulation is set to the peak of Per expression. The timing between the phase

shifts in this protocol is designed to give the simulation sufficient time to settle in the new

phase prior to beginning the delay while phase shifts are chosen to be relatively large so that
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choices of control input have to be made at many different phases to reach the shifted phase,

and the exact choices for the protocol were motivated by our ability to compare with the results

from other studies. Previous simulations have used KL001 as control input for the same proto-

col but using the Hirota model [1], and we found qualitatively similar results to those of [30]

Fig 5. Phase and amplitude response curves to small molecule inputs. The phase response curves (left) and amplitude response curves of

Bmal1 and BMAL1 (right) to perturbations in parameters corresponding to the action of known small molecules (Table 1).

https://doi.org/10.1371/journal.pcbi.1008459.g005
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when we consider KL001 as a single input to our model. Again for comparison, we use the

same MPC specifications with a timestep of 2 h and the control and prediction horizon (Np)
both to be 3 timesteps, which were shown to be an optimal tradeoff between computational

time and control efficiency for KL001 input to the Hirota model [30]. Slight differences in set-

tling time can be attributed to the fact that the phase response curve for KL001 is not identical

for both models, and even for our model, we observed that changes in the model parameteriza-

tion also cause changes in the phase response curve. To demonstrate the use of the model in

multi-input control, we compare the cases of KL001 as a single control input on the negative

loop to KL001 with Longdaysin where both inputs act on the negative feedback loop and to

KL001 with FBXW7-α and Longdaysin with FBXW7-α where inputs act on both the negative

and positive feedback loop (Table 6). We note that FBXW7-α would not have been effective in

achieving the desired shifts over this time course due to differences in period sensitivity as dis-

cussed in the previous section. The differences in sensitivity were also observed in the fact that

control with Longdaysin or KL001 alone was very similar to when we add FBXW7-α. While

the settling time for the model was similar for KL001 and Longdaysin alone, the trajectory for

control with KL001 was much smoother, leaving the questions of what biological relevance

such different trajectories have. Finally, the settling time was much faster for the multi-input

case using both KL001 and Longdaysin, demonstrating the value in considering questions of

multiple control inputs to improve performance. While these simulations demonstrated differ-

ences in settling time for different control combinations, we did not optimize the parameteri-

zation of the MPC algorithm for each possible input case, instead leaving them fixed for

comparison across the cases. Such a comparison showed differences in settling times, depend-

ing on the strength of the control input, which could further be refined by optimizing the

parameterization of the MPC algorithm for different input combinations.

While these in silico studies confirmed previous results suggesting that period sensitivity is

a good indicator of what inputs are the strongest phase resetting targets [18], these simulations

consider phase as the only output. We observed very different trajectories depending on the

combination of control input and did not consider controlling for amplitude as a second possi-

ble output. Although these results suggest that the parameters governing the positive feedback

loop are not as powerful targets for resetting phase, these targets may allow us to control for

Fig 6. Use of phase only linear approximation to predict phase changes. The phase changes that were observed in the full model compared to

the estimated phase changes using the linear approximation from the ipPRC (Eq 20) for a single input (left) or pairs of parameters (right)

corresponding to known inputs were strongly correlated, validating the use of this approximation in the MPC algorithm and suggesting that

nonlinear interaction terms are not significant for these pairs of inputs.

https://doi.org/10.1371/journal.pcbi.1008459.g006
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Fig 7. Comparison the MPC algorithm using different control inputs. The output of the MPC simulation using the linear

approximation from the ipPRC (Eq 20) for different combinations of parameters. A. KL001 (single input on the negative loop), B.

Longdaysin (single input on the negative loop), C. KL001 and FBXW7-α (multi-input on the negative and positive loop), D.

Longdaysin and FBXW7-α (multi-input on the negative and positive loop), E. KL001 and Longdaysin (multi-input on the negative

loop). Top panels in each subfigure show the phase trajectory of the model (green) in comparison to the reference (dotted gray).

Other panels show the PRC of the control input (dashed lines) and control delivered (solid lines) for KL001 (red), Longdaysin

(cyan), and FBXW7-α (blue).

https://doi.org/10.1371/journal.pcbi.1008459.g007
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amplitude nearly independently of phase (Fig 5). Moreover, our simulations assumed that con-

trol targets could adjust the parameter by as much as half of its nominal value when control is

applied. More experimental data is needed to determine how much a given input can change

these parameters and what doses are safe to shift phase without disrupting other biological

processes. When considering these constraints, the powerful changes resulting from inputs to

the negative feedback loop may not be feasible, resulting in the need to consider more complex

combinations of inputs as allowed for by our dual loop model. Our simulations demonstrated

the potential for increased speed in achieving phase shifts through multi-input control but

with different phase trajectories, which might also be a control target, and our model has been

designed to be control-relevant so that it provides the framework to explore these questions.

From the resulting input profiles we also saw, as expected, that the inputs were only deliv-

ered when the system was in a state where the phase response curve was either in an advance

or delay, the bang-bang control which has been proven to be optimal for this system [30]. This

result reaffirmed that not only the dose of an input impacts the system’s response but also the

timing of the input, as mistimed inputs can result in shifting phase in the opposite direction

than desired. Such results heighten the importance of our ability to control phase so that the

delivery of drugs, not only to shift phase but also drugs that act on other related systems, may

be timed appropriately for maximal efficacy and motivate the further study into chronotherapy

for the effective timing of health interventions.

Discussion

Comparison to other models

Numerous previous models have been used to describe the circadian oscillator, ranging from

single equation phase only models to large systems of differential equations with over 70 states.

Models that are too simple do not have sufficient biological detail to consider different control

actions, while models that are too large make determining the most effective control input

strategies difficult because of the many combinations of possible targets. For this reason, we

sought to develop a model that contained both the positive and negative feedback loop to pro-

vide sufficient control targets. This model is most similar in scope to the Leloup and Goldbeter

model [23] and the Relogio et al. model [22].

All three of these models contain the core clock species from both the positive and negative

loop. Our model has 14 states with 45 parameters, while the Leloup and Goldbeter model has

19 states with 63 parameters, and the Relogio et al. model has 19 states and 71 parameters. Our

model has fewer states and parameters because it does not specifically model phosphorylation

of the model proteins. As a result, our model loses some potential mechanisms for altering the

clock but results in a simpler model that still captures much of the essential behavior. Even

with fewer states, our model still had sufficient time delay for oscillations without the

Table 6. Settling time of simulation for different inputs. Comparison of the performance of different input combina-

tions with the MPC algorithm in our simulated scenario on the settling time in the simulation for the 5 h advance and

11 h delay.

Inputs Target Loop(s) Advance Settling Time (h) Delay Settling Time (h)

KL001 negative 45.3 136.2

Longdaysin negative 42.0 165.8

KL001 and FBXW7-α negative and positive 45.3 136.2

Longdaysin and FBXW7-α negative and positive 42.0 171.1

KL001 and Longdaysin negative and negative 31.3 101.1

https://doi.org/10.1371/journal.pcbi.1008459.t006
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additional delay created by adding the phosphorylated states. For cases where the degradation

pathway is targeted for phase shifts, our model could be expanded to explicitly include the

phosphorylated states to determine an even more precise target process. Aside from the differ-

ences in modeling phosphorylation, the models remain similar in size because all of the models

assume that similar gene families can be represented as a single state to simplify the number of

states. For example all three isoforms of Period, Per1, Per2, and Per3, are modeled as a single

species representing Period. The same is true for Ror (not included in the Relogio et al. model)

and Rev-erbα. A key difference in our model compared to the other two is that our model has

separate states for the two cryptochrome isoforms, allowing the model to have different sensi-

tivities to the knockout of one of the genes as is observed experimentally. Instead, the other

models both have a positive period sensitivity to the degradation of CRY, as is only the case for

CRY1 experimentally. None of the models include CLOCK, and instead assume that there is a

sufficient, constant level available for the formation of the CLOCK:BMAL complex. Such an

assumption is supported by the fact that CLOCK has been shown to display only minimal

oscillations, and moreover, the effects of REV-ERBα on CLOCK expression are similar to its

effect on BMAL1 [31], so these effects are captured since both REV-ERBα and BMAL1 are

included in the model.

Unlike our model and the Leloup and Goldbeter model, the Relogio model does not use

Michaelis-Menten kinetics to describe the degradation of the model species, making a different

mechanistic assumption. Another difference in mechanistic assumption is that our model

does not include Hill terms, so does not assume any cooperativity, but still attains sufficient

nonlinearity to produce oscillations.

We also considered the performance of these models on the validation tests that we used

for our model (Table 5). All three models displayed the correct period sensitivities to PER and

BMAL1. Similarly, for all three models, Bmal1 or Per knockout leads to arrhythmicity. One

advantage of our model is that it continues to produce oscillations under other knockout con-

ditions as observed experimentally. In addition to the ability to knockout only a single isomer

of cryptochrome and have the correct period changes as a result, our model also retains rhyth-

micity in the knockout of Rev-erbα and Ror as desired, unlike the other two models. Thus,

although the other models provide similar control targets, because the other models do not

show the correct period changes in response to all parameter changes, especially in the case of

the degradation rates of nuclear cryptochrome where KL001 acts, comparing their perfor-

mance in our MPC calculation is not well motivated.

Our model also differed in large differences in period sensitivities between the two loops,

where the sensitivities to the parameters of the negative feedback loop were orders of magni-

tude larger than to those of the positive loop as described in Results (Fig 3). This was not

observed in either of the other models. In the case of the Leloup and Goldbeter model, this

may be partially explained by the fact that it is assumed some of the parameters are common

across reactions, necessarily making the two loops more similar to each other. Moreover, the

three models do not all predict the same directionality of the period sensitivity to corre-

sponding model parameters, providing other experiments that could be conducted to vali-

date the different models. Previous experiments have validated phase response curves

predicted by models describing the oscillators response to light input by delivering pulses of

light of different lengths at different phases and measuring the resulting phase change [32].

Analogous experiments could be conducted for the phase response of the oscillator to differ-

ent small molecules by delivering pulses of the drug to the system and measuring resulting

phase changes.

Overall, the dual loop model is advantageous because it is a slightly simpler model while

still differentiating the differing effects of the cryptochrome isomers and retaining rhythmicity
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in cases where it is expected where the other models do not. These properties make our model

useful for considering future questions on multi-input control.

Implications for the role of each feedback loop

Three different functions have been proposed for the positive loop of the clock. First, it was

proposed that this additional loop adds robustness to the oscillations. Second, the positive loop

may help to coordinate sending environmental signals to the core negative feedback loop.

Third, the positive feedback loop may help to coordinate the timing of the expression of spe-

cific genes [33]. The results of our modeling and sensitivity analysis provide support for all

three potential functions. Our model showed that when the positive feedback loop is incorpo-

rated, the Hill terms are no longer needed for the system to have sufficient nonlinearity pro-

duce oscillations. This suggests that the positive feedback loop may be necessary to help

stabilize oscillations, and that an activator-inhibitor system can produce circadian oscillations

as unlike other studies, we do not have a core repressilator loop in our model [14]. Still, the

dominance of this repressilator structure with the primacy of the negative feedback from PER

and CRY is supported by our findings that the negative feedback loop dominates the positive

feedback loop in period and amplitude sensitivities [27]. Taken together, these results also sup-

port the findings that additional feedback loops contribute to robustness of the oscillations

and to perturbations compared to a single negative feedback loop model [9], suggesting

why the biological circadian clock is more complex than is needed to produce oscillations

synthetically.

The lower sensitivity of many features of the circadian oscillations to the parameters of the

positive feedback loop may also suggest the importance of robustness to these parameters for

other functions, largely coordinated by REV-ERBα and REV-ERBβ [34]. The circadian clock

is linked to the metabolic system through both Rev-erbα and Rev-erbβ in a number of different

functions [35, 36]. For example, both REV-ERB and ROR have been linked to adipogenesis

through their regulation of lipid homeostasis, and ROR is also linked to glucose metabolism,

providing the potential to consider known synthetic ligands as therapeutics for metabolic dis-

orders [37]. The positive arm of the clock also links the circadian system to inflammation. In

the brain, Rev-erbα has been shown to modulate neuroinflammation through microglial acti-

vation, and its knockout causes loss of rhythmicity in circadian patterns of neuroinflammation

[38]. Similarly, in the rest of the body, Rev-erbα regulates the inflammatory response of macro-

phages by repressing the expression of Ccl2 [39]. These links between the positive loop and

these other systems may suggest that the lower magnitude period sensitivity may help preserve

clock function if dysfunction arises in these other systems.

The dominance of the negative feedback loop together with the connection between the

positive feedback loop and other systems suggest that when the goal of therapy is to change

underlying features of the clock, targets in the negative feedback loop will be more effective.

On the other hand, while targets in the positive feedback loop may have smaller impacts on the

phase and amplitude of the clock itself, changes in these parameters may have a greater impact

on other systems.

Future directions

Overall, the developed model outperforms existing models in validation, while, importantly

for control, maintaining the correct sensitivities to cryptochrome knockout. Since the model

contains both feedback loops, the model provides many additional targets for control. Future

work should investigate the most effective combinations of multiple inputs as well as a
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consideration of how they are timed relative to each other. To be most valuable clinically,

restricting the inputs to come at the same time would be beneficial.

Moreover, much work remains to be done in the development of useful models for drug

timing and drug delivery. Our MPC simulation assumed that an control input could instan-

taneously cause a parameter change and instantaneously be removed to return the parameter

to its original value. Such an assumption ignores the pharmacokinetics and pharmacodynam-

ics of these small molecules, which would require further experimentation to verify, and would

change the desired time profile of the inputs. Similarly, the simulation did not account for

other naturally occurring environmental inputs to the circadian clock, including light and

metabolic cues. Light has been shown to be a valuable control input to shift phase, and as a

result, the light environment may change the efficacy of these small molecules [40].

As discussed in the previous section, the clock is linked to many other biological processes.

This model also could be incorporated with models of other biological systems to better inves-

tigate the relationship between the clock and different body systems. Such linked models could

be used to hypothesize whether adverse changes in different body systems result from abnor-

mal expression levels in the clock or whether abnormal physiology can result in dysregulation

of the circadian clock.
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