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Abstract

Motivation: Understanding the mutational processes that act during cancer development is a key

topic of cancer biology. Nevertheless, much remains to be learned, as a complex interplay of proc-

esses with dependencies on a range of genomic features creates highly heterogeneous cancer

genomes. Accurate driver detection relies on unbiased models of the mutation rate that also cap-

ture rate variation from uncharacterized sources.

Results: Here, we analyse patterns of observed-to-expected mutation counts across 505 whole can-

cer genomes, and find that genomic features missing from our mutation-rate model likely operate

on a megabase length scale. We extend our site-specific model of the mutation rate to include the

additional variance from these sources, which leads to robust significance evaluation of candidate

cancer drivers. We thus present ncdDetect v.2, with greatly improved cancer driver detection speci-

ficity. Finally, we show that ranking candidates by their posterior mean value of their effect sizes

offers an equivalent and more computationally efficient alternative to ranking by their P-values.

Availability and implementation: ncdDetect v.2 is implemented as an R-package and is freely avail-

able at http://github.com/TobiasMadsen/ncdDetect2

Contact: jakob.skou@clin.au.dk

Supplementary information: Supplementary data are available at Bioinformatics online.

1 Introduction

A key challenge in cancer genomics is to understand and character-

ize the mutational processes that shape cancer genomes (Pon and

Marra, 2015). Most mutations are neutral and do not affect cellular

functions. However, a small number of driver mutations give the

cell growth advantages. As different cancers experience shared selec-

tion pressures, they often accumulate in the same cancer genes or

regulatory elements across patients, thereby leading to a local excess

of mutations. Cancer drivers can therefore be detected by a

significant excess of observed mutations compared to that expected

from the mutation rate. In this regard, accurate modeling of the

background mutation rate is essential for driver detection.

We previously built a detailed model of the position-specific mu-

tation rate in cancer by including the main genomic features known

to correlate with mutation rate, such as replication timing, expres-

sion levels and position-specific sequence context (Bertl et al.,

2018). However, we do not know all relevant genomic features that

affect and explain mutation rate variation, and, more generally,

we still lack a full understanding of the complex and heterogeneous
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mutation processes in cancer genomes (Lawrence et al., 2013).

Missing some of the explanatory genomic features when modeling

the mutation rate leads to a higher variation in the observed muta-

tion counts than predicted. This phenomenon, known as overdisper-

sion, has been observed in previous attempts to model the mutation

rate (Lochovsky et al., 2015; Martincorena et al., 2017). Failing to

include overdispersion may result in an inflated number of false pos-

itives, as the background model then underestimates the probability

of extreme events. Incorporating overdispersion captures the true

variance of the mutation rate better and ensures robust predictions

with good specificity. In contrast with previous models using the

regional mutation load (Lochovsky et al., 2015; Martincorena

et al., 2017), we here introduce overdispersion in a site-specific

framework.

The present work extends the original ncdDetect method (v.1)

(Juul et al., 2017).The ncdDetect method seeks to identify genomic

regions subject to recurrent positive selection across samples of large

cancer cohorts. First, a background model for the neutral mutation

rate is learned for each sample and genomic position. Next,

ncdDetect scans through a set of predefined regions and identify

regions harbouring a significant amount of mutations or a surpris-

ingly large predicted functional impact. The set of regions can con-

tain any element type of interest, e.g. promoter regions, enhancers,

30 or 50 UTRs. While the method can also be applied to protein-

coding sequences, methods leveraging the distinction between syn-

onymous and non-synonymous mutations are expected to perform

better. Various site-specific scores indicating the functional impact

of a mutation can be applied, e.g. CADD, LINSIGHT or phyloP

(Huang et al., 2017; Kircher et al., 2014; Pollard et al., 2010).

ncdDetect can also operate with simple 0–1 scores, to simply evalu-

ate the mutational burden.

The novel contributions of this work are threefold: First, we

analyse the observed-to-expected mutation load, evaluate the levels

of overdispersion for different region types, and characterize the

length scale of remaining genomic features that affect mutation rate

but are not included in the mutation-rate model. Since multiple add-

itional genomic features are likely relevant to the mutation rate in

cancer genomes, this characterization of length scale is the product

of not one, but several genomic features. In longer terms, the goal

should be to identify and incorporate all of these genomic features in

the mutation-rate model in order to reduce the degree of overdisper-

sion. In terms of cancer driver detection, this will improve the detec-

tion power while still controlling the false positive rate. As for now,

we reduce the amount of overdispersion in the mutation-rate model

by adding a measure of local genomic mutation rate.

Second, we introduce overdispersion in the ncdDetect cancer

driver detection method (Juul et al., 2017). Overdispersion of muta-

tion count statistics has been observed and modeled in cancer genom-

ics previously. Generally, including overdispersion leads to higher

specificity. For instance, one study found that the number of muta-

tions in a regulatory element was better described by a beta-binomial

model than a binomial model, i.e. by including a beta-distributed

prior of the regional mutation rate to capture rate uncertainty and

overdispersion in counts (Lochovsky et al., 2015). In another study

(Martincorena et al., 2017; Nik-Zainal et al., 2016), overdispersion

was captured by modeling the expected number of mutations in a

gene using a negative-binomial model, i.e. a Poisson distribution with

a gamma distributed rate. Where these models consider the mutation

load regionally and thus lend themselves naturally to classic models

for overdispersed count data, we build a novel framework to capture

overdispersion in a site-specific model. We improve the efficiency of

the P-value evaluation by using a highly accurate saddle-point ap-

proximation (Madsen et al., 2017).

Third, we explore alternative approaches to prioritizing findings:

It is conventional to rank and prioritize findings according to their

P-value. Evaluating the P-value allows the use of multiple testing

procedures to estimate the number of findings (Benjamini and

Hochberg, 1995) and rudimentary model control by checking for in-

flation or deflation of P-values. However, ranking by P-values

favours long elements with small effect sizes at the expense of

shorter elements with large effect sizes, which are often of higher

biological relevance (Henderson and Newton, 2016). Empirical

Bayes procedures are often used to remedy this problem (Love et al.,

2014; Smyth, 2004). In a Bayesian setting, the overdispersion par-

ameter is directly related to the variance of a prior distribution on

the effect size. We demonstrate a correspondence between including

overdispersion and Bayesian shrinkage towards the prior, and there-

by offer ranking of candidates by the posterior mean effect size as a

computationally fast alternative to P-value evaluation. This ap-

proach has great promise as datasets become bigger and computa-

tion loads consequently increase.

The methodological improvements are implemented in

ncdDetect v.2 as an R-package, which is accompanied by a tutorial

available at github.com. A graphical overview of ncdDetect v.2 is

presented in Figure 1.

2 Materials and methods

We previously developed the method ncdDetect for detection of

non-coding cancer driver elements (Juul et al., 2017). With this

method, we compare observed mutation counts to the background

mutation rate, which is based on various genomic features, and esti-

mated for each sample and genomic position. The genomic features

included in the background model of the mutation rate are replica-

tion timing, tissue-specific gene expression level, trinucleotides (the

nucleotide under consideration and its left and right flanking bases),

and genomic segment [30 and 50 untranslated regions (UTRs), splice

sites, promoter elements and protein-coding genes]. The position-

specificity of the method provides great flexibility in terms of model-

ing the mutation rate in cancer at any genomic resolution without

having to average features with varying values within specified

regions. The setup further allows us to assign different scores to

each mutation at each position. In the present analysis, we use

CADD and LINSIGHT scores. Including measures of functional im-

pact improves the ability of ncdDetect to reveal recurrent positive

selection across cancer genomes.

The background model used in ncdDetect relies on multinomial

logistic regression to predict position-specific mutation probabilities

(Bertl et al., 2018). The position-specific setup leaves, however, no

room for estimating overdispersion, as overdispersion in this model

does not change the position-specific predictions and cannot capture

regional dependencies (Fig. 2A).

We thus estimate the amount of overdispersion in a region-based

setting: For each region, we imagine drawing a random effect repre-

senting a scaling of the expected mutation rate to what it would

have been, had all relevant genomic features been included.

Henceforth, we will refer to the standard deviation of this random

effect as overdispersion. We use an empirical prior as the distribu-

tion of the random effect, which we marginalize out by numerical

integration in the significance evaluation of a candidate cancer

driver element. In the following we first describe the model used in

190 M.Juul et al.

Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: Pollard <italic>et<?A3B2 show $146#?>al.</italic>, 2010; 
Deleted Text: Huang <italic>et<?A3B2 show $146#?>al.</italic>, 2017
Deleted Text: -
Deleted Text: analyze 
Deleted Text: ; Martincorena <italic>et<?A3B2 show $146#?>al.</italic>, 2017
Deleted Text: p
Deleted Text: <italic>p</italic>
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: ; Love <italic>et<?A3B2 show $146#?>al.</italic>, 2014
Deleted Text: p
Deleted Text: 2 Methods
Deleted Text: (
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ). 
Deleted Text:  
Deleted Text: s


ncdDetect and then show how to include overdispersion in a

position-specific setup.

2.1 ncdDetect v.1
Let X1; . . . ;XN be a sequence of independent random variables

with discrete outcomes in a state space enumerated by the integers

f1; . . . ; 4g. The first outcome for each of the random variables fXngN
n¼1

corresponds to no mutation. Furthermore let sn : f1; . . . ;4g ! R;

n ¼ 1; . . . ;N be a sequence of mappings from the state space to

arbitrary real numbers. Typically snð1Þ ¼ 0 and snðkÞ > 0 for

k¼2, 3, 4. Next, define Sn ¼ snðXnÞ and S ¼
PN

n¼1 Sn. Denote the

mutation probabilities by, pnk ¼ pðXn ¼ kÞ. We call this model the

weighted Poisson-bionomial model.

To evaluate the probability of PðS > tÞ, consider the set

At ¼ fk ¼ ðk1; . . . ; kNÞ j
XN
n¼1

snðknÞ > tg:

We can compute the tail probability of S as,

PðS > tÞ ¼
X
k2At

YN
n¼1

pnkn
: (1)

2.2 Including overdispersion
To introduce overdispersion we relax the assumption that the varia-

bles X1; . . . ;XN are independent and replace it with a conditional in-

dependence assumption: We assume that the variables X1; . . . ;XN

are conditionally independent given an additional parameter c dis-

tributed according to a normal distribution, c � Nð0; q2Þ. As c

increases or decreases the probability of no mutation changes

accordingly.

If no mutation has a score of 0 and mutations have positive

scores, smaller values of c will lead to a higher probability of large

values of S and vice versa. Thus the larger the variance q2, the larger

the variance of S.

We now describe how the mutation probabilities change with c.

Let vnk ¼ log bpnk, for n ¼ 1; . . . ;N; k ¼ 1; . . . ; 4, where bpnk are the

predicted mutation probabilities. Let pnkðcÞ ¼ pðXn ¼ k j cÞ. Define

a set of probability vectors

pn1ðcÞ ¼ exp ðvn1 þ cÞ
exp ðvn1 þ cÞ þ

P4
k¼2 exp ðvnkÞ

pnkðcÞ ¼
exp ðvnkÞ

exp ðvn1 þ cÞ þ
P4

k¼2 exp ðvnkÞ
; for k > 1:

The probability vectors pn follow a logit-normal distribution

[Atchison 1980]. Note that when c¼0, pnkðcÞ ¼ bpnk. Intuitively, for

c < 0 the probability of the first outcome decreases for all variables

X1; . . . ;XN, whereas for c > 0 the probability of the first outcome

increases for all variables. We call the unconditional distribution of

S an overdispersed weighted Poisson binomial distribution.

To evaluate the probability of PðS > tÞ, note that conditional on

c we have a weighted Poisson binomial distribution and we can

compute PðS > t j cÞ as

PðS > t j cÞ ¼
X
k2At

YN
n¼1

pnkn
ðcÞ: (2)

Next the unconditional PðS > tÞ can be computed by integrating

over c,

PðS > tÞ ¼
ð

PðS > t j cÞdc: (3)

2.3 Computation
As described in Juul et al. (2017), the integrand in Eq. (1) can be

evaluated using a dynamic programming algorithm known as
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Fig. 1. Overview of ncdDetect v.2. For each sample, the genomic features replication timing, expression level and reference sequence are used as explanatory

variables to predict the sample- and position specific probabilities of mutation in a multinomial logistic regression model (blue box). For a specific genomic re-

gion type, the observed and expected number of mutations are collected for each specific candidate element (red box; illustrated for protein-coding genes). This

information is applied to estimate the overdispersion parameter q as explained in Section 2.4. The estimated amount of overdispersion is accounted for in the sig-

nificance evaluation of each candidate element, as explained in Section 2.2. The larger the overdispersion estimate, the harder it will be for a genomic candidate

element to reach significance (yellow box)
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C D

Fig. 2. Illustration and estimation of overdispersion. (A) The smoothed ratio between the observed and expected number of mutations on representative 5 Mb

genomic section (chr6: 113 185 830–118 185 829). Mutation counts are considered in bins of size 1 kb. Bottom: Protein-coding genes with COSMIC CGC genes

highlighted (red). In regions where the mutation rate is underestimated (observed-to-expected ratio > 1), ncdDetect v.1 is likely to call false positive cancer driv-

ers. (B) Observed-to-expected number of mutations shown for protein-coding genes as well as 10 000 randomly sampled regions, all of length equal to the me-

dian length of protein-coding genes (1300 bps). The ratio between observed and expected mutation counts are shown (red histograms). For each region of a

given region type, a set of mutations were sampled directly from the background model. The ratio between the sampled and expected counts are similarly

depicted (blue histograms). The overlaid histograms illustrate the two main sources of variation in the observed-to-expected ratio; namely sampling variance and

overdispersion. Similar plots for the remaining region types are shown in Supplementary Figure S1. The observed and expected number of mutations for a given

region type are used for overdispersion estimation. (C) The estimated overdispersion parameters, including 95% confidence limits, calculated for each consid-

ered region type. For protein-coding genes, results are shown both including (red) and excluding (black) known drivers. (D) A typical position with a predicted

mutation probability of 10�6 is considered. The densities show the variation around this point estimate given by the overdispersion estimate for the different re-

gion types. The densities are obtained as logit transforms of normal variables, whose variances are determined by the amount of overdispersion. The resulting

distribution is known as a logit-normal (Supplementary Section S5)
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convolution. However as a novel improvement we use saddlepoint

approximation to greatly reduce the computational complexity

(Madsen et al., 2017).

To employ saddlepoint approximation we need to compute the

cumulant generating function of the conditional distribution of S

given c:

jðhÞ ¼ log E½ehS j c�:

This can be computed in linear time using

logE½ehS j c � ¼ log
YN
n¼1

E½ehSn j c�

¼
XN
n¼1

log
X4

k¼1

pnkðcÞ exp ðhsnðkÞÞ:

(4)

In a similar fashion, k0ðhÞ and j00ðhÞ can be computed in linear time

as well. To evaluate Eq. (3) in full we do numerical integration using

the trapezoid rule using a fixed number of points evenly spaced in

the interval ½�3q; 3q�.

2.4 Estimating q
To estimate the parameter q2 in the overdispersed weighted Poisson

binomial distribution, we approximate the total number of events in

a region by a betabinomial distribution. As the logistic-normal dis-

tribution is well-approximated by a beta distribution this is a rea-

sonable approximation. Let Xi denote the number of mutations in

region i, we model this by a betabinomial model

Xi � Binomial ðN � L;piÞ

pi � Beta ðai;biÞ

where L is the length of the region and N is the number of samples.

ai and bi are chosen such that the mean of pi is equal to the predicted

mean and the coefficient of variation is equal to the overdispersion

parameter.

SD½pi�
E½pi�

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

bi

aiðai þ bi þ 1Þ

s
¼ q:

Since the predicted mutation probabilities and q completely deter-

mines ai and bi, we can estimate q with regular maximum likelihood

methods.

2.5 Computing the autocorrelation of genomic features
To compute the autocorrelation of the observed-to-expected mutation

rate, we randomly select 200 regions, 5 Mb each, across the genome.

For each region, s, and bin, i, let xsi denote the observed-to-expected

mutation ratio. We calculate the empirical autocovariance at lag k

using a pooled version of the method described in Box et al. (2015):

ck ¼
1

S

1

N � k

XS

s¼1

XN�k

i¼1

ðxsi � �xsÞðxs;iþk � �xsÞ:

The empirical autocorrelation at lag k is then

Rk ¼
ck

c0
:

The same strategy is used to compute the autocorrelation of other

genomic features.

2.6 Posterior mean ranking
Taking a Bayesian viewpoint, the overdispersion parameter can be

seen as the standard deviation in a prior distribution of the effect

sizes, ci. The background model gives rise to an expected score ei

and corresponding variance vi for each element under consideration.

The observed effect size is the ratio between the observed score oi

and the expected score ei,

bc i ¼
oi

ei
� 1 � Nðci; vi=e

2
i Þ:

We estimate a normal prior distribution of c with mean 0 and a vari-

ance, r2 learned using the method described in Section 2.4. The pos-

terior mean (PM) is then given by

E½ci jbc i; vi; ei;r� ¼
r2bc i

r2 þ vi=e2
i

:

2.7 Local mutation rate
The position- and sample-specific mutation probabilities obtained

from the background model are adjusted by the local mutation rate

in the n¼10 000 bases flanking either side of a given region of inter-

est. The procedure is as follows:

Let Xi denote the number of mutations observed in the flanks of

region i. Let pi be the number of expected mutations in the flanks of

region i per base pair per sample.

We then assume that

Xi � Binomialð2 � n; logitðlogisticðpiÞ þ ciÞÞ

where

ci � Nð0; r2Þ:

We estimate r as described in Section 2.4.

The posterior is then given by

pðci j xiÞ / pðxi j ciÞpðciÞ:

The MAP estimate cMAP
i of ci can be found for each region and

cancer type using numerical optimization, e.g. BFGS [Fletcher,

Roger (1987)]. Next each predicted probability of mutation in re-

gion i is adjusted by a factor cMAP
i .

2.8 Scoring schemes
With ncdDetect, position- and sample-specific mutation probabil-

ities are combined with a score to indicate functional impact in

the significance evaluation of a candidate driver element. In

the present analyses, we apply phyloP-, CADD- and LINSIGHT

scores (Huang et al., 2017; Kircher et al., 2014; Pollard et al.,

2010).

PhyloP, a position-specific score of evolutionary conservation, is

used as a proxy for functional impact, as described in Juul et al.

(2017). Combined Annotation-Dependent Depletion (CADD) scores

annotate each genomic nucleotide with a score according to its dele-

teriousness, and pre-computed values were downloaded from http://

cadd.gs.washington.edu. We applied their PHRED-like scaled

scores. LINSIGHT is a method to predict if a mutation is likely

to have a deleterious fitness consequence at a given non-coding gen-

omic position. Pre-computed values for all genomic positions, ex-

cept those that fall in protein-coding regions, were obtained from

http://compgen.cshl.edu/yihuang/LINSIGHT/. Both CADD- and

LINSIGHT scores were scaled and rounded to integers for the analy-

ses with ncdDetect, as was also the case with phyloP scores (Juul

et al., 2017).
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3 Results

3.1 Overdispersion estimates vary between

region types
We started by analysing the variation in the mutation rate across dif-

ferent types of regions. More specifically, we analysed the degree of

regional variation unaccounted for (i.e. overdispersion) by our pos-

ition- and sample-specific mutation-rate model. We first considered

the pattern of overdispersion along the genome. Illustrating the

difference between the observed and predicted mutation counts

showed segments with elevated or decreased mutation rates

(Fig. 2A).

In our significance evaluation with ncdDetect, we aim to correct

for this overdispersion using an empirical Bayes approach: First we

compute the ratio between the observed and expected mutation load

for each considered region type [50 and 30 untranslated regions

(UTRs), protein-coding genes, splice sites and promoter elements],

as well as a set of randomly sampled genomic regions. As the vast

majority of regions are expected to be neutral, the two main sources

of variation in this ratio are overdispersion and sampling variance

(Fig. 2B, Supplementary Fig. S1). Using a beta-binomial model, we

estimate overdispersion for each region type (Fig. 2C, Table 1). We

observe differences between the obtained estimates for different re-

gion types; 30 UTR regions are found to have the least amount of

overdispersion, while 50 UTRs have the most. As it is harder to dis-

entangle sampling variance from overdispersion in region types

mainly composed of small regions (e.g. splice sites), the overdisper-

sion estimates obtained for such regions tend to have wider confi-

dence intervals. Specifically for protein-coding genes, we removed

putative cancer drivers of the COSMIC Cancer Gene Census (CGC)

(Forbes et al., 2015) before estimation to avoid that the increased

rate of true drivers inflated the overdispersion estimate.

The uncertainty of the predicted mutation rate for a given pos-

ition is determined by the overdispersion estimate and reflected in

the amount of variation in the rate density (Fig. 2D). The effect of

overdispersion can be thought of as a random factor that scales the

mutation rate. The estimated level of overdispersion (r) approxi-

mately corresponds to the standard deviation of the size of the fac-

tor. There will thus be about 95% chance that the overdispersed

mutation rates fall within a factor 162r from the original rate

prediction.

Concretely, the overdispersion estimation for protein-coding

genes is 0.332 (Table 1). With a mutation probability of 1e�6, this

translates into a 95% probability of the true mutation probability

being in the interval [0.52e�6, 1.92e�6] (Fig. 2D). When the

random overdispersion factor is high, it can thus explain a moderate

increase in the mutation rate. For protein-coding genes, a 53% (1.64

SD) elevation in the mutation rate will thus never be nominally

significant.

3.2 Length scale of regions with biased mutation rates
The neutral background mutation rate is predicted by the statistical

mutation-rate model relying on a number of genomic features

known to correlate with the mutation rate in cancer (Bertl et al.,

2018). As described above, if explanatory genomic features are left

out, some of the variation in the observed counts will not be cap-

tured by the mutation-rate model. This residual variation can be

accounted for by overdispersion. Indeed, we observe a tendency for

a decrease in overdispersion when more genomic features are added

to the background mutation-rate model (Fig. 3A).

Based on the mutation-rate model, we analyse the scale of the

autocorrelation in observed-to-expected mutation ratios, to charac-

terize the length scale of segments with a unidirectional bias in their

rates (Fig. 3B). This helps define the length of regions where we

overestimate or underestimate the mutation rate and, in longer

terms, may help characterize and potentially identify the genomic

features missing from the model. The autocorrelation slowly

decreases with distance on a megabase scale, which suggests that

missing genomic features have relatively long periods. To relate this

length scale to known genomic features, we compare with the auto-

correlation functions of DNase hypersensitivity (Thurman et al.,

2012); the histone modification h3k9me3 (ENCODE Project

Consortium and others, 2012); replication timing (Chen et al.,

2010); and XR-seq data that measures the activity of nucleotide ex-

cision repair (Hu et al., 2015) (Fig. 3C). DNase hypersensitivity

shows the fastest decay rate, while replication timing displays the

slowest decay rate. Of these, replication timing is included in the

model. The similarity between the auto-correlation function of a fea-

ture and that of the observed-to-expected mutation ratio can be

quantified using an auto-correlation distance. Although our list of

features is far from exhaustive, XR-seq has an auto-correlation func-

tion most resembling that of the observed-to-expected mutation

ratio (Supplementary Section S2 and Fig. S6). The unaccounted for

genomic features will increase the overdispersion estimates. To in-

stead explicitly capture the bias from these sources, we locally nor-

malize our mutation rate predictions by the local bias between the

observed and predicted mutation rates. We evaluate the local bias in

windows within the length scales learned from the autocorrelation

analyses described above. This leads to decreased overdispersion

estimates and improved driver discovery power.

3.3 Ranking by the posterior mean is computationally

advantageous
Besides from ranking elements according to their P-value, we here

also rank elements according to their posterior mean (PM) estimate

of the effect size. Ranking according to PM estimates as well

as overdispersion-corrected P-values (henceforth referred to as

P�valuesod) put larger emphasis on effect size compared to ranking

according to P-values obtained without correcting for overdisper-

sion (P�valuesuncorrected) (Fig. 4A–B).

PM ranking has the advantage of having a straightforward inter-

pretation: Had the scores been 0–1 scores, e.g. indicating whether a

mutation has occurred or not, PM will translate directly into an esti-

mate of the relative increase/decrease of the mutation rate. One

should maintain this mental picture when scores represent function-

al impact. Another advantage of PM is that is very fast to compute,

Table 1. Number of regions, median length and overdispersion es-

timate for each of the considered region types

Region type Number of

regions

Median region

length (bps)

Overdispersion

estimate*

Protein-coding genes 19 256 1302 0.332 [0.323; 0.341]

Promoter elements 19 157 848 0.460 [0.449; 0.472]

Splice sites 17 867 32 0.485 [0.357; 0.657]

30 UTRs 18 481 1022 0.260 [0.251; 0.270]

50 UTRs 18 220 260 0.518 [0.496; 0.542]

Randomly sampled

regions

10 000 1300 0.266 [0.255; 0.277]

Note: Besides the five region types defined in Juul et al. (2017), we also esti-

mate the magnitude of overdispersion for 10 000 randomly sampled regions,

each of size 1300 bps.

*95% confidence limits in brackets.

194 M.Juul et al.

Deleted Text: analyzing 
Deleted Text: z
Deleted Text: s
Deleted Text: (
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: ,
Deleted Text: )
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty511#supplementary-data
Deleted Text: &hx2019;
Deleted Text: &hx2019;
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: -
Deleted Text: analyze 
https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty511#supplementary-data
Deleted Text: p
Deleted Text: p
Deleted Text: p
Deleted Text: -


as there is no need to evaluate or approximate the full null distribu-

tion for significance evaluation.

As expected, the ranking of elements changes when taking over-

dispersion into account (P�valuesod) or ranking elements by PM. A

modest increase in mutation rate can be explained by the random ef-

fect. This generally means that long genes with small effect sizes be-

come less significant and are ranked lower (Fig. 4C–D). Similarly,

short genes are ranked higher. Examples of long protein-coding

genes that become less significant when accounting for overdisper-

sion are ZFHX4 [10 860 base pairs (bps)], ZNF831 (5034 bps) and

COL6A3 (9581 bps). None of these genes have substantial reported

cancer driver potential. On the other hand, the rather short

COSMIC CGC gene B2M is ranked higher when accounting for

overdispersion (Fig. 4E–F).

Overall, there is a striking difference between the distribution of

P-values obtained with and without the use of overdispersion: The

QQplots of P�valuesuncorrected exhibit a substantial amount of infla-

tion, which is effectively remedied by incorporating overdispersion

in the significance evaluation of a candidate element (Fig. 4G,

Supplementary Fig. S2).

Ranking elements by their posterior mean estimate of effect

size is a simple alternative to the computationally expensive cal-

culation of P-values. Calculation of the PM-ranks only requires

an observed and expected score for each candidate element, as

well as an overdispersion estimate. We have shown that the rank-

ing of elements according to PM is similar to what is obtained

with P�valuesod. However, by ranking elements using P-values,

it is straightforward to divide the final list into significant

and non-significant elements. Using PM, such a differentiation is

less clear.

One possible way to combine PM and P-value ranking is to use

PM to make a preliminary ranking of the genes. Next the

Benjamini-Hochberg step-up procedure can be applied to a set of

top genes, where the P-value is computed. This limits the number of

genes where the more time-consuming P-value computation is

needed. As the PM ranking does not correspond perfectly to the

P-value ranking and a P-value is not computed for every gene, this

approach is conservative in that at least as many genes would

have been called had we computed the P-value for all genes

(Supplementary Section S3).

3.4 Modeling overdispersion improves driver detection

specificity
We applied ncdDetect with overdispersion to the annotated protein-

coding genes, splice sites, promoter elements and 50 and 30 UTRs

defined in Juul et al. (2017) (Supplementary Tables S1–S3). We used

a dataset consisting of 505 whole genomes, distributed across 14 dif-

ferent tumour types (Fredriksson et al., 2014). In the original version

of ncdDetect, we used phyloP to signify mutational impact (Pollard

et al., 2010). Here, we compare performance using both phyloP,

LINSIGHT and CADD scores (Huang et al., 2017; Kircher et al.,

2014). To establish significance, we first compute the overdispersion

parameter for each type of score. Next for each region and each type

of score, the observed score is computed and the significance is

approximated using the method described in Section 2.3.

When comparing the fraction of COSMIC CGC genes among

the top ranked candidates, the performance is similar whether ele-

ments are ranked according to P�valuesod or PM. Further, CADD-

score based P-values have a COSMIC CGC recall rate superior to

that of phyloP-score based P-values (Fig. 5A). As LINSIGHT scores

are only available for non-coding genomic regions, we are not able

to evaluate the performance of these on protein-coding genes. With

CADD scores we identify 12 significant protein-coding genes, of

which 11 are known COSMIC CGC cancer driver genes. With

phyloP scores we identify 19 significant protein-coding genes, of

which 10 are COSMIC CGC genes. The distribution of P-values

does not change substantially between scoring schemes (Fig. 5B).

Because of the superior performance of CADD scores on protein-

coding genes, the following results are based on them. Since many of

the mutations observed in melanoma samples are likely caused by

mutational processes not captured by the background model,

melanoma-specific results are not considered in the results section

(Sabarinathan et al., 2016). These are instead included in

Supplementary Figure S3. All P-values are corrected for multiple

testing, and a false discovery rate of 0.1 is applied (Benjamini and

Hochberg, 1995).

Forty-six different protein-coding genes are significant in at least

one specific cancer type (Fig. 5C). Of these 46 genes, 24 (52%) are

COSMIC CGC genes. Among the analysed promoter elements,

TERT is ranked the highest (q ¼ 1:32� 10�27, PANCAN analysis).

In total, we detect 15 significant promoter elements in the PANCAN

A B C

Fig. 3. Overdispersion as an effect of missing genomic features in the background mutation model. (A) Overdispersion estimates on the basis of background

models of increasing complexity. The simplest model with a constant mutation rate across all samples and positions results in the highest overdispersion esti-

mate across all region types. For increasingly complex models, the overdispersion estimate has a decreasing trend. In the model furthest to the right, a correction

for local mutation rate is performed, as described in Section 2.7. (B) The autocorrelation between observed-to-expected mutation rate in 1 kb windows, based on

approximately 1 Gb scattered across the genome. The autocorrelation decreases slowly over approximately a few megabases, suggesting that genomic features

that vary slowly across the genome are missing. (C) Auto-correlation functions for DNase hypersensitivity, h3k9me3 histone modification, replication timing and

nucleotide excision repair (XR-seq) for comparison
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Fig. 4. Comparison of ranking methods. (A) We define the effect size as the ratio between the observed and expected score of functional impact, here CADD score.

The effect size is plotted against the sampling variance of the effect size under the null-model. A high sampling variance means the outcome is uncertain and an

extreme effect size is needed to achieve significance. The sampling variance decreases with region length and effect size increases with the number of mutations.

(B) Points colored according to their rank under each of the three different ranking methods. Compared to P�valuesuncorrected; P�valuesod and posterior mean

(PM) both put more emphasis on effect size compared to sampling variance. (C) Pairwise comparison of ranking methods. The shift in rank for all elements hav-

ing a positive effect size. P�valuesod generally give higher ranks to short genes with moderate to large effect size. PM has a similar effect, but it does not give

higher ranks to the shortest of genes. (D) Pairwise comparison of ranking methods for top-ranked genes. The shift in rank for all elements ranked in top-100 for ei-

ther of two methods. Long genes are generally ranked much lower using P�valuesod and PM compared to P�valuesuncorrected. (E) The lengths of five selected

genes are highlighted in a density plot showing the length distribution of all protein-coding genes. (F) Re-ranking of individual elements of representative lengths

when ranking according to P�valuesod and PM. The three long protein-coding genes ZFHX4, ZNF831 and COL6A3 all become less significant when taking over-

dispersion into account and are down-ranked by PM. The known short COSMIC CGC gene B2M is up-ranked with both overdispersion and posterior mean. G:

CADD score-based QQplots of P-values for protein-coding genes obtained with and without overdispersion. QQplots for the remaining region types are shown in

Supplementary Figure S2

196 M.Juul et al.

https://academic.oup.com/bioinformatics/article-lookup/doi/10.1093/bioinformatics/bty511#supplementary-data


analyses, of which seven (AP003733.1, ARHGEF18, CDC20,

FTH1, RPL13A, SMUG1 and TERT) overlap with promoters identi-

fied in other non-coding cancer driver studies (Melton et al., 2015;

Weinhold et al., 2014). Two of the ten significant promoter ele-

ments (TERT and KDM5A) are associated to COSMIC CGC genes.

In the analyses of splice sites, we find two significant potential can-

cer drivers in the PANCAN set of samples, TP53 (q ¼ 4:12� 10�17,

PANCAN analysis) and STK11 (q ¼ 3:73� 10�3, PANCAN ana-

lysis), both of which are COSMIC CGC genes and previously

reported (Juul et al., 2017; Lee et al., 2010; Mularoni et al., 2016).

Among the analysed 30 UTRs, we find one significant hit in the

PANCAN analyses, namely MYO5B (q ¼ 4:94� 10�3, PANCAN

analysis). With respect to 50 UTRs, we detect 13 potential cancer

driver candidates in the PANCAN analyses, of which five (DHX16,

SDHD, WDR74, C16orf59 and MED31) have previously been

reported in cancer driver detection studies (Weinhold et al., 2014),

and of which one (SDHD) is a COSMIC CGC gene (Fig. 5C).

Naturally, cancer driver candidates need to be validated bio-

logically or clinically to determine their true ability to drive cancer,

however, such analyses are outside the scope of this work.

When comparing these results to those obtained with ncdDetect

v.1, we see that modeling overdispersion improves the driver detec-

tion specificity. An application of ncdDetect on simulated data

shows that the number of false positives detected increases with the

amount of overdispersion. As the amount of overdispersion

decreases, the ability of ncdDetect to recall true positives improves

(Supplementary Section S6).

3.5 Comparison to existing driver detection tools
Benchmark studies of ncdDetect against other driver detection methods

are crucial to determine its usability and performance. However, bench-

mark analyses of non-coding cancer driver detection methods are chal-

lenged by a limited amount of published systematic non-coding cancer

driver screens. Besides from the recurrently mutated promoter region of

the TERT gene (Horn et al., 2013; Huang et al., 2013), neither putative

lists of true-positive non-coding cancer driver elements, nor bona fide

sets of true-negatives exist. Because of this, the results of ncdDetect on

protein-coding genes are taken as proxy of its performance. Here, we

apply the COSMIC CGC (Forbes et al., 2015) as a true-positive set of

protein-coding cancer driver genes. However, non-coding driver detec-

tion methods do not exploit our understanding of translation and splic-

ing, as it does not generalize to non-coding regulatory regions. Methods

tailored for protein-coding genes are therefore better powered in these

regions and are generally expected to outperform non-coding driver de-

tection methods. For promoter elements, the results were compared to

previously described candidates in the literature.

The published ExInAtor PANCAN results on protein-coding

genes, using the same 505 whole genome cancer samples as those

analysed here, show three significant genes (q < 0.10), of which one

is a COSMIC CGC gene. In contrast, ncdDetect finds 11 out of 12

significant genes in the COSMIC CGC set, as described above.

ncdDetect further has a higher COSMIC CGC recall rate compared

to ExInAtor (Supplementary Fig. S4). Top-50 candidates for

ncdDetect and ExInAtor for all cancer-specific cohorts are presented

in Supplementary Table S5.

A

B

C

Fig. 5. Performance of ncdDetect v.2 after correcting for overdispersion. (A) A comparison of the fraction of COSMIC CGC genes among top-ranked candidates.

Results shown are obtained by ranking elements according to P�valuesod as well as PM, using both CADD and phyloP scores. For P-value based results, filled

points denote significant elements (q < 0.10), while crosses denote insignificant elements (q � 0.10). For PM-based results, there are no filled points due to the in-

ability to determine significance in this setting. (B) QQplots of P�valuesod for each considered region type obtained with phyloP, CADD or LINSIGHT scores. Note

that LINSIGHT scores are not available for protein-coding genes. (C) Cancer driver candidates identified with ncdDetect v.2 using CADD scores, after accounting

for overdispersion. All elements with a colored tile have a q-value less than 0.10. Melanoma-specific results are shown in Supplementary Figure S3
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For promoter elements, LARVA and ncdDetect both call the

three candidates TERT, AP003733.1 and RPL13A significant (q <

0.10) (Supplementary Table S6). Several of the candidates solely

detected by ncdDetect have previously been reported by other non-

coding cancer driver screens (Supplementary Fig. S5) (Melton et al.,

2015; Weinhold et al., 2014).

We further applied ncdDetect to 560 breast cancer samples

(Nik-Zainal et al., 2016) (Supplementary Table S4). Across these

samples, we call two promoter elements significant (q < 0.10)

(ZNF143 and CCDC107). ZNF143 was recently reported to con-

tribute to the development of breast cancer (Paek et al., 2017), and

both of these promoter elements were detected to harbour a signifi-

cant number of mutations in another recently published breast can-

cer driver screen (Rheinbay et al., 2017). Regarding splice sites, we

call two elements significant (TP53 and CBFB), both detected in

the original study of these data (Nik-Zainal et al., 2016). We call

three 50 UTR regions significant (TBC1D12, LEPROTL1 and

AC006455.1). Notably, the promoters of both TBC1D12 and

LEPROTL1 were recently detected in a driver screen of breast can-

cer samples (Rheinbay et al., 2017). In the analysis of protein-

coding genes, we call 17 genes significant, of which 12 are known

COSMIC CGC genes (TP53, PIK3CA, PTEN, AKT1, CBFB,

MAP2K4, GATA3, RB1, SF3B1, CDH1, MAP3K1 and FOXA1)

and five are not (DAZAP1, LRRC2, DLL4, GIGYF2 and LAMA2).

The analysis of these 560 breast cancer samples emphasizes that

ncdDetect is able to call elements with a relatively high degree of

specificity, but also that the sensitivity is lower than that reported in

the original analysis of these data (93 significant genes of which 78

are COSMIC CGC genes). However, the discrepancy may be

explained by their use of a driver discovery method tailored for

protein-coding regions, which thus accounts for the impact of mis-

sense, nonsense and splice-site mutations.

4 Discussion

It is not possible to identify and include all relevant genomic features

when modeling the mutation rate in cancer genomes. Consequently,

the observed variation cannot be captured by regression models un-

less they include overdispersion in some form. Here, we capture as

much of the mutation rate variation as practically possible in the

background mutation rate model, and then account for the unavoid-

able remaining amount of overdispersion. We have estimated the

amount of overdispersion arising from our position-specific model

of the mutation rate in cancer genomes. As a first step towards char-

acterizing genomic features missing from the background model, we

analysed the autocorrelation structure of the observed-to-expected

mutation pattern. We found that the autocorrelation declined slow-

ly, suggesting that at least some of the missing genomic features op-

erate on a rather long length scale of a few megabases.

Not accounting for overdispersion has previously led to a sub-

stantial amount of false positives in cancer driver detection analyses

(Juul et al., 2017; Lawrence et al., 2013; Lochovsky et al., 2015),

and, indeed, we observe this trend in the simulation study of the

effects of overdispersion (Supplementary Section S6). By adjusting

for overdispersion in the significance evaluation of candidate cancer

driver elements, we here obtained great specificity improvements of

our driver detection results compared to those obtained with

ncdDetect v.1. Using CADD scores, 12 protein-coding genes were

called significant by ncdDetect, of which 11 were known COSMIC

CGC cancer driver genes.

Overdispersion captures the amount of deviation between the

predicted and the actual mutation rate in a region. These deviations

can be on a sample, cancer-type or pan-cancer level. Deviations that

are specific to a sample will cancel out when accumulating the muta-

tion load across many samples, contrastingly deviations shared

among all cancers will remain even as we accumulate many samples.

Thus we observe that the estimated overdispersion decreases

as we include more samples, but does not asymptote to zero

(Supplementary Section S4).

It is an interesting line of study whether a fraction of the sample

or cancer type-specific deviations may be caused by mutational

processes or potentially even selection pressures. Despite the com-

plex sample level properties of the actual mutation rate, the distribu-

tional assumptions of the mutation load accumulated across

samples remain valid.

We furthermore found that ranking elements by the posterior

mean of their effect sizes performed similarly to ranking elements

according to their overdispersion-corrected P-values. While this al-

ternative ranking scheme is less computationally costly than com-

puting P-values, it does not define an explicit significance threshold.

To overcome this, posterior mean ranking could be coupled with

calculating P-values for top-ranked elements. PM ranking can be

used to find top genes for which the P-value is computed. The

Benjamini-Hochberg step-up procedure for controlling the false

discovery rate can be applied to this subset of genes for which the

P-value is known. We show that this approach is conservative, i.e.

the genes that are called significant would also have been declared

significant had we computed all the P-values.

Our efforts to model the background mutation rate more accur-

ately, has led to higher specificity in our cancer driver detection

results. Still our method will continue to benefit from a more

accurate model of the mutation rate. This will lead to an improved

trade-off between the sensitivity and specificity of the results, as

more variation is accounted for directly by the mutation rate model

rather than by overdispersion. For example, it could prove beneficial

to add additional genomic features describing mutational processes

that act in specific regions in relation to melanoma (Sabarinathan

et al., 2016). While we consider such efforts to be outside the scope

of this study, it is a worthy long-term goal to further understand the

mutational processes in cancer and identify additional genomic fea-

tures to include as explanatory variables in the background model.
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