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Renal tubulointerstitial fibrosis is a common pathological feature of progressive chronic
kidney disease (CKD), and current treatment has limited efficacy. The circular RNA
circHIPK3 is reported to participate in the pathogenesis of various human diseases.
However, the role of circHIPK3 in renal fibrosis has not been examined. In this study, we
aimed to determine whether and how circHIPK3 might participate in the pathogenesis
of renal fibrosis. Mice received a peritoneal injection of folic acid (250 mg/kg). Of note,
30 days later, renal fibrosis was present on periodic acid–Schiff (PAS) and Masson
staining, and mRNA and protein of profibrotic genes encoding fibronectin (FN) and
collagen 1 (COL1) were increased. Renal circHIPK3 was upregulated, while miR-30a
was downregulated, assessed by quantitative PCR (qPCR) and fluorescence in situ
hybridization (FISH). The expression of transforming growth factor beta-1 (TGF-β1)
was increased by qPCR analysis, immunoblotting, and immunofluorescence. Renal
circHIPK3 negatively correlated with miR-30a, and kidney miR-30a negatively correlated
with TGF-β1. Target Scan and miRanda algorithms predicted three perfect binding
sites between circHIPK3 and miR-30a. We found that circHIPK3, miR-30a, and TGF-
β1 colocalized in the cytoplasm of human tubular epithelial cells (HK-2 cells) on FISH
and immunofluorescence staining. We transfected circHIPK3 and a scrambled RNA
into HK-2 cells; miR-30a was downregulated, and the profibrotic genes such as TGF-
β1, FN, and COL1 were upregulated and assessed by qPCR, immunoblotting, and
immunofluorescence staining. Third, the upregulation of circHIPK3, downregulation
of miR-30a, and overproduction of profibrotic FN and COL1 were also observed
in HK-2 cells exposed to TGF-β1. Finally, renal biopsies from patients with chronic
tubulointerstitial nephritis manifested similar expression patterns of circHIPK3, miR-
30a, and profibrotic proteins, such as TGF-β1, FN, and COL1 as observed in the
experimental model. A feed-forward cycle was observed among circHIPK3, miR-30a,
and TGF-β1. Our results suggest that circHIPK3 may contribute to progressive renal
fibrosis by sponging miR-30a. circHIPK3 may be a novel therapeutic target for slowing
CKD progression.
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INTRODUCTION

Renal tubulointerstitial fibrosis is a common pathologic feature
of all chronic kidney diseases (CKDs), which affects 8–16%
of the population worldwide and is a leading cause of death
(Chen T. et al., 2019). At present, there are few effective
therapies to prevent or retard the progression of tubulointerstitial
fibrosis. Reducing the prevalence of CKD requires an in-depth
understanding of the pathogenesis of tubulointerstitial fibrosis
and the discovery of novel therapeutic agents targeting key
mediators of tubulointerstitial fibrosis.

Circular RNA (circRNA) is a class of non-coding RNA
molecules, produced with 3′ to 5′ back splicing, in which an
upstream 3′ splicing site is joined with a downstream 5′ splicing
site (Li et al., 2015). circRNAs participate in the pathogenesis
of various human diseases by sponging microRNAs (miRNAs),
consequently regulating gene expression at the transcriptional
level (Dong et al., 2017; Li et al., 2017; Tan et al., 2017; Zhao et al.,
2017). However, a possible interaction between circRNA and
miRNA in renal tubulointerstitial fibrosis has not been explored.

Recently, circHIPK3 has been identified in several human
and animal tissues (Zheng et al., 2016). circHIPK3 regulates
cell growth, and migration by sponging multiple miRNAs, such
as miR-124, miR-7, miR-30a, miR-193a, miR-338-3p, miR-107,
miR-124, and miR-524 in cancers and non-kidney diseases (Shan
et al., 2017; Chen et al., 2018; Liu et al., 2018; Zeng et al., 2018;
Hong et al., 2020; Liu Z. et al., 2020; Shu et al., 2020; Yin and Cui,
2020). circHIPK3 promotes metastasis in gastric cancer via miR-
653-5p/miR-338-3p (Jin et al., 2020) and by sponging miR-508-3p
in clear cell renal cell carcinoma (Han et al., 2020).

The circHIPK3 is also involved in fibrosis in non-neoplastic
tissues. circHIPK3 regulates cardiac fibroblast proliferation,
migration, and phenotypic switching via the miR-152-3p/TGF-
β2 axis under hypoxic conditions (Liu W. et al., 2020).
The inhibition of circHIPK3 prevents angiotensin II-induced
cardiac fibrosis by sponging miR-29b-3p (Ni et al., 2019).
circHIPK3 regulates lung fibroblast-to-myofibroblast transition
by competing with miR-338 (Zhang et al., 2019). Recently,
circHIPK3 has been reported to exacerbate diabetic nephropathy
and promote proliferation through sponging miR-185 (Liu et al.,
2021). However, the role of circHIPK3 in the progression of renal
tubulointerstitial fibrosis remains to be fully characterized.

This study aimed to determine whether circHIPK3 contributes
to renal tubulointerstitial fibrosis and to identify the underlying
mechanisms. In an experimental mouse model and in human
tissues, we found that renal circHIPK3 was upregulated,
while miR-30a was downregulated. Consequently, transforming
growth factor beta-1 (TGF-β1) was overproduced. In a feed-
forward loop, TGF-β1 induced an increase in circHIPK3.

MATERIALS AND METHODS

Mouse Folic Acid-Induced Renal
Tubulointerstitial Fibrosis Model
Male C57BL/6 mice (age = 16 weeks old, weight = 25–30 g,
n = 12) were purchased from the Beijing Vital River Laboratory

Animal Technology (Beijing, China). Mice were housed under
standard conditions. The mice were randomly divided into two
groups, namely, normal control (NC) group and FA group. FA
was injected into the abdominal cavity of mice with a dosage of
250 mg/kg. Equal volumes of 0.3 mmol/L NaHCO3 were injected
into the NC group. Of note, 30 days later, mice were weighed
and euthanized with carbon dioxide. Kidneys were collected and
placed at 80◦C for further analysis. Animal studies were approved
in advance by the Animal Care and Use Committee of China
Medical University (15052111) and were performed following the
NIH Animal Care and Use Guidelines.

HK-2 Cell Culture and Transfection of
circHIPK3 or Stimulation of Transforming
Growth Factor Beta-1
Immortalized human renal proximal tubular epithelial
cells (HK-2 cells) were purchased from ATCC (Manassas,
VA, United States) and cultured in DMEM/F12 medium
supplemented with 10% FBS at a culture density of 2 × 105

cells in a six-well plate (Costar, Corning, NY, United States) at
37◦C and 5% CO2. Cultured HK-2 cells were transfected with
the circular sequence of circHIPK3 [pCDH-CMV-5′ circular
Frame (1)-has_circHIPK3-3′ circular Frame(1)-EF1-copGFP-
T2A-puro]/scrambled sequence [pCDH-CMV-5′circular
Frame (1)-MCS-3′ circular Frame(1)-EF1-copGFP-T2A-
puro] as negative control (SyngenTech, Beijing, China) using
Lipofectamine 3000 (Invitrogen, CA, United States) for 48 h
according to the instructions of the manufacturer. Cultured
HK-2 cells were stimulated with hTGF-β (250 pg/ml) for 48 h.
Cells were collected for RNA and protein extraction after the
transfection of circHIPK3 or the stimulation of TGF-β1 for the
analysis by quantitative PCR (qPCR) and Western blotting.

Patients With Chronic Tubulointerstitial
Nephritis
Patients with chronic tubulointerstitial nephritis on biopsy were
from the Department of Nephrology at Shengjing Hospital of
China Medical University between January 2019 and March
2020. Diagnoses were made by a nephropathologist following
established criteria. Normal human kidney tissues were obtained
at the time of renal cancer surgery. These tissues are located at
least 5 cm away from the tumors as we previously described
(Luan et al., 2018). All subjects provided written consent, and the
research protocol was approved in advance by the Institutional
Review Board of the China Medical University.

Kidney Histology
Tissue sections (3 µm) were cut from paraffin-embedded
human or mouse kidney blocks, deparaffinized, and rehydrated.
Tissues were stained with periodic acid–Schiff (PAS) and
Masson stains. The tubular injury was scored on PAS staining
described previously, and the renal tubulointerstitial fibrosis
area was presented as the percentage of the whole kidney
cross-section on Masson staining using ImageJ software (NIH,
Bethesda, MD, United States) on 15 randomly selected fields
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(200× magnification) as previously described (Liu et al., 2009;
Luan et al., 2020).

Quantitative PCR
Total RNA was extracted from frozen kidney tissue and HK-
2 cells using TRIzol reagent (Life Technologies, Carlsbad, CA,
United States), and the RNA concentration was determined using
a NanoDrop 2000 spectrophotometer (ThermoFisher, Waltham,
MA, United States). Total RNA (250 ng per sample) was subjected
to reverse transcription using Prime Script RT Reagent Kit for
circHIPK3, fibronectin (FN), collagen 1 (COL1), and TGF-β1
and to reverse transcription using TransScript miRNA First-
Strand cDNA Synthesis SuperMix (TransGen Biotech, Beijing,
China) for miR-30a and followed by PCR with SYBR Premix Ex
Taq (Takara, Dalian, China). Real-time fluorescence was detected
with QuantStudio 6 Flex quantitative PCR system (Applied
Biosystems, Carlsbad, CA, United States). The relative expression
level of each gene was expressed as 2−11Ct of each measurement.
Glyceraldehyde-3-phosphate dehydrogenase (GAPDH), b-actin,
or α-tubulin was used as an endogenous control for mRNAs and
circHIPK3. Sno202 or U6 was used as an endogenous control for
miR-30a. Primers were designed using Primer Express (Applied
Biosystems, Carlsbad, CA, United States) and synthesized by Life
Technologies (Shanghai, China) (Table 2).

Immunoblotting
Kidney samples and HK-2 cells were sonicated and resuspended
in radioimmunoprecipitation assay buffer with protease
inhibitors. Protein concentration was measured using a
bicinchoninic acid assay kit. Equal amounts of protein were
separated by SDS–PAGE and transferred into polyvinylidene
difluoride (PVDF) membranes (Millipore Immobilon-P,
Darmstadt, Germany). After blocking with 5% skimmed milk,
membranes were incubated with primary antibodies against
FN, COL1, and TGF-β1 at 4◦C overnight. Following repeated
washing, the membranes were incubated with horseradish
peroxidase-conjugated secondary antibody for 1 h at room
temperature. The antibody-antigen reactions were determined
using a high-sig ECL Western blotting substrate and visualized
by the Tanon 5500 imaging system. Protein loading variation was
normalized by α-tubulin, β-actin, or GAPDH. For quantitative
analysis, blot density was analyzed with NIH ImageJ software.
The protein level is expressed as the ratio of blot density from
individual protein to its housekeeping antibody. Antibody
information is presented in Supplementary Table 1.

Immunofluorescence Staining
Paraffin-embedded human and mouse kidney tissues were cut
at 2-µm thickness, deparaffinized, and rehydrated. Antigens
were retrieved, and non-specific binding was blocked. Kidney
sections were incubated with antibodies directed against FN,
COL1, and TGF-β1. Slides with HK-2 cells were incubated with
these three antibodies at 4◦C overnight, followed by incubation
with Alexa-594/Alexa-488 donkey anti-rabbit/anti-mouse IgG
(Supplementary Table 1) at room temperature for 1 h in the dark.
After three washes with phosphate-buffered saline (PBS), slides
were mounted with diamidino-phenyl indole (DAPI) for 10 min.

Images were captured by immunofluorescence microscopy
(Nikon, Tokyo, Japan). Specific staining for each target protein
was quantified as integrated optical density expressed per
unit area by Image-Pro Plus 6.0 (Media Cybernetics, MD,
United States), as described previously (Luan et al., 2020;
Qi et al., 2020).

Fluorescence in situ Hybridization
Fluorescence in situ hybridization (FISH) was performed on
kidney tissue and HK-2 cells following the protocol of the
manufacturer. Paraffin-embedded human kidney tissue sections
were cut at 4-µm thickness. Sections were deparaffinized,
rehydrated, and digested with trypsin at 37◦C for 30 min. Slides
with kidney sections or cultured HK-2 cells were hybridized
with a digoxigenin-horseradish peroxidase (DIG-HRP)-labeled
oligonucleotide probe complementary to circHIPK3 or miR-
30a at 37◦C overnight, followed by incubation with anti-
DIG-HRP (Servicebio, Wuhan, China) for 50 min, fluorescein
isothiocyanate-tyramide signal amplification for 5 min, and
DAPI to stain DNA for 5 min. Images were captured by
immunofluorescence microscopy (Nikon, Tokyo, Japan) as
described previously (Luan et al., 2020).

Statistical Analyses
GraphPad Prism 8.0 software (GraphPad, San Diego, CA,
United States) was used to perform statistical analyses.
The quantitative data were expressed as mean ± SD.
Differences between the two groups were analyzed by the
t-test. Correlations between two variables were analyzed by
Pearson’s linear correlation analysis. p-Value < 0.05 was accepted
as statistically significant.

RESULTS

Folic Acid-Induced Renal
Tubulointerstitial Fibrosis in Mice
Mice with 250 mg/kg of FA administration developed renal
tubulointerstitial fibrosis on day 30 after the injection. Collagen
hyperplasia and inflammatory cell infiltration were shown in the
tubulointerstitial area on PAS and Masson staining in FA mice.
The tubular injury score and the area of renal fibrosis were
elevated in the FA group compared to the NC group (Figure 1A).
In the FA group, the mRNA levels of FN and COL1 were
increased on qPCR (Figures 1B,C). The protein expression of
FN and COL1 was increased by both Western blotting analysis
(Figure 1D) and immunofluorescence staining (Figure 1E).

Expression of Renal
circHIPK3/miR-30a/Transforming Growth
Factor Beta-1 in Folic Acid-Induced
Renal Tubulointerstitial Fibrosis in Mice
Since circHIPK3 has been reported to participate in the fibrosis
of the heart and lung in animal models, we investigated the
expression of circHIPK3/miR-30a/TGF-β1 in mouse kidney
tissue. We found that circHIPK3 was upregulated, while
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FIGURE 1 | Typical renal fibrosis and the expression of fibronectin (FN)/collagen 1 (COL1) in folic acid (FA)-induced renal tubulointerstitial fibrosis in mice. (A) Periodic
acid–Schiff (PAS) and Masson staining and semi-quantitative analysis. (B,C) mRNA levels of FN and COL1 on quantitative PCR (qPCR). (D) Proteins levels of FN and
COL1 on immunoblotting and semi-quantitative analysis. (E) Expression of FN and COL1 (arrow) on immunofluorescent staining and semi-quantitative analysis. n = 6
in each group, *p < 0.05, FA vs. NC, magnification 200×, bar scale: 50 µm. FA, folic acid; RIF, renal tubulointerstitial fibrosis.
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FIGURE 2 | Expression of renal circHIPK3/miR-30a/transforming growth factor beta-1 (TGF-β1) in FA-induced renal tubulointerstitial fibrosis in mice. (A–C)
circHIPK3, miR-30a, and TGF-β1 on qPCR. (D,E) The correlation between renal circHIPK3 and miR-30a as well as miR-30a and TGF-β1. (F) TGF-β1 on
immunoblotting and semi-quantitative analysis. (G) circHIPK3 and miR-30a on fluorescence in situ hybridization (FISH) as well as TGF-β1 on immunofluorescence
staining. n = 6 in each group, *p < 0.05, FA vs. NC, magnification 200×, bar scale: 50 µm. FA, folic acid; RIF, renal tubulointerstitial fibrosis.

miR-30a expression was decreased, and TGF-β1 was increased
(Figures 2A–C) in FA-induced renal tubulointerstitial fibrosis
in mice compared to control mice. Importantly, circHIPK3
was negatively correlated with miR-30a, and miR-30a was

also negatively correlated with TGF-β1 mRNA by the qPCR
analysis (Figures 2D,E). TGF-β1 protein production was also
increased in FA-induced renal tubulointerstitial fibrosis mice by
immunoblotting (Figure 2F).
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FIGURE 3 | Overexpression of circHIPK3 in HK-2 cells. (A) The colocalization in the cytoplasm of circHIPK3, miR-30a, and TGF-β1 is shown. (B) The levels of
circHIPK3 on qPCR after circHIPK3 overexpression. (C–F) The levels of miR-30a, TGF-β1, fibronectin (FN), and collagen 1 (COL1) using qPCR after overexpression
of circHIPK3. (G) Protein levels of FN, COL1, and TGF-β1 on immunoblotting and semi-quantitative analysis after the overexpression of circHIPK3. (H) The
expression of TGF-β1, FN, and COL1 assessed by immunofluorescence with circHIPK3 overexpression. Magnification 400×, bar scale: 100 µm. n = 6 in each
group, *p < 0.05, circHIPK3 vs. scrambled RNA.
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FIGURE 4 | Expression of circHIPK3/miR-30a/TGF-β1 pathway in HK-2 cells with hTGF-β1 treated. (A) mRNA levels of TGF-β1 after hTGF-β1 stimulation in HK-2
cells. (B–E) The levels of circHIPK3, miR-30a, FN, and COL1 on qPCR after hTGF-β1 stimulation. (F) Protein levels of FN and COL1 on immunoblotting and
semi-quantitative analysis after hTGF-β1 stimulation. n = 6 in each group, *p < 0.05, hTGF-β1 vs. vehicle.

We used additional methods to evaluate the renal expression
of circHIPK3/miR-30a/TGF-β1 in kidney tissue. FISH staining
demonstrated that circHIPK3 and miR-30a are mainly located
in tubules. Positive TGF-β1 staining located in tubules and
tubulointerstitial area on immunostaining. The direction of
renal circHIPK3/miR-30a/TGF-β1 was the same as qPCR or
Western blotting in FA-treated mice compared to control
mice (Figure 2G).

Overexpression of circHIPK3 in HK-2
Cells
Based on the location of circHIPK3/miR-30a in FA-treated mice,
we further utilized renal tubular cell line HK-2 cells to explore the
roles of circHIPK3 in mice manifesting renal tubulointerstitial
fibrosis. First, we found that circHIPK3, miR-30a, and TGF-
β1 were mainly colocalized in the cytoplasm of normal HK-2
cells by triple staining, involving two FISH studies and one
immunostaining (Figure 3A).

Then, we transfected the plasmid of circHIPK3 to upregulate
circHIPK3 in HK-2 cells for 48 h. We found that the circHIPK3
level was nearly fivefold higher than that in the scrambled group

(Figure 3B). Consequently, miR-30a was downregulated, and
mRNA of TGF-β1 was upregulated on the qPCR analysis in HK-2
cells with the transfection of circHIPK3 compared to scrambled
RNA sequence (Figures 3C,D). The expression changes of
circHIPK3/miR-30a/TGF-β1 were similar to the changes of these
genes in mouse kidney tissue. In addition, we examined two more
profibrotic genes such as FN and COL1. We found that mRNAs
of FN and COL1 were also upregulated in HK-2 cells with
the overexpression of circHIPK3 (Figures 3E,F), similar to the
TGF-β1 RNA expression change on qPCR. The protein levels of
TGF-β1, FN, and COL1 were regulated similar to the RNA levels,
which was confirmed by both Western blotting (Figure 3G) and
immunofluorescence staining (Figure 3H) in HK-2 cells with the
transfection of circHIPK3 compared to the scrambled RNA.

Expression of circHIPK3/miR-30a/
Profibrotic Genes in HK-2 Cells With
Transforming Growth Factor Beta-1
Stimulation
The TGF-β1 is an important regulator of renal fibrosis and has
been used to induce the overproduction of profibrotic proteins
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in human primary renal tubular epithelial cells in vitro studies
from our group (Zhou H. et al., 2013) and others. In this study,
we investigated the changes of circHIPK3/miR-30a/profibrotic
genes such as FN and COL1 in HK-2 cells 48 h after exposure
to human TGF-β1. In HK-2 cells, circHIPK3 level was increased
2.5-fold, and miR-30a expression was decreased by >50% with
TGF-β1 stimulation compared to vehicle stimulant (Figures 4A–
C). FN mRNA was also increased nearly sixfold, and COL1
mRNA was elevated by eightfold (Figures 4D,E). Consistent
with mRNA expression changes of FN and COL1, protein
expression was also increased in HK-2 cells following human
TGF-β1 exposure compared to the vehicle, on the Western blot
analysis (Figure 4F).

Renal circHIPK3/miR-30a/Profibrotic
Proteins in Human Subjects
Finally, circHIPK3/miR-30a/profibrotic proteins were
examined in kidney tissue from human subjects with
chronic tubulointerstitial nephritis (cTIN) as relevant renal
tubulointerstitial fibrosis tissue and normal tissue adjacent to
kidney tumor as NC. The clinical characteristics of human
subjects enrolled in the study are displayed in Table 1. Typical
tubulointerstitial fibrosis was observed on Masson staining

TABLE 1 | Clinical characteristics of human subjects.

No. Age Gender eGFR (ml/min/1.73 m2)

1 50 F 139

2 58 M 127

3 70 M 94

4 67 F 46

5 46 M 66

6 37 M 50

eGFR, estimated glomerular filtration rate based on the CKD-EPI formula. Cases
1–3, normal control kidney tissue from patients with a kidney tumor. Cases 4–6,
renal biopsies from patients with chronic tubulointerstitial nephritis.

in renal biopsies from cTIN patients compared to normal
human kidney tissues (Figure 5A). Fibrotic proteins FN and
COL1 were increased in cTIN patients compared to NC on
immunofluorescence staining (Figure 5B). The expression of
circHIPK3 was upregulated, and miR-30a was downregulated,
and excess TGF-β1 protein was present in renal biopsies from
cTIN patients compared to NC kidney tissue on FISH or
immunofluorescence staining (Figure 5C). It was consistent
with the expression of circHIPK3/miR-30a/TGF-β1 in FA-
induced renal tubulointerstitial fibrosis mice and HK-2 cells with
circHIPK3 transfection.

DISCUSSION

The major findings of this study are as follows. First, renal
circHIPK3 was upregulated, miR-30a was downregulated, and
there was increased RNA expression of profibrotic genes, such
as those encoding TGF-β1, FN, and COL1, in mice with FA-
induced renal tubulointerstitial fibrosis and in renal biopsies from
patients with cTIN. Second, the transfection of circHIPK3 to HK-
2 resulted in the downregulation of miR-30a and the upregulation
of TGF-β1, FN, and COL1. Third, circHIPK3, miR-30a, and
TGF-β1 showed colocalization in normal HK-2 cells. Fourth,
a feed-forward cycle was found among circHIPK3, miR-30a,
and TGF-β1.

It has been established that circRNAs contribute to the
initiation and progression of CKD. We have reported that
circHLA-C plays an important role in lupus nephritis patients by
regulating miR-150 (Luan et al., 2018). Exosomal circ_DLGAP4
promotes diabetic kidney disease progression by sponging miR-
143 (Bai et al., 2020). circRNA_010383 acts as a sponge for miR-
135a and contributes to renal fibrosis in experimental diabetic
nephropathy (Peng et al., 2020).

The circHIPK3, derived from exon2 of the HIPK3 gene,
is highly conserved in the genomes of mice, rats, and
humans. circHIPK3 plays an important role in heart and lung
fibrosis. circHIPK3 regulates cardiac fibrosis through sponging

TABLE 2 | Sequences of primers used in real-time quantitative PCR (qPCR).

Gene Forward (5′-3′) Reverse (5′-3′)

FN (has) CGGTGGCTGTCAGTCAAAG AAACCTCGGCTTCCTCCATAA

FN (mus) ATGTGGACCCCTCCTGATAGT GCCCAGTGATTTCAGCAAAGG

COL1 (has) GAGGGCCAAGACGAAGACATC CAGATCACGTCATCGCACAAC

COL1 (mus) GACATGTTCAGCTTTGTGGACCTC GGGACCCTTAGGCCATTGTGTA

TGF-β1 (has) CAATTCCTGGCGATACCTCAG GCACAACTCCGGTGACATCAA

TGF-β1 (mus) CCCGAAGCGGACTACTATGC CATAGATGGCGTTGTTGCGG

circHIPK3 (has) CCAGTGACAGTTGTGACAGCTACC GCCAAACGTGCCTCGACCAAG

circHIPK3 (mus) GGATCGGCCAGTCATGTATC ACCGCTTGGCTATACTTTGA

GAPDH (has) GGAGCGAGATCCCTCCAAAAT GGCTGTTGTCATACTTCTCATGG

Actin (mus) TTCCTTCTTGGGTATGGAAT GAGCAATGATCTTGATCTTC

miR-30a (has/mus) TGTAAACATCCTCGACTGGAAG

U6 (has) GCTTCGGCAGCACATATACTAAAAT

Sno202 (mus) GCTGTACTGACTTGATGAAAGTACT

FN, fibronectin; COL1, collagen 1; TGF-β1, transforming growth factor beta-1; GAPDH, glyceraldehyde-3-phosphate dehydrogenase.
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FIGURE 5 | Renal expression of circHIPK3 in patients with chronic tubulointerstitial nephritis (cTIN). (A) Masson staining of kidney. (B) Expression of FN and COL1
shown by immunofluorescence staining. (C) Expression of circHIPK3, miR-30a, and TGF-β1 on FISH and immunofluorescence staining. Magnification 200×, bar
scale: 50 µm. n = 3 in each group, *p < 0.05, cTIN vs. NC.
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FIGURE 6 | Schematic mechanism model of the role of circHIPK3. In FA-induced renal tubulointerstitial fibrosis, circHIPK3 is increased, miR-30a is decreased, and
TGF-β1 is upregulated. A TGF-β1 feed-forward loop exacerbates the development of renal fibrosis.

miR-152-3p and miR-29b-3p, respectively (Ni et al., 2019; Liu
W. et al., 2020). circHIPK3 also regulates lung fibroblast-to-
myofibroblast transition by miR-338 (Zhang et al., 2019). Most
recently, circHIPK3 has been reported to be upregulated in
early-phase diabetic nephropathy and to promote mesangial
proliferation through sponging miR-185 (Liu et al., 2021).
However, the role of circHIPK3 in renal fibrosis has not
been reported.

In this study, we found that circHIPK3 was overexpressed
in the late phase of experimental renal tubulointerstitial fibrosis
induced by FA, which initiates renal tubular injury. Meanwhile,
miR-30a was downregulated, and the profibrotic genes such
as those encoding TGF-β1, FN, and COL1 were upregulated
(Figure 1 and Supplementary Figure 1). These data demonstrate
that circHIPK3 contributes to the development and progression
of FA-induced renal fibrosis.

What mechanisms are involved in circHIPK3-mediated
FA-induced renal fibrosis? Several studies have shown that
circHIPK3 exerts various biological functions by acting as a
sponge with multiple RNAs (Zheng et al., 2016). As a competitive
endogenous RNA, circHIPK3 regulates cell growth and migration
by sponging miR-30a in retinal vascular (Shan et al., 2017).
circHIPK3 and miR-30a have three perfect match seeds (Chen
B. et al., 2019), and miR-30a binds the 3′UTR of TGF-β1
(Bogusławska et al., 2018).

We asked whether circHIPK3 participates in the pathogenesis
of FA-induced renal fibrosis by sponging miR-30a. We performed
the triple localization of circHIPK3, miR-30a, and TGF-β1 and
showed the coexpression of three molecules in the cytoplasm of
normal HK-2 cells; this suggested that three molecules interact.
This hypothesis is supported by the reports of these three genes
being coexpressed in various cell types (Bogusławska et al., 2018;
Chen B. et al., 2019).

To experimentally verify whether the circHIPK3/miR-
30a/TGF-β1 axis contributes to renal fibrosis, we transfected
circHIPK3 into HK-2 cells. We found that the overexpression of
circHIPK3 downregulated miR-30a and stimulated overproduced
TGF-β1, FN, and COL1 on either mRNA or protein levels
(Figure 3). The expression of the circHIPK3/miR-30a/TGF-β1

pathway was also observed in renal biopsies from patients with
cTIN, i.e., a renal tubular injury initiated clinical renal fibrosis
disease (Figure 5). These results provided that more evidence of
circHIPK3/miR-30a/TGF-β1 initiates tubular injury and thereby
contributes to FA-induced renal tubulointerstitial fibrosis.

The TGF-β1 is a major driver of tissue fibrosis, and its
protein expression is regulated by miR-30a in various cell
types (Bogusławska et al., 2018). In the rat peritoneal fibrosis
model, miR-30a expression is negatively correlated with TGF-
β1 expression. The overexpression of miR-30a blocks TGF-β1-
induced peritoneal fibrosis via inhibiting EMT and collagen
production (Zhou Q. et al., 2013). In carbon tetrachloride-
induced rat liver fibrosis, miR-30a serves as a crucial suppressor
of TGF-β1 signaling in hepatic stellate cells activation (Zheng
et al., 2018). Similarly, we found that the downregulation of miR-
30a by circHIPK3 sponging resulted in the overexpression of
TGF-β1 and profibrotic proteins, such as FN and COL1. Taken
together, these results from diverse models provide compelling
evidence that the circHIPK3/miR-30a/TGF-β1 axis contributes to
the pathogenesis of renal fibrosis.

In vitro, we studied TGF-β1-stimulated HK-2 cells and found
that TGF-β1 stimulation increases circHIPK3, decreases miR-
30a, and promotes the production of profibrotic proteins, such
as FN and COL1. This suggested that a positive feedback loop
may exist among circHIPK3, miR-30a, and TGF-β1 in renal
fibrosis (Figure 6). Similar positive feedback has also been noted
in miR-150 and TGF-β1 in human primary proximal tubular
cells in our previous study (Zhou H. et al., 2013). Renal fibrosis
is the characteristic of progressive CKD, and many pathways
may contribute among them being circHIPK3/miR-30a/TGF-
β1. Future studies might extend this study by using circHIPK3
knockout mice or using circHIPK3 RNAi delivery.

CONCLUSION

The data presented in this study suggest that circHIPK3
contributes to the pathogenesis of renal fibrosis by sponging
miR-30a and thereby increasing the production of profibrotic
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TGF-β1 protein. circHIPK3 may be a novel therapeutic target
for renal fibrosis.
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