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ABSTRACT: Exosomes are lipid bilayer vesicles in biological fluids, which | EXOSOMES IN TUMOR DIOREGULATION AND DIAGNOSIS |
can participate in biological processes by mediating intercellular

communication and activating intracellular signaling pathways, especially - R
cancerogenic processes, such as proliferation, metastasis, invasion, and N r\
immune regulation of cancer cells. Besides, cancer-derived exosomes are also ©° &ém‘@t Bioregulation Q@ LneRNA
involved in tumor diagnosis and therapy as biomarkers and nanotransport | , .- . @,ib »
devices. This article reviews the latest research progress on the biological 'y & P
regulation and disease diagnosis of exosomes in tumors, with the aim of '
providing new ideas for the clinical treatment of cancers. 0 ©® O Diagnosis Q::? CireRNA
Paracrine  Immunoregulation u X
E FUTC o

1. INTRODUCTION exosomes have their unique functions. It is worth discussing

In 1983, Rose M. Johnstone et al. discovered that sheep that cargo in some exosomes is downregulated in tumor cells,

reticulocytes can release a vesicle, the secretion of which
caused reticulocytes to lose most of their active membrane

whereas artificially overexpressing these genes suppresses
57
tumor growth and invasion.’

proteins, thereby transforming them into mature erythrocytes. Exosomes are highly valuable for research in cancer growth,
This vesicle was then considered as a way for cells to expel diagnosis, treatment, and prognosis with their richness in
excess membrane proteins. With the deepening of research, he function and expression, and it is worthy of in-depth discussion
defined this vesicle as the “exosome” in 1987.” Today, it has and summary. This article reviews the latest progress in the
been shown that exosomes are significant mediators of biological regulation, diagnosis, and treatment of exosomes in
intercellular communication, and play important roles in tumors® (Figure 1).

transmitting genetic information, activating intracellular signal-

ing pathways, regulating cell growth, and modulating body 2. LITERATURE RESEARCH

immunity.

Exosomes are defined as microvesicles of 30—100 nm in We searched the PubMed database for recently published
diameter formed by the invagination of the plasma membrane.’ original articles related to the topic. We used the PubMed
And exosomes of different cellular origins are highly variable in Advanced Search Builder and Medical Subject Headings
number and content. The signal transmission function of (MeSH) to add search terms, including exosomes, cancer or
exosomes depends on the specific cargo they transport, while tumor, biological regulation, immunoregulation, cancer diag-
the cargo of exosomes depends on the microenvironment in nosis, and exosome biomarkers. We retrieved a total of 8796
which they are located as well as on the cellular origin. Under works related to tumors and exosomes. The number has
normal conditions, maintaining the stability of the human increased exponentially especially in the past decade. Of these,

internal environment requires delicate cell-to-cell communica-
tion. Exosomes travel in body fluids and cross biological
barriers to regulate the function and biological behavior of
cells.* Due to the unrestricted growth and invasion traits of
tumors, exosomes are higher in patients stimulated by the
tumor microenvironment. Most cargos are able to promote
tumor proliferation and metastasis, for example, activating
proliferative signals, inducing epithelial-mesenchymal transi-
tion, promoting vascular growth, establishing premetastatic
ecological niches and evading immune effects. However,
further studies are needed to determine whether tumor

2456 articles were related to bioregulation and 4047 were
related to diagnosis. Subsequently, we investigated prospective
clinical studies conducted in the ClinicalTrials.gov registry.
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Figure 1. Biological regulation of exosomes on cancer cell. Exosomes released from cancer cells can act on neighboring tumor cells, vascular
endothelial cells, and fibroblasts through paracrine secretion. They can also act on themselves through autocrine release of exosomes carrying signal
molecules or enter the systemic circulation to target organs, such as liver, lung, colon, and stomach. They affect various immune cells and regulate
the tumor microenvironment and the immune response of the body. Correspondingly, exosomes from external sources can act on cancer cells and

promote their progression.

3. THE REGULATION OF EXOSOMES ON TUMOR
GROWTH

3.1. Autocrine Regulation of Exosomes. Autocrine
regulation refers to the ability of cells to release signaling
factors in the form of exosomes, which act on themselves or on
the same type of cells as themselves to exert regulatory effects.
Cancer cells have a certain autonomy, which can actively
proliferate, migrate and invade. This autonomy depends on
their autocrine regulation to some extent. For instance,
hypoxia-inducible factor HIF-1 can regulate a variety of
genes under hypoxic conditions to enable cells to survive
under hypoxia. Meshach Asare-Werehene et al.” first
discovered that circulating plasma gelsolin (pGSN) can be
secreted and transported through exosomes, and it can activate
aSp1 integrin-FAK-Akt-HIF1a signaling pathway and upregu-
late self-expression in an autocrine manner, thereby promoting
the survival of ovarian cancer cells and inducing a drug-
resistant phenotype in chemosensitive cells. In addition,
ubiquitin specific peptidase 22 (USP22) is a ubiquitin
hydrolase that can deubiquitinate substrate proteins and
participate in gene transcription in various malignancies. Xian
et al."? also found that colorectal cancer cell-derived exosomes
encapsulated Lnc RNA-KCNQI1OT1, mediated the miR-30a-
Sp/USP22 pathway in an autocrine manner, and regulated PD-
L1 ubiquitination, thus inhibiting CD8" cells and promoting
tumor immune escape.

There have been many reports on the synthesis and release
of growth factors by cancer cells to accelerate their growth;
however, there are few related studies on the role of exosomes
in it. Therefore, further research is needed.

3.2. Paracrine Regulation of Exosomes. In fact, as a
humoral factor, most of the effects of exosomes are achieved
through paracrine action, which can transmit signaling factors
in the form of local diffusion between adjacent cells, affecting
local cancer cells, mesenchymal cells and endothelial cells,
providing a boost to the growth and metastasis of cancer cells.
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Tumor cell-derived exosomes activate adjacent cancer cells
and enhance their metastatic and invasive abilities. Lysyl
oxidase-like 4 (LOXL4), which belongs to the lysyl oxidase
protem family, is upregulated in various cancers. Rongkun Li et
al.'" studied exosomes extracted from hepatocarcinoma cell
lines and found that hepatoma cell-derived exosomes were able
to transfer LOXL4 between hepatoma cells, change the
expression level of LOXL4 in adjacent cancer cells, and
promote invasion and progression of hepatocarcinoma cells by
the upregulated LOXL4 through the hydrogen peroxide-
mediated FAK/Src pathway.

Tumor cell-derived exosomes transfer to mesenchymal cells
to form a cancer-promoting microenvironment. Li et al.'?
demonstrated that breast cancer-derived exosomes carried the
apoptosis inhibitory protein Survivin and transferred it to the
mesenchymal. And Nunzia Novizio et al."” also found that
pancreatic cancer cells release Annexin Al (ANXAIL) through
exosomes. These proteins activated fibroblasts and converted
them into myofibroblasts, thus promoting cancer proliferation,
epithelial-mesenchymal transition and stem cell differentiation.

Tumor cell-derived exosomes transfer to endothelial cells to
promote angiogenesis and contribute to cancer growth. Chen
et al.'* found that noncoding RNA-X26nt was significantly
elevated in gastric cancer cell-derived exosomes. Subsequent
experiments in vitro and in vivo showed that X26nt could bind
to the 3’ noncoding region of vascular endothelial cell cadherin
(VE-cadherin) mRNA and downregulate the expression of
cadherin. Sajjad Masoumi-Dehghi et al."* similarly found that
in ovarian cancer, exosomes encapsulating miR-141-3p
upregulating JAK-STAT3 pathway in endothelial cells. These
pathways increasing vascular permeability and promoting
endothelial cell proliferation, migration and neovascularization.

Mesenchymal-derived exosomes act on adjacent cancer cells

;)romote their proliferation and metastasis. A study by Li et

found that miR-34a-Sp-deficient exosomes derived from
cancer-associated fibroblasts (CAFs) could act on oral
squamous carcinoma cells in a paracrine manner, enhance
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Figure 2. Exosome-mediated tumor immune regulation. Exosomes encapsulate a rich variety of signaling molecules, such as IL-4, miR-155, hsp70,
TNE-q, etc., to transmit information between tumor cells and immune cells. The activation of these signals can affect the immune response through
different pathways and play a role in promoting or suppressing tumors.

tumor cell motility and migration to acquire a more aggressive
phenotype in the tumor microenvironment, and, due to miR-
34a-Sp overexpression, can inhibit the invasion and develop-
ment of cancer. Yan et al.'® found that miR-18b was
upregulated in CAFs-derived exosomes. It activates NF-xB
by binding specifically to the 3'UTR of Transcription
Elongation Factor A Like 7 (TCEAL7) to induce epithelial
mesenchymal transition and promote the migration and
metastasis of breast cancer cells.

Indeed, the alteration in the ability to control cell
proliferation is one of the main phenotypic characteristics of
malignant cell populations. Cargoes in exosomes mediate the
activation of signaling pathways and affect gene modification in
a paracrine manner, thus promoting cell proliferation and the
formation of the tumor microenvironment.'”

3.3. Exosomes Regulate Tumor Growth through
Systemic Fluid Circulation. In addition to the two local
circulation modes of autocrine and paracrine, exosomes can
also be released by the original cells and transported to the
target organs or cells in distant sites to play their roles, since
they can exist in the systemic fluid circulation.

3.3.1. Tumor Cell-Derived Exosomes Transfer to Target
Organs to Form a Premetastatic Niche. The premetastatic
niche refers to the formation of an environment conducive to
cancer cell growth at the metastatic site before cancer cells
reach their target organs, which is one of the important steps in
cancer metastasis.

Yuan et al.'® conducted a study on SCP28 cells, a highly
metastatic subline of human breast cancer cells. They found
that miR-21-rich exosomes secreted by SCP28 cells could
target PDCD4, downregulate its expression, and then
accelerate bone damage and rebuild the premetastatic niche
in bone. Breast cancer cell-derived exosomes encapsulating
miR-200b-3p are taken up by alveolar type II epithelial cells,
which bind to the target PTEN and activate the AKT/NF-
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kBp65/CLL2 cascade response, upregulating CCL2 expres-
sion, which in turn recruits myeloid-derived suppressor cells
(MDSCs), resulting in an immunosuppressive microenviron-
ment in the lung.” Morrissey SM et al.”’ also found that
cancer-derived exosomes can increase PD-L1 expression,
which polarized macrophages toward an immunosuppressive
phenotype and contributed to the formation of premetastatic
niches. In addition, it has also been found that exosomes
derived from colorectal cancer’’ and nonsmall cell lung
cancer”” are involved in the formation of premetastatic niches
by promoting cell migration and increasing vascular perme-
ability, respectively.

Notably, although exosomes can enter the systemic blood
circulation, exosomes derived from different types of tumors
do not randomly select premetastatic niches and they have
affinity for specific target organs. Ayuko Hoshino ’s team
extracted and labeled exosomes from breast and pancreatic
cancer cell lines, respectively, and injected them into nude
mice. The results showed that breast cancer-derived exosomes
were more efficiently taken up in the lungs, while exosomes of
pancreatic cancer origin had higher uptake in the liver. This
illustrates that organ specificity of exosome biodistribution may
match the propensity for tumor metastasis. And this finding
helps to predict metastatic propensity and identify organ
locations for future metastases.”®

3.3.2. Exosomes Carry Signaling Molecules That Directly
Regulate Cancer Growth. Jiang et al.’ found that Angiopoie-
tin-like protein 1(ANGPTL1)>* expression was lower in
exosome derived from colorectal cancer tissues than in
controls. The ANGPTLI1-rich exosomes were taken up by
hepatic Kupffer cells and inhibited JAK2-STAT3 signaling
pathway, downregulated MMP9 levels and suppressed liver
metastasis of colorectal cancer.

It has been shown that let-7f promotes tumor invasion and
proliferation, and that hypoxic conditions can induce massive
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release of exosomes from tumor cells, which are involved in the
pro_gression of many cancers.”>*° However, Virginia Egea et
al.”” found that HIF-1a in human bone marrow mesenchymal
stem cells can upregulate let-7f expression under hypoxic
conditions, resulting in the production of let-7f-rich exosomes.
The uptake of exosomes by 4T1 breast cancer cells triggers the
autophagic mechanism, which inhibits the proliferation and
invasion of tumor cells. In fact, changes in the microenviron-
ment have a huge impact on exosomes, pH and temperature
can also affect exosome function. It is worthy of in-depth study
and discussion.”®

It was also found in patients with metastatic prostate cancer
that exo-miR-424 was significantly elevated in their blood
circulation. Exosomes cultured low tumorigenic cells at local
and distant metastatic sites through the systemic circulation,
which enabled normal prostate cancer epithelial cells to acquire
tumorigenicity.”” In addition, the same regulation was found
for exo-SOX2-OT in the blood circulation of ovarian cancer
patients.30

Intercellular signaling mediated by exosomes can change the
survival and metastasis of cancer cells in multiple ways. The
regulation mechanism of exosomes on cancer cells also helps to
further reveal the process of cancer progression, which shows
promising development in tumor diagnosis and treatment.

3.4. Exosome-Mediated Cancer Immune Regulation. In
1996,”" it was first reported that B cells released exosomes
containing MHC class II molecules through plasma membrane
fusion. And then in 1998, Laurence Zrrvogel et al®? first
reported the exosomes secreted by dendritic cells and their
application in tumor immunotherapy. These studies have laid
the foundation for exosome-based tumor immunology research
(Figure 2).

3.4.1. Exosome-Mediated Anticancer Immunity. In the
current results, exosomes can promote tumor growth through a
variety of pathways, while most studies on tumor inhibition
have focused on the regulation of the immune system by
exosomes. Interleukin-4 is mostly expressed on the surface of
cancer cells. Gunassekaran GR et al.**> used M1 macrophage-
derived exosomes as nanocarriers to inhibit tumor growth by
reprogramming tumor-associated macrophages (TAMs) into
M1-like macrophages and targeting IL4R. NK cells exert their
killing effects mainly by releasing of perforin-granzyme and
inducing apoptosis through Fas/FasL pathway. Zhu et al.**
found that NK cell-derived exosomes have cytotoxic effects on
melanoma cells and other cancer cell lines, but have minimal
side effects on normal cells. It is promising for clinical
immunotherapy. Other researchers have also found that canine
natural killer cell-derived exosomes can act on mouse breast
cancer cell lines to play an anticancer effect by downregulating
cancer stem cell activity to regulate apoptotic protein
expression and enhancing the inhibitory function of p$3.%
Ali Asadirad et al.*® modified and engineered dendritic cells
(DCs) using miR-155-enriched exosomes and found that this
construct had antitumor effects in mouse models of colorectal
cancer. However, the roles of different genes play in it and the
mechanism of antitumor remained to be further investigated.

3.4.2. Exosomes Promote Cancer Immune Escape.
Exosomes can also suppress the body’s antitumor immunity
and help tumor immune escape through different pathways.
Zhou et al.”>” found that miR-142—5p wrapped with exosomes
from cervical squamous carcinoma transfers to lymphatic vessel
endothelial cells, and downregulates AT-rich interactive
domain-containing protein 2 (ARID2). Then it inhibits the

5160

recruitment of DNA methyltransferase 1 (DNMT1) to the
interferon-y promoter, thereby increasing the activity of
indoleamine 2,3-dioxygenase (IDO) and depleting CD8* T
cells. Nonsmall cell lung cancer-derived exosomes are also
capable of encapsulating circUSP7 and promoting CD8" T cell
dysfunction. In addition, dysfunction of CD8" T cells can also
be induced by circUSP7 encapsulated by exosomes derived
from nonsmall cell lung cancer.”® Dai et al.” also confirmed
that oxidative stress-induced autophagy-dependent KRASS'?P
protein can be released from pancreatic ductal adenocarcinoma
cells in the form of exosomes, and then taken up by
macrophages through the AGER/RAGE mechanism. By
inducing fatty acid oxidation, this protein polarizes macro-
phages toward M2 to form a pro-cancer microenvironment.
Glioblastoma multiforme (GBM) is a malignancy with a high
recurrence rate. Ming Wang et al.** demonstrated that GBM-
Exos in cerebrospinal fluid (CSF) contains a unique LGALS9
ligand that binds DC receptors and inhibits antigen
recognition and presentation of DCs. Besides, exosomes
derived from renal cancer cells and glioma cells encapsulated
HSP70 and miR-1246, respectively, driving the expansion and
activation of MDSCs and inhibiting the effects of cytotoxic T
lymphocytes (CTL).*"** All these processes prevented tumor
from being killed by the immune system. Linsen Ye et al.”* also
found that hepatocellular carcinoma cells were able to release
exosomes expressing HMGBI, which promoted the aggrega-
tion of TIM-1* Breg cells. Subsequently, Breg cells secreted IL-
10 and suppressed the function of CD8" Tcell, creating an
immunosuppressive microenvironment. Nevertheless, B cell-
related findings are not abundant. This might be a direction
worth exploring.

3.4.3. PD-L1 Related Immune Regulation. Programmed
cell death 1 ligand 1 (PD-L1) is an important component of
various immune response mechanisms. PD-L1 expressed in
tumor tissues inhibits lymphocyte proliferation and reduces
CD8" T cell toxicity after binding to immune cell surface
receptors.”* Pang et al.* found that exosomes from oral
squamous carcinoma origin deliver CMTMS6 to macrophages,
induce macrophage polarization toward M2 by activating the
ERK1/2 signaling pathway, and upregulate PD-L1 expression.
The tumor-derived exosomes were also able to be directly
taken up by CD8" T cells and upregulate PD-1 on the surface,
thus maintaining the self-renewal and immune escape proper-
ties of immune cells.** LOXL4 mentioned previously'' was
also able to shape immunosuppressive macrophages by
inducing the presentation of PD-L1."

In addition, anti-PD1 antibodies have been widely used in
cancer immunotherapy, which can block the PD1/PD-L1 axis
and inhibit the depletion of effector immune cells. Studies have
confirmed that targeting macrophage CD39 is a potential
therapeutic strate%y to reverse the anti-PDI1 resistance of
hepatocarcinoma.”

It is not difficult to find that exosomes can affect various
immune cells including CD8" T cells, macrophages, NK cells,
DCs, Breg cells, etc., and exert powerful immunomodulatory
effects. The antigen presentation of exosomes can also serve as
a good vehicle for cancer vaccines, providing a new direction
for cancer immunotherapy.

4. EXOSOMES IN CANCER DIAGNOSIS

It is well-known that tissue biopsy has been the gold standard
for clinical cancer diagnosis, but tissue biopsy as an invasive
and invasive test still has certain risks. Therefore, liquid biopsy

https://doi.org/10.1021/acsomega.2c06567
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Table 2. Diagnostic Potential of Exosome-Related IncRNAs as Biomarkers

expression sensitivity  specificity
cancer LncRNA levels AUC (%) (%) sample size source application direction  quote
gastric cancer FRLncl up 0.863 80.60 76.90 82 (52GC/30HC) blood  cancer diagnosis 81
triple negative exo-XIST up 0.888 84.20 92.30 141 (91TNBC/SOHC)  blood  recurrence and 82
breast cancer progression prediction
colon cancer FOXD2- up 0.728 72.60 62.30 404 (203CRC/201HC)  blood early cancer diagnosis 83
AS1
0.743 70.60 59.40 281 (80 early CRC/201HC)
cervical cancer DLX6-AS1 up 0.892 78.10 88.20 224(114CC/110HC) blood  cancer diagnosis 84
0.831 75.40 71.80 174 (114CC/60CIN) benign and malignant
identification
lung cancer SNHGI1S up 0.856 198 (118NSCLC/80HC)  blood  diagnosis and prognosis 85
liver cancer CRNDE up 0.839 69.30 85.00 266 (166HCC/100HC) blood  cancer diagnosis 86
Table 3. Diagnostic Potential of Exosome-Related Proteins As Biomarkers
expression sensitivity  specificity
cancer proteins levels AUC (%) (%) sample size source application direction quote
pancreatic cancer alix protein up 0.73 53.10 83.90 94 (62PC/320ther) blood differentiate between 87
benign and malignant
gastric cancer AGT + up 0.7734 72.73 71.6 218(132GC/86HC) blood  early cancer diagnosis 88
SERPINHI1 + and prognosis
MMP7
breast cancer BATF2 down 0.8869 82.76 80.00 116(60BC/56HC) blood  diagnosis and prognostic 89
evaluation
colon cancer MMP 9+ up 0.925 88 80 75 (1S polyp/60 cancer) blood  prognosis and 90
208 protease up 0.85 92 80 recurrence
FGB up 0.871 68.35 86.27 S0(30CRC/20HC) blood  early cancer diagnosis 91
$2-GP1 up 0.834 71.55 85.51
lung cancer FHLI (NSCLC) down 1 100 100 blood  cancer diagnosis 92
CDSL protein up 0.943 92.90 94.10 80(60LC/20HC) blood  cancer diagnosis 93
oral squamous cell alix protein up 0.685 34.50 1 40(290SCC/21HC) blood  cancer diagnosed 94
carcinoma
nasopharyngeal BATF2 down 0.8983 81 82 180 (130NPC/SOHC)  blood  diagnosis and assessment 95
carcinoma of recurrence
perihilar Cripto-1 up 0.874 79.10 87.50 227 (11SPHCCA/112 non) blood  diagnosis and prognosis 96
cholangiocarcinoma

has a better prospect as a more convenient noninvasive test.
With the continuous development of medical technology, the
diagnostic efficacy of many classical tumor markers is no longer
sufficient,” and scholars have been searching for biomarkers
with higher specificity and sensitivity. Exosomes can be found
in blood, urine, cerebrospinal fluid, and even saliva, making it
easier to obtain samples for testing. Nucleic acids inside are
protected by phospholipid membranes and are not easily
degraded by proteases or interfered by other free miRNA.
Proteins are also able to avoid failure to function as intended
due to changes in native conformation.’” Exosomes contain a
variety of active molecules,”’ of which miRNA is the most
widely studied biomarker (Table 1), a small single-stranded
RNA molecule that is involved in post-transcriptional
regulation of gene expression. The protein fractions of
exosomes can reflect the proteomic profile of their parental
tumor cells and thus serve as a warning for tumorigenesis
(Table 2).°* LncRNAs>® can also be encapsulated by exosomes
to regulate a variety of cells (Table 3), and we summarize the
latest findings in this regard. In addition, circRNAs,>* DNAs,>
and other active substances in exosomes can also be used as
potential biomarkers. In the summarized experimental data, we
selected the AUC as the main indicator of diagnostic efficacy.*®
From the summarized literature, we can find that most genes
or proteins in exosomes have higher diagnostic sensitivity than
traditional biomarkers, and the combination of multiple genes
or exosomal genes with traditional biomarkers tends to have
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higher diagnostic sensitivity than individual tests, which lays
the foundation for further experiments with large samples in
the future.

James McKiernan’s team has successfully validated the
ExoDx Prostate (IntelliScore) (EPI) urine exosome gene
expression assay for more sensitive differentiation of different
risk levels of prostate cancer in two prospective trials with over
1000 patients. It significantly reduced unnecessary biopsies
compared to existing conventional methods. This assay had
significant implications for exosomes to move toward clinical
application.””® Two years later, another prospective study on
thyroid cancer also successfully validated urinary exosomal
thyroglobulin UEx-TG as an important indicator for predicting
thyroid cancer recurrence. It can be used for accurate follow-up
of patients after thyroid cancer surgery, reducing the patient’s
trauma.”’

In addition, there are several other completed prospective
clinical trials in the ClinicalTrials.gov registry (Table 4) in
order to investigate the diagnostic potential of exosomes and
their cargoes as biomarkers in various cancers. However, in
reality, the published reliable research results are still
insufficient. We expect that more excellent findings will be
generated in the future to bring the clinical application of

60,61
exosomes to a whole new stage of development.”””
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5. CHALLENGES AND OPPORTUNITIES FOR
EXOSOMES

Discoveries in the field of exosome biology have greatly
expanded our understanding of the major steps in cancer
development. However, along with the rapid development of
exosomes, a number of questions need to be clarified. For
example, how do exosomes select their cargo in the tumor
microenvironment? How do they select their target cells?
These have important implications for the next step of
exosome modification and modification. The currently
recognized mechanism of exosome sorting is mainly related
to the ESRCT-III pathway.”” An important role of the RAB
family in the mechanism of exosome genesis has also been
reported recently in the literature.”®”” In addition, it has been
suggested that the mechanism controlling RNA-specific
loading into exosomes may be related to the hnRNPA2B1
pathway.”*'® And ubiquitin-like protein 3 (UBL3)/mem-
brane anchored Ub folding protein (MUB) is able to act as a
post-translational modification (PTM) factor to regulate
protein to exosome sorting.101 However, studies related to
the sorting of other signaling molecules are still scarce, and the
heterogeneity of exosomes dictates that many unknown
findings remained to be explored.

Second, despite the tremendous efforts of scientists to
demonstrate the value of exosomes in liquid biopsies, exosome
isolation, mass production, loading, modification, and storage
all face significant challenges before entering the clinic. The
gold standard technique for exosome isolation remains
ultracentrifugation, along with gradient centrifugation, ultra-
filtration, hydrostatic filtration dialysis, size-exclusion chroma-
tography, etc.'”” However, none of these separation methods
escapes low purity, low recovery, low yield, high cost, and
inability to perform large-scale sample preparation. Endoge-
nous loading often does not allow accurate detection of
loading, and exogenous loading is accompanied by low
efficiency. The technology for exosome production and quality
control is also flawed.'” Although reports have illustrated the
teasibility of developing high-scale and efficient clinical-grade
exosomes using Good Manufacturing Practice (GMP) stand-
ards,'** there are still many pitfalls in large-scale production.
The accuracy assessment of these microvesicles is often
questioned because each step in exosome testing can be a
source of heterogeneity. In recent studies, microfluidic chips-
based separation platforms is rapidly developed,ws’106 which
can accurately control and manipulate the fluid in the
microscale channel and improve the detection sensitivity and
accuracy. However, whether this complex and sophisticated
technology can meet the requirements of fast and convenient
applications in the clinic, still needs to be further explored.
Indeed, these practical problems faced require us to find a
balance between maximizing the recovery of exosomes and
minimizing impurities.

Not only is there no consensus on technical standards for
exosome production and isolation, but also the storage and
stability of exosomes have not been clearly studied. An
interesting study concluded that the cargo loaded in exosomes
is lost under unsuitable storage conditions.'”” They recom-
mend storing plasma at —80 °C, avoiding repeated freeze—
thaw cycles, and thawing at 37 °C.

Finally, even if we achieve the extraction and preparation of
exosomes, their long-term safety and efficacy in clinical
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treatment need to be verified by exhaustive clinical trials,
which means we still have a long way to go.

6. CONCLUSION

We seek to review the regulatory mechanisms of exosomes in
tumors and the recent progress of exosomes in tumor
diagnosis. Exosomes are important mediators of intercellular
information and are able to wrap signaling molecules to
regulate many different signaling pathways affecting tumor
development in autocrine, paracrine, fluid circulation and
immunoregulatory ways. Moreover, exosomes, as promising
novel biomarkers, have brought us new noninvasive diagnostic
methods and reduced the damage to patients. Based on recent
exosome-related studies, miRNAs, IncRNAs, proteins and
other small molecules as tumor markers may provide a new
direction for tumor diagnosis. However, circRNA, piRNA, and
other related signaling molecules are still less studied. Due to
their natural properties as biological carriers, processed and
modified exosomes become new tools for targeted therapy.'*®
Many studies in recent years have developed tumor vaccines
with exosomes as carriers.'”” Exosomes that have been directly
modified to kill tumor cells"'®"'" and used in synergistic
chemotherapy''>'"® for cancer have also made progress in
these areas. The research prospect of exosomes is very
promising, while the biological function of microvesicles,
another type of exosomes, may also become a new hot
direction.

Despite many challenges, we believe that as research
progresses, scholars will provide more valuable results to
broaden the application of exosomes.
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