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Purpose. ,is study aimed to investigate the value of biparametric magnetic resonance imaging (bp-MRI)-based radiomics
signatures for the preoperative prediction of prostate cancer (PCa) grade compared with visual assessments by radiologists based
on the Prostate Imaging Reporting and Data System Version 2.1 (PI-RADS V2.1) scores of multiparametric MRI (mp-MRI).
Methods. ,is retrospective study included 142 consecutive patients with histologically confirmed PCa who were undergoing mp-
MRI before surgery. MRI images were scored and evaluated by two independent radiologists using PI-RADS V2.1. ,e radiomics
workflow was divided into five steps: (a) image selection and segmentation, (b) feature extraction, (c) feature selection, (d) model
establishment, and (e) model evaluation. ,ree machine learning algorithms (random forest tree (RF), logistic regression, and
support vector machine (SVM)) were constructed to differentiate high-grade from low-grade PCa. Receiver operating char-
acteristic (ROC) analysis was used to compare the machine learning-based analysis of bp-MRI radiomics models with PI-RADS
V2.1. Results. In all, 8 stable radiomics features out of 804 extracted features based on T2-weighted imaging (T2WI) and ADC
sequences were selected. Radiomics signatures successfully categorized high-grade and low-grade PCa cases (P< 0.05) in both the
training and test datasets. ,e radiomics model-based RF method (area under the curve, AUC: 0.982; 0.918), logistic regression
(AUC: 0.886; 0.886), and SVM (AUC: 0.943; 0.913) in both the training and test cohorts had better diagnostic performance than
PI-RADSV2.1 (AUC: 0.767; 0.813) when predicting PCa grade.Conclusions.,e results of this clinical study indicate that machine
learning-based analysis of bp-MRI radiomic models may be helpful for distinguishing high-grade and low-grade PCa that
outperformed the PI-RADS V2.1 scores based on mp-MRI. ,e machine learning algorithm RF model was slightly better.

1. Introduction

Prostate cancer (PCa) is the most common malignancy in
men [1]. Based on the Gleason score (GS), PCa is categorized
as low-grade or high-grade, for which the treatment strat-
egies differ greatly [2]. For instance, patients with high-grade
PCa need radical prostatectomy or radiation therapy,
whereas patients with low-grade PCa might be candidates
for active surveillance [3–6]. ,erefore, a preoperatively
accurate prediction of the grade of PCa is critical for
treatment decision-making.

Currently, biopsy is the reference standard for preop-
eratively identifying the grade of PCa [7]. However, this
procedure has been shown to be susceptible to overdetection
of low-grade and underdiagnosis of high-grade PCa [8].
,erefore, developing a noninvasive and accurate approach
for the preoperative prediction of grade is desirable.

Multiparametric (Mp)-MRI has been recognized as a
complementary tool for the detection and assessment of
PCa. Radiologists use the Prostate Imaging Reporting and
Data System Version 2.1 (PI-RADS V2.1) to detect clinically
significant PCa [9]. Nevertheless, mp-MRI interpretation is
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challenging and prone to inter- and intrareader variability
among expert radiologists [8].

According to the literature, machine learning-based mp-
MRI radiomics provide an objective tool and have been
shown to be helpful in assessing the grade of PCa [10–12]. In
contrast, dynamic contrast enhancement (DCE) is a time-
consuming process with additional costs of contrast agents
[13–15]. Additionally, a meta-analysis reported that DCE-
MRI cannot be used to predict GS in PCa [16].

To our knowledge, few studies have predicted grades
using biparameter (bp)-MRI (noncontrast agent) with
radiomics [17]. However, machine learning algorithms are
relatively simple, and the results of radiomics have not been
compared with the traditional PI-RADSV2.1 approach.
,us, the aim of this study is twofold. First, we used three
machine learning methods of radiomics based on bp-MRI,
including logistic regression, random forests (RF), and
support vector machines (SVM), to preoperatively predict
PCa grade. A second purpose was to compare these clas-
sifying capabilities to the visual assessments of the radiol-
ogists based on mp-MRI of the PI-RADS V2.1 protocol.

2. Materials and Methods

,e local institutional review board approved this retro-
spective cohort study and waived the requirement for
written informed consent.

2.1. Patients. Between January 2017 and November 2020, a
total of 166 consecutive patients who underwent prostate
mp-MRI examinations with histologically confirmed PCa
were included in this study. ,e exclusion criteria were as
follows: (a) patients who received prior treatment including
hormonal irradiation before theMRI scans (n� 21); (b) poor
quality of the MRI images due to severe susceptibility ar-
tifacts or respiratory motion artifacts (n� 2); and (c) in-
complete clinical data (n� 1).

Ultimately, 142 patients with PCa were enrolled in this
study. For patients with multiple tumor sites, the site with
the largest burden (namely, the largest size or the highest
GS) was reported in the document. ,erefore, in this study,
only one tumor site from each patient was used for analysis
[17].

According to recent radiomics studies [18], these en-
rolled patients were randomly divided into a training cohort
(n� 98) and a test cohort (n� 44) using computer-generated
random numbers at a 7 : 3 ratio. Flow diagram of patient
recruitment is shown in Figure 1.

2.2. MRI Protocol and Feature Extraction. All images were
acquired using a 3.0 TMR scanner (Achieva TX, Philips
Healthcare, and the Netherlands) with a 16-channel body
phased array coil. A standard mp-MRI protocol included
sagittal T2WI, axial T2WI, diffusion-weighted imaging
(DWI) (b values of 0 and 1000, 2000 sec/mm2), and DCE.
Apparent diffusion coefficient (ADC) maps were automat-
ically reconstructed on a designated workstation. ,e

detailed acquisition parameters of the MRI sequences are
shown in Table 1.

Both the ADC and T2WI images were retrieved from a
picture archiving and communication system (PACS,
Huahai). ,e MRI images were loaded into ITK-SNAP
software (version 3.4.0; https://www.itksnap.org) semiau-
tomatically, and a three-dimensional volume of interest
(VOI) that covered the whole tumor was delineated on both
the axial ADC and T2WI images on each slice segmented by
one radiologist (radiologist C, Z. L., with 10 years of ex-
perience in prostateMRI).,e procedure of VOI is shown in
Figure 2.

Texture extraction was performed using artificial intel-
ligence kit (A.K., v. 3.2.1, GE Healthcare) software. In total,
804 imaging features were extracted from each VOI, in-
cluding first-order statistics, histogram features, second-
order textures, and form factor (shape) parameters.

,en, interclass correlation coefficients (ICCs) were used
to assess the interobserver reproducibility of radiomic fea-
ture extraction. Approximately 30 randomly chosen images
were obtained by a senior radiologist (radiologist D, Z. X. L.,
with 20 years of experience in prostate MRI) for VOI
segmentation.

2.3. Feature Selection, Radiomics Signature Construction, and
Model Training. Not all the extracted features were useful
for differential diagnosis. ,e abovementioned features were
selected through least absolute shrinkage selection operator
(LASSO) regression analysis with a 10-fold cross-validation
and Spearman correlation (threshold 0.9) coefficient for
dimensionality reduction and feature selection to optimize
the size of a feature set and to keep features independent.

Finally, 8 features were extracted from the T2WI and
ADC images. ,e process of feature selection using the
LASSO algorithm is shown in Figure 3.

,e goal of the machine learning routine was to con-
struct a predictive model to discriminate between the two

Patients meeting the
inclusion

criteria (n=166)

Treatment prior to
MRI (n=21)

Poor quality of the
MRI images (n=2)

�e clinical data was
incomplete (n=1)

Final study population (n=142)

Low Grade
PCa (n=41)

High Grade
PCa (n=101)

Figure 1: Flow diagram of patient recruitment.
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classes: low-grade and high-grade PCa. ,ree algorithms
(RF, logistic regression, and SVM) were proposed as clas-
sifiers [19–21]. ,ey can be used to find worthwhile features
and remove relatively insignificant features to achieve higher
classification performance [22–26]. ,e model assessed in
the training dataset was applied to the test cohort. ,e
radiomics workflow is presented in Figure 2, and the process
is outlined in Figure 4.

2.4. PI-RADS V2.1 Evaluation. All images were networked
to a communication workstation (Huahai Medical Imaging
PACS, Xi’an, China) and Philips workspaces. According to
the PI-RADS V2.1 guideline, two independent radiologists
with different levels of experience (radiologist A, Z. J., with 3

years of experience, and radiologist B, T. M., with 10 years of
experience in prostate MRI diagnosis), who were blinded to
the initial mp-MRI imaging reports, clinical data, and his-
topathology, scored the examinations. In addition, the two
radiologists did not previously participate in the process of
VOI delineation. ,e PI-RADS V 2.1 score was indepen-
dently recorded by radiologists using a score of 1–5 for
T2WI, a score of 1–5 for DWI, a “+” or “−” for DCE, and an
overall PI-RADS assessment category. When multiple
doubtful lesions appeared in the same patient, only the most
suspicious lesion with the maximum volume was scored and
recorded [27]. Lesions graded as having a PI-RADS≥ 4 were
considered positive for high-grade PCa, and lesions with a
score ≤3 were considered negative for low-grade PCa. ,e
end performance for both radiologist and the radiomics

Table 1: ,e detailed acquisition parameters of the MRI sequences.

Parameters Axial T2WI DWI (b� 50, 1000, and 2000) (sec/mm2) DCE
Field of view (mm) 200× 200 220× 220 260× 260
Acquisition matrix 372× 363 88× 82 216× 217
Repetition time (ms) 3020 3960 3.3
Echo time (ms) 100 86 1.59
Flip angle (degree) 90 90 10
Section thickness (mm), no gaps 3 3 2
Image reconstruction matrix (pixel) 339× 339 160×160 288× 288
Reconstruction voxel imaging resolution (mm/pixel) 0.34× 0.34× 4 1.63×1.63× 4 0.9× 0.9× 2
Mp-MRI, multiparametric MRI; T2WI, T2-weighting imaging; DWI, diffusion weighted imaging; DCE, dynamic contrast-enhanced.
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Figure 2: Radiomics workflow and study flowchart.
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model was computed based on patient-level classification.
,e detailed evaluation items of PI-RADS V2.1 scale
(Supplement Tables 1–5) are uploaded in the supplementary
materials.

2.5. Statistical Analysis. A kappa test was used to assess the
inter-reader agreement of the PI-RADS V2.1 scores obtained
by the two radiologists. Kappa values< 0.20 indicated poor
agreement, 0.21–0.40 indicated fair agreement, 0.41–0.60
indicated moderate agreement, 0.61–0.80 indicated good
agreement, and ≥0.81 indicated excellent agreement [28].
,e ICC was used to evaluate the interobserver reproduc-
ibility of the extracted radiomic features. An ICC score
greater than 0.75 indicates good agreement of the feature
extraction. ,e training and test cohorts were used to verify

the diagnostic performance of the prediction models with
RF, logistic regression, and SVM. ,e predictive ability of
the radiomics signature models based on bp-MRI vs. mp-
MRI of the PI-RADS V2.1 score in identifying low-grade and
high-grade PCa was analyzed based on receiver operating
characteristic (ROC) curves. ,e performance of radiomics
models was compared by the DeLong test [29]. ,e areas
under the curve (AUC), sensitivity, specificity, positive
likelihood ratio (LR+), and negative likelihood ratio (LR-)
were derived in both the training and test cohorts. High-
grade tumors were considered the positive class.

P< 0.05 indicates statistical significance. ,e statistical
analysis was performed with the Statistical Package for the
Social Sciences (SPSS, https://www.ibm.com/products/spss-
statistics), MedCalc software, and A.K. software (mentioned
above).

3. Results

3.1. Clinicopathologic Characteristics of Patients. ,e base-
line characteristics of selected patients whose data were
classified into the training and test cohort are summarized in
Table 2. ,ere were no significant differences in terms of age
or PSA density (PSAD) between the two groups (all
P> 0.05). Significance differences between high-grade and
low-grade PCa were found in PSA level in the training and
test cohorts (all P< 0.05). ,e difference in location was
statistically significant in the training cohort (P< 0.05).

3.2. Radiomics Signature Construction. ,e reliability of the
extracted radiomic features in terms of ICC for all features of
ADC and T2WI images was quantified, with mean ICC
values of 0.919 (95% CI: 0.836–0.960) and 0.963 (95% CI:
0.925–0.982), respectively.

A total of 804 quantitative features were extracted from
the VOI of each of the MRI series and their corresponding
filtered results.

Acquire MR images of PCa patients

Delineate VOI covering the whole tumor on
both the axial T2WI and ADC

PIRADS V2.1

Extract the high-dimensional features of lesions

Training data set
n=98

Test data set
n=44

LASSO cross-validation

Spearman correlation

Final features Final features

Classifiers (RF,SVM,Logistic) construct

Training results Test results

Select by name

Figure 4: ,e process of the study.
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Figure 3: ,e process of feature selection using the LASSO algorithm. (a),e optimal tuning parameter (lambda) in the LASSOmodel was
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drawn according to the 10-fold cross-validation in (a). LASSO, least absolute shrinkage selection operator.
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In the current study, 8 features were obtained from bp-
MRI (constructed from 8 optimal feature sets selected from
804 features combined by T2WI and ADC sequences). ,e
process of feature selection using the selection step is shown
in Table 3.

A machine learning-based analysis of the bp-MRI
radiomics signatures was established based on T2WI
combined with ADC images for (a) RF; (b) logistic re-
gression; and (c) SVM model.

3.3. Predictive Ability of the Radiomics Signatures (Models).
,e results show that the differential diagnostic model
established using the RF method (AUC: 0.982; 0.918) per-
formed better than logistic regression analysis (AUC: 0.886;
0.886) and SVM (AUC: 0.943; 0.913) in both the training and
test cohorts. ,e DeLong test showed that the RF method
presented a better AUC than logistic regression analysis in
training cohorts (P< 0.05). ,e ROC curves of the radiomic
signatures for discriminating performance in both the
training and test cohorts are shown in Figure 5. ,e pre-
dictive ability (AUC, sensitivity, specificity, LR+, and LR−)
of the radiomics model is shown in Table 4 for the training
and test groups (see Supplementary Materials for the
original radiomics data).

,e kappa coefficient of the two radiologists was 0.7,
which indicated good agreement. Based on a PI-RADS V2.1
with a score of 5 as the cutoff value, the AUCs of the two
radiologists’ diagnosis performances were 0.767 and 0.813,
respectively, which were lower than those of the radiomics
feature classifiers in classifying high-grade and low-grade
PCa (Figure 5 and Table 4). Table 5 lists the results of the
evaluations of all images by the two radiologists. ,e scores
for each case are based on the PI-RADS V2.1 scale of ra-
diologists A and B, which are uploaded in the supplementary
materials (Supplement Table 6).

4. Discussion

Preoperative prediction of PCa grade is important for
clinical decision-making. Pathological biopsy is a popular
tool for the estimation of PCa grade invasiveness, but it has
various complications that limit its clinical use.

In this study, we described a radiomics signature using
noncontrast-enhanced MRI images, which is a new non-
invasive method with good diagnostic performance. Our
results showed that the machine learning-based analysis of
bp-MRI-based radiomics models for distinguishing low-
grade from high-grade PCa provided higher accuracy and
sensitivity than visual assessments by radiologists based on
the PI-RADS V2.1 mp-MRI score. ,is indicates that T2WI
or ADC images could reflect the heterogeneity of tumors and
that radiomic features can be used to distinguish small signal
differences in prostate tumors. ,e present study also found
that selecting the appropriate machine learning algorithms
may help improve model stability and prediction perfor-
mance. ,e results of our study show that the radiomics-
based RF machine-learning models, which incorporated 8
selected features, have better discrimination performance
than other models (SVM and logistic regression) for dif-
ferentiating low-grade from high-grade PCa (AUC of the
training cohort: 0.982; AUC of the test cohort: 0.918) in both
the training and test cohorts.

Some studies suggest the advantages of logistic regres-
sion models in aggressive PCa [30, 31]. Generally, logistic
regression, RF, and SVM algorithms are all suitable for
model construction with small sample sizes and binary
variables [30–34]. However, for bp-MRI (ADC combined
with T2WI), the RF algorithm is more recommended for use
with our small sample result.

We also assessed the predictive values of mp-MRI based
on PI-RADS V2.1. In our study, the predicted probabilities
of the radiomics features outperformed subjective evaluation
by the human group.

Previous studies have evaluated the performance of MRI
radiomic-based models for predicting aggressive PCa. A
study by Parra et al. explored DCE and ADC-feature
radiomics models for predicting clinically significant PCa
with an AUC of 0.82 [35]. Ma S et al. reported that an mp-
MRI radiomics signature that outperformed the radiologists’
visual assessments in predicting extracapsular extension was
developed and validated [36]. Niu et al. reported that a
texture analysis-based model that includes bp-MRI can be
used for identifying high-grade PCa and that specific pa-
rameters extracted from texture analysis may be additional
tools for assessing tumor aggressiveness [37]. Min et al.

Table 2: ,e baseline characteristics of selected patients in the training and test cohorts.

Characteristics
Training cohort (n� 98) Test cohort (n� 44)

High-grade PCa
(n� 70)

Low-grade PCa
(n� 28) P value High-grade PCa

(n� 31)
Low-grade PCa

(n� 13) P value

Mean age (y) 73.19± 8.56 72.11± 7.58 0.562 74.77± 8.245 72.46± 8.353 0.403
Median PSA
(ng/ml) 16.47 (IQR:8.21–61.78) 8.28 (IQR:6.36–14.03) <0.05 15.3481 (IQR

8.28–62.1) 8.81 (IQR:6.27–14.41) <0.05

Median PSAD
(ng/mL/g) 0.15 (IQR:0.08–0.17) 0.15 (IQR:0.07–0.14) 0.76 0.20 (IQR:0.08–0.28) 0.18 (IQR:0.11–0.21) 0.7

Location
PZ 25 13

<0.05
11 8

0.11TZ 9 11 3 4
PZ and TZ 36 4 17 1

Date are mean± SD. IQR, interquartile range; TZ, transition zone; PZ, peripheral zone; PSAD, PSA density.
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Table 3: ,e process of feature selection using the selection step.

Lasso: cross validation Spearman
“Min intensity” “Min intensity”
“Histogram entropy” “Histogram entropy”
“Correlation_AllDirection_offset1_SD” “Correlation_AllDirection_offset1_SD”
“GLCMEntropy_AllDirection_offset1” “GLCMEntropy_AllDirection_offset1”
“GLCMEntropy_AllDirection_offset4” “GLCMEntropy_angle0_offset7”
“GLCMEntropy_AllDirection_offset7” “Sum average”
“GLCMEntropy_angle0_offset1” “HighGreyLevelRunEmphasis_AllDirection_offset4_SD”
“GLCMEntropy_angle0_offset4” “Elongation”
“GLCMEntropy_angle0_offset7”
“GLCMEntropy_angle135_offset1”
“GLCMEntropy_angle135_offset4”
“GLCMEntropy_angle135_offset7”
“GLCMEntropy_angle45_offset1”
“GLCMEntropy_angle45_offset4”
“GLCMEntropy_angle90_offset1”
“GLCMEntropy_angle90_offset4”
“GLCMEntropy_angle90_offset7”
“Hara entroy”
“Sum average”
“Sum entropy”
“ShortRunHighGreyLevelEmphasis_AllDirection_offset1”
“ShortRunHighGreyLevelEmphasis_angle0_offset1”
“ShortRunHighGreyLevelEmphasis_angle0_offset7”
“ShortRunHighGreyLevelEmphasis_angle45_offset1”
“HighGreyLevelRunEmphasis_AllDirection_offset4_SD”
“Elongation”
LASSO, least absolute shrinkage selection operator.
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Figure 5: Continued.
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established an mp-MRI-based radiomics model for dis-
criminating between clinically significant PCa and clinically
insignificant PCa with an AUC of 0.823 [34]. However, these
research methods only extract a few texture features or only
use one machine learning model and are not compared with

the traditional PI-RADS V2.1 score, and the feedback in-
formation is relatively limited. In the current study, three
classifiers were utilized and compared with the PI-RADS
V2.1 score; then, the most effective features were selected for
the construction of the three prediction models.
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Figure 5: ROC curves of the radiomics signature in the training (a) and test (b) cohorts. ROC curves for the radiomics-based ADC and
T2WI model and PI-RADS (c) score performance in distinguishing low- vs. high-grade PCa in the training and test groups. RF, random
forest tree; SVM, support vector machine. Predictive ability of the PI-RADS V 2.1 model.

Table 4: Discrimination for differentiating low-grade and high-grade PCa in the training and test group and PI-RADS V2.1 scores.

Model Machine learning AUC Accuracy Sensitivity Specificity LR+ LR−

T2WI combine ADC (training)
RF 0.982 0.857 0.92 0.714 3.2168 0.112

Logistic regression 0.886 0.847 0.968 0.538 2.0952 0.0595
SVM 0.943 0.857 0.957 0.621 2.5251 0.0692

T2WI combine ADC (test)
RF 0.918 0.795 0.935 0.462 1.7379 0.141

Logistic regression 0.886 0.841 0.968 0.538 2.0952 0.06
SVM 0.913 0.841 0.935 0.615 2.4286 0.106

PI-RADS V2.1 Reader 1 0.767 0.725 0.703 0.78 3.1955 0.381
Reader 2 0.813 0.76 0.713 0.878 5.8443 0.327

ADC, apparent diffusion coefficient; T2WI, T2-weighting imaging; AUC, area under the curve; RF, random forest tree; SVM, support vector machine; LR+,
positive likelihood ratio; LR−, negative likelihood ratio; PI-RADS V2.1, prostate imaging reporting and data system version 2.1.

Table 5: Performance of each of the radiologists in the PI-RADS V2.1 scoring of the high-grade PCa group and the low-grade PCa group.

PI-RADS V2.1scores
High-grade PCa Low-grade PCa

Radiologist A Radiologist B Radiologist A Radiologist B
1 1 0 3 0
2 1 2 3 5
3 3 3 6 5
4 25 25 20 26
5 71 72 9 5
Total 101 101 41 41
PI-RADS V2.1, prostate imaging reporting and data system version 2.1; PCa, prostate cancer.
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bp-MRI allows for accurate detection and localization
of suspicious PCa, in addition to a reduction of the time
required to complete the study and lower costs without
using gadolinium [38]. Moreover, potential risks related to
the use of gadolinium-based contrast media, such as
nephrogenic systemic fibrosis, renal failure, and accumu-
lation of gadolinium in the brain, would be reduced [39]. In
general, T2WI and ADC are the most common sequences
selected by investigators for radiomics research [32, 40–42].
,erefore, we chose to derive the radiomic features from
T2WI and ADC only for this study. In addition, using too
many sequences affects clinical application because of time-
consuming and laborious image segmentation, so it is more
important to choose a valuable sequence. ,erefore, we
conclude that mp-MRI-based radiomics may contribute to
differentiating low-grade from high-grade PCa and to risk
stratification without the need for additional MRI se-
quences such as DCE.

High-grade PCa with more heterogeneous tissue con-
ditions than low-grade PCa tumors exhibited on the spatial
distribution of voxel intensities and radiomics could provide
more information to distinguish cancers that are challenging
for the PI-RADS V2.1 score [42, 43]. In addition, the clinical
application of PI-RADS V2.1 is subjective and highly reader-
dependent due to its natural feature of strictly fixed discrete
categories. Moreover, PI-RADS V2.1 requires a DCE se-
quence and has the disadvantage of achieving quantitative
criteria that favor diagnostic performance. In this study, we
proposed automatic machine learning approaches to address
these challenges and employed a well-recognized method,
RF, leading to robust classifier performance without using
gadolinium. RF is an ensemble algorithm with high accuracy
and tolerance [44]. Its greatest advantage is that it can
predict multivariate data and analyze complex nonlinear
relationships [23].

However, there were also some limitations in this study.
First, it was a retrospective single-center study, and the sample
size was relatively small. Prospective multiple-center studies
are needed in the future, and other external validation cohorts
should also be included to test the reproducibility of future
studies. Second, although a three-dimensional VOI was used,
the deviation caused by subjective factors is inevitable when
the VOI is manually drawn. We manually segmented and
delineated the VOIs with the two radiologists in consensus,
trying our best to reduce the deviation. Further studies should
adopt semiautomatic segmentation. ,ird, some pathological
results were proven by systematic combined targeted biopsy
and lacked whole-mount serial section. Although whole-
mount histopathology is considered the reference standard, it
is unreasonable to expect that all of our cases would undergo
radical prostatectomy, especially for low-grade PCa patients.
Additionally, only including patients who underwent radical
prostatectomy would lead to selection bias.

5. Conclusion

In summary, our study shows that machine learning-based
analysis of the bp-MRI radiomic model presented superior
diagnostic performance to traditional PI-RADS V2.1 scores

for predicting the histological grade of PCa. ,e machine
learning algorithm RF model was slightly increased. It was
found that the algorithm assists radiologists in reporting
tumor grade and facilitates clinical decision-making for the
management of PCa.
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