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Novel coronavirus (severe acute respiratory syndrome coronavirus-2: SARS-CoV-2) has a high homology with
other cousin of coronaviruses such as SARS and Middle East respiratory syndrome-related coronavirus (MERS).
After outbreak of the SARS-CoV-2 in China, it has spread so fast around the world. The main complication of
coronavirus disease 2019 (COVID-19) is respiratory failure, but several patients have also been admitted to the
hospital with neurological symptoms. Direct invasion, hematogenic rout, retrograde and anterograde transport

along peripheral nerves are considered as main neuroinvasion mechanisms of SARS-CoV-2. In the present study,
we describe the possible routes for entering of SARS-CoV-2 into the nervous system. Then, the neurological
manifestations of the SARS-CoV-2 infection in the central nervous system (CNS) and peripheral nervous system
(PNS) are reviewed. Furthermore, the neuropathology of the virus and its impacts on other neurological dis-

orders are discussed.

1. Introduction

Coronavirus disease 2019 (COVID-19) is a pandemic crisis with the
ability to kills millions of people. Novel coronavirus (severe acute re-
spiratory syndrome coronavirus-2: SARS-CoV-2) was first detected in
China on 12 December 2019 and has rapidly spread among rest of the
world [1]. The SARS-CoV-2 belongs to Beta-coronavirus family, ranging
from 26 to 32 kilobases in length. The RNA virus is enveloped with a
positive sense single-stranded RNA genome [2]. There is a closest
linkage between two SARS-like coronaviruses from bat. Four structural
proteins are considered for the virus as (E) the envelope protein, (M)
the membrane protein, (S) the spike protein, and (N) the nucleocapsid
protein [3]. Angiotensin converting enzyme 2 (ACE2) is a receptor on
the human cells surface and it has been shown that SARS-CoV virus, the
other cousin of COVID-19, binds to this receptor with its spike protein
for entering to the cells. Based on the recent research, ACE2 is also
required for SARS-CoV-2 entry into the cells [4]. The ACE2 shows
widespread distribution in different organs including brain and neural
cells [5]. Clinical symptoms of COVID-19 are range from mild to severe.
Fever, cough, and shortness of breath are the most common symptoms
of the disease [6].

According to the clinical observation in 2019, the SARS-CoV-2 in-
vades the central nervous system (CNS) and in this way, presumably
affects pulmonary function. Respiratory center in the brainstem is

considered as a main target of SARS-CoV-2 which leads to respiratory
center dysfunction and consequent acute respiratory distress in COVID-
19 patients [7]. Although most studies have focused on the respiratory
manifestation of COVID-19, but regarding the recent SARS-CoV-2 out-
break, the neurological manifestations of this virus are becoming more
and more evident.

The SARS-CoV-2 shows high homology in both genomic sequence
and clinical manifestations with SARS-CoV and MERS-CoV. Previous
clinical and experimental evidence suggested that brain is a major
target of the coronaviruses [3]. These viruses have also been detected in
the cerebrospinal fluid (CSF) of SARS and MERS infected patients in the
early 2000s [8]. Moreover, SARS-CoV virus antigen was detected
abundantly in the olfactory bulb, piriform and infra-limbic cortices,
basal ganglia (ventral pallidum and lateral preoptic regions), and
midbrain (dorsal raphe) in the infected patients [9]. Due to the men-
tioned similarities between SARS-CoV-2 and other beta coronaviruses,
it is not unexpected that COVID-19 patients show the neurological
symptoms and complications. Many patients with novel coronavirus
have reported different range of neurological symptoms from mild and
non-specific symptoms such as headache, nausea, vomiting, languid-
ness, myalgia, and unstable walking to more complex symptoms like
cerebral hemorrhage, meningitis, encephalitis, and other neurological
complications [10,11].

It has been indicated that SARS-CoV-2 may enter to the CNS through
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hematogenic rout, retrograde or anterograde neuronal transport
[12,13]. Understanding the virus neuroinvasion pathway help re-
searchers to better identify pathological related consequences of in-
fection and in this way, the diagnostic criteria as well as management
and treatment of the disease can be improved.

In this review article, we summarize the mechanism of SARS-CoV-2
entry, neurological symptoms of the COVID-19 infection in central
nervous system (CNS) and peripheral nervous system (PNS), immune
neuropathology of the virus, and the impacts of the virus on other
neurological disorders.

2. The SARS-CoV-2 entering mechanisms to the nervous tissue

Although there are several suggested routs for entering of the SARS-
CoV-2 to the nervous system, the exact mechanism of its neuroinvasion
is not clear. The virus may directly invade the nervous tissue because of
its detection in the CSF or brain tissue. In order to invade different
organs, the SARS-CoV-2 may spread through the bloodstream. Viremia
results in virus transcytosis across the endothelial cells of blood brain
barrier (BBB) or the virus infects epithelial cells of the blood-cere-
brospinal fluid barrier (BCSFB) in the choroid plexus (CP) of the brain
ventricles. Moreover, leukocytes may be infected and transport the
virus as a vector. In order to access the CNS, the virus uses the axonal
transport machinery (retrograde transport). In addition to hematic rout,
lymphatic rout is also considered to be a possible pathway for the virus
to enter the CNS. Direct viral invasion is another hypothesis for the
entering of virus to the CNS. The SARS-CoV-2 may invade the nervous
tissue through the ACE2 or TMPRSS2 receptors. These receptors have
shown wide distribution in the body. Interestingly, the ACE2 receptor is
also expressed on the membrane of spinal cord and the virus may in-
vade the spinal cord through its binding to the ACE2 receptors on the
surface of neurons [14,15]. The SARS-CoV-2 may penetrate cribriform
plate close to the olfactory bulb (OB) and the olfactory epithelium (OE).
In this way, virus enters to the CNS. Anosmia or hyposmia as new
presentations of COVID-19 patients confirm this route of infection.
Moreover, COVID-19 cuisine, SARS-CoV showed a transneural pene-
tration through the olfactory bulb in a mice model [9]. The SARS-CoV-2
may infect olfactory receptor neurons (ORNs) or non-neural cells lo-
cated in the OE using ACE2 or TMPRSS2 receptors. Neuronal infection
with COVID-19 results in SARS-CoV-2 uptake into the ciliated den-
drites/soma and the virus can use anterograde axonal machinery
transport along the olfactory nerve [16]. In addition to neuronal cells,
the virus may cross the non-neuronal OE cells and directly enter to the
CSF around the olfactory nerve bundles [17]. The ACE2 and TMPRSS2
receptors are highly expressed in the human and mouse olfactory mu-
cosa and their expression increases in murine model with age [16]. The
ACE2 receptor is also expressed in both neurons and glia cells [5].
Hence the elderly individuals may be at higher risk of SARS-CoV-2
accumulation in the OE cells [18-20]. Moreover, the ACE2-independent
virus infection could be also considered for entering of virus into the
CNS. Specialized glia cells known as olfactory ensheathing cells (OECs)
are closely associated with axons and can supply axons with macro-
molecules by the way of extracellular vesicle (EVs). These extracellular
vesicles could be regarded as another way of the virus transfer from the
OEC to the ORN axon which is ACE2 independent [5]. In addition to the
olfactory nerve, the virus may use other peripheral nerves such as tri-
geminal or the sensory fibers of the vagus nerve which innervates dif-
ferent parts of the respiratory tract including larynx, trachea, and lungs
[21,22].

3. The neuropathology of SARS-CoV-2

The neuroinvasive feature of SARS-CoV-2 can damage the nervous
system through different neuropathological mechanisms. Owing to si-
milar structure and infection pathway between SARS-CoV-2 and the
other coronavirus family members, similar mechanism of
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neuropathology could be expected [23]. One of the most widely ac-
cepted neuropathological mechanisms of SARS-CoV-2 is hyperin-
flammatory state. The over-exuberance response of immune system
results in release of a large amount of cytokines and chemokines such as
interleukins 2, 6, 7, and 10, tumor necrotizing o, and granulocyte
colony-stimulating factor [24]. The released factors change the per-
meability of the BBB and increase the activation of neuroinflammatory
cascades. Moreover, some of these cytokines can drive neuronal hyper-
excitability via glutamate receptors activation and lead to an acute form
of seizures [25,26]. An inflammatory theory of SARS-CoV-2 infection
can also be supported by steroid response of a COVID-19 patients with
severe encephalitis [27]. Moreover, it is suggested that over exuberance
response of immune system in SARS-COV-2 infection may lead to in-
flammatory injury and edema in the brain. This process leads to al-
terations in the consciousness of these patients [28]. The inflammatory
and immunologic responses lead to a cytokine storm. Some of the pa-
tients with severe COVID-19 may presented with cytokine storm syn-
drome [29]. Intracranial cytokine storms result in BBB breakdown and
increased leukocyte migration. In this process, the virus doesn't have
direct invasion or para-infectious demyelination [30].

Hypoxia is another process which results in nervous tissue damage.
Virus proliferation and subsequent alveolar dysfunction lead to hypoxia
in the CNS. Additionally, increased anaerobic metabolism, cerebral
vasodilation, cerebral blood supply obstruction, and headache due to
ischemia and congestion are occurred following virus infection. If the
hypoxia continues, the brain function worsens and may even lead to
coma or death [31]. Severe hypoxia also may result in acute cere-
brovascular disorder such as acute ischemic stroke [32]. It has also been
demonstrated that COVID-19 patients often show severe hypoxia and
viremia which increase the risk of toxic encephalopathy [32]. Since,
COVID-19 cases often suffer from sever hypoxia, this process may play a
critical role in the nervous system damage following virus infection
[33].

It has been shown that patients with COVID-19 lose senses of smell
and taste. The smell loss may be due to direct damage to the olfactory
bulb and the inflammatory response in the nasal cavity, which blocks
the binding of odorants to the olfactory receptors. It takes a long time
for damaged neurons to form successful synapses with the olfactory
bulb [34]. Regarding to taste sense dysfunction, cytokines molecules in
COVID-19 patients may target taste buds and cause ageusia [35]. An-
other hypothesis for altered taste sense is related to ability of SARS-
CoV-2 for occupying sialic acid binding site on the taste buds which
results in accelerating the degradation of the gustatory particles [35].
Fig. 1 shows the immune pathogenesis of SARS-CoV-2.

4. CNS manifestation of the COVID-19

It has been shown that SARS-CoV-2 infects the brain and spinal cord
of the patients. The first case of spinal cord involvement was observed
in a 66-year-old man with a post-infectious acute myelitis presentation.
Acute myelitis was diagnosed due to the acute flaccid myelitis of lower
limbs, urinary and bowel incontinence, and sensory level at T10.
Moreover, any obvious abnormality in cranial nerve examination was
not reported [15]. In a retrospective, observational case series study,
Mao et al. evaluated 214 confirmed SARS-CoV-2 patients for their
neurological manifestation. The patients have manifested for both CNS
and PNS symptoms as well as skeletal muscle injury and among those,
CNS symptoms were the predominant form of neurologic manifestation
in patients with COVID-19. It has also been noted that neurological
dysfunction was greater in those with severe infection. Higher level of
D-dimer was observed in cases with severe infection compared to pa-
tients with non-severe infection which might be considered for the
higher incidence of cerebrovascular disease in patients with severe in-
fection. Furthermore, patients with CNS symptoms had lower levels of
lymphocyte count that shows immunosuppression in these patients
[10]. In a single-center retrospective study, a number of 221 COVID-19
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Fig. 1. The immune pathogenesis of COVID-19 in the CNS.

Hypoxia is considered as a key player in COVID-19 associated CNS pathology. Alveolar dysfunction results in brain hypoxia that is followed by cerebral vasodilation,
increased anaerobic metabolism, and ischemia. On the other hand, over-activation of the immune system and increased release of inflammatory cytokines and
chemokines such as interleukins 2, 6, 7, and 10, tumor necrotizing o, and granulocyte colony-stimulating factor change the blood brain barrier permeability and
these factors allow the virus to enter into the central nervous system. Moreover, some of these cytokines activate glutamate receptors and cause neuronal hyper-

excitability, leading to acute seizures.

patients were analyzed for presenting new onset acute cerebrovascular
disease (CVD). Among those, 13 patients showed CVD. Patients with
CVD were older and had many risk factors such as hypertension and
diabetes, and higher level of C-reactive protein compared to patients
without CVD [36]. Moriguchi et al. reported the first case of me-
ningitis/encephalitis in COVID-19 patients. Magnetic resonance ima-
ging (MRI) revealed an abnormal presentation of medial temporal lobe
including hippocampus which indicates encephalitis, hippocampal
sclerosis or post convulsive encephalitis. The patient also showed pan-
paranasal and paranasal sinusitis. In order to better and earlier diag-
nose of SARS-CoV-2 infection, it is important to pay more attention to
the nasal and paranasal conditions [13]. Sohal et al. reported seizures in
a 72-year-old man patient with COVID-19 infection. However, chronic
microvascular ischemic alteration was detected in computed tomo-
graphy (CT) of the head, but there was no evidence of infarct or he-
morrhage [37]. Another report of seizure in COVID-19 patients was
studied in a 30-year-old female. This patient was presented with gen-
eralized tonic-clonic seizure. Brain MRI was normal and her seizures
were recurring (five times) approximately every 8 h [38]. Filatov et al.,
reported encephalopathy in a 74-year-old male who was positive for
COVID-19. No acute abnormalities were observed in the CT of the head
and EEG findings was consistent with an encephalopathy and focal left
temporal lobe dysfunction. However, the CSF analysis was normal [39].
A 54-year-old patient with SARS-CoV-2 infection was reported with
specific neurological manifestation. The brain CT showed bilateral
basal ganglia involvement and a subacute hemorrhagic insult [40].
Pilotto et al. reported a 60-year-old man presented with severe altera-
tion of consciousness. The patient diagnosed with encephalopathy and
his laboratory testing showed an increased level of D-dimer. The CSF
analysis revealed a mild lymphocytic pleocytosis and the CSF proteins
were increased [27]. Encephalitis associated with SARS-CoV-2 was also
reported in a male COVID-19 patient. He was positive for meningeal
irritation signs including nuchal rigidity, Kernig sign, and Brudzinski
sign and extensor plantar response [28]. Acute necrotizing hemorrhagic
encephalopathy is a rare encephalopathy associated with viral

infection. This rare manifestation was reported in a female airline
worker in her late fifties with COVID-19 infection. She was admitted to
the hospital with altered mental status. Her CT of the head showed
symmetric hypo-attenuation of the bilateral medial thalami and the
MRI images indicated T2 FLAIR hyper-intensity of the bilateral medial
temporal lobes and thalami. This is the first reported case of COVID-19
patient with acute necrotizing hemorrhagic encephalopathy [30]. Lau
et al. reported a possible involvement of the CNS by the SARS-CoV-2 in
a 32-year-old pregnant woman with myalgia manifestation. The patient
showed generalized convulsion which is probably due to the infection
of the CNS [41].

5. PNS manifestation of the COVID-19

It has been shown that the SARS-CoV-2 can involve the peripheral
nervous system. Anosmia and taste-related changes are as indications of
SARS-CoV-2 infection. These manifestations support the idea of olfac-
tory invasion rout of SARS-CoV-2 virus. The first case of COVID-19
patient with an olfactory dysfunction was about a 40-year-old woman
with sudden and complete loss of the olfactory function. She had ex-
perienced dry cough related to cephalagia and myalgia. Her MRI
showed bilateral inflammatory obstruction of the olfactory clefts [42].
The prevalence of smell and taste alteration in hospitalized patients
with COVID-19 were calculated about 34% in a study [43]. However,
they didn't report any data on these symptoms timing of onset com-
pared to other symptoms. In line with this study and to overcome the
data insufficiency, a cross sectional study on 202 patients with SARS-
CoV-2 was performed and prevalence, intensity, and timing of an al-
tered sense of smell or taste in COVID-19 patients were analyzed. The
results indicated that 130 patients (64.4%) show altered sense of smell
or taste. Of these 130 patients, 45 patients (34.6%) also reported
blocked nose. Regarding the timing of alteration in sense of smell or
taste onset compared to other symptoms, they reported that 24 patients
(11.9%) before other symptoms, 46 patients (22.8%) at the same time
and 54 patients (26.7%) after other symptoms showed taste and smell
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alterations [44]. Lechien et al. analyzed a total of 417 mild-to-moderate
COVID-19 patients for the olfactory and gustatory dysfunctions. Of 417
patients, 357 patients (85.6%) had olfactory dysfunction which among
those, 284 (79.6%) patients showed anosmia, and 73 (20.4%) patients
showed hyposmia during the disease course. Furthermore, 12.6% of
these patients were phantosmic and 32.4% of patients were parosmic.
Similar to the previous report, the timing of alteration in sense of smell
or taste onset compared to the other symptoms were also examined in
this study. The olfactory dysfunction was occurred before (11.8%), after
(65.4%) or at the same time as the appearance of other symptoms
(22.8%). Moreover, 342 patients (88.8%) reported gustatory dysfunc-
tion. However, any significant association was not found between co-
morbidities and the development of olfactory or gustatory disorders. It
has been estimated that the olfactory dysfunction in 56% of patients
will be permanent after resolution of the COVID-19 general symptoms.
In 63.0% of patients, the olfactory disorder remained even after other
symptoms resolution. Probable reason for lasting these symptoms is
infection of both resting and activated horizontal basal cells (HBCs).
These reserve stem cells are activated during tissue damages and also
express the ACE2 and TMPRSS2 receptors [12]. Guillain-Barré syn-
drome (GBS) is an acute immune-mediated complication which in-
volves the peripheral nerves and nerve roots and its pathomechanism is
similar to an autoimmune disorder [45]. The first case of Guillain-Barré
syndrome (GBS) in a patient with COVID-19 was a 65-year-old male
with acute progressive symmetric ascending quadriparesis. He had bi-
lateral facial paresis and no urinary and fecal incontinence. Mild her-
niation of two intervertebral discs was observed in MRI imaging [46].
Although the SARS-CoV-2 mechanism in induction of GBS is not clear, it
is suggested that COVID-19 may contribute in the production of anti-
bodies against specific gangliosides which involve in certain forms of
GBS [46]. Table 1 summarizes the CNS and PNS manifestations of
SARS-CoV-2.

6. The impacts of COVID19 on neurological disorders

The COVID-19 pandemic as an external stressor has several short-
term as well as long-term advers effects on a large groups of people,
especially some with underlying diseases such as neurological dis-
orders. Parkinson's disease (PD) is one of these neurological complica-
tion which ethiologically affects dopamine-producing (“dopaminergic”)
neurons due to the accumulation of a-synuclein (a-syn) aggregates in a
specific area of the brain called substantia nigra [48]. PD is also re-
ported to endanger the respiratory system [49]. The COVID-19 pan-
demic increases stress among population and exacerebrates different
motor symptoms, such as tremor, freezing of gait or dyskinesias, [50]
and also diminished the efficacy of dopaminergic medication [51-53].
Interestingly, association between COVID-19 pathophysiology and al-
teration in dopamin synthesis pathwayhas been hypothetized. It 