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Differentiation by Acting on Wnt/β-Catenin Signaling Pathway
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Abstract: Chloranthus japonicus has been heavily investigated for the treatment of various diseases.
This paper attempts to show that Chloranthus japonicus can modulate adipocyte differentiation
of preadipocytes. To establish this, we investigated the effects of Chloranthus japonicus extract in
peroxisome proliferator-activated receptor γ (PPARγ) expression, adipogenesis, and the underlying
molecular mechanisms in C3H10T1/2 and 3T3-L1 cells. Our data showed that Chloranthus japonicus
methanol extract increased lipid accumulation and promoted adipocyte differentiation. Further
studies on the fractionation with various solvents led to the identification of Chloranthus japonicus
hexane extract (CJHE) as the most potent inducer of adipocyte differentiation. CJHE consistently
increased lipid accumulation and adipocyte marker expression including Pparγ and it acted during
the early stages of adipocyte differentiation. Mechanistic studies revealed that CJHE and a Wnt
inhibitor similarly stimulated adipogenesis and were active in Wnt-selective reporter assays. The
effects of CJHE were inhibited by Wnt3a protein treatment and were significantly blunted in β-
catenin-silenced cells, further suggesting that CJHE acted on Wnt pathways to promote adipogenesis.
We also showed that Chloranthus japonicus extracts generated from different plant parts similarly
promoted adipocyte differentiation. These results identified Chloranthus japonicus as a pro-adipogenic
natural product and suggest its potential use in metabolic syndrome.
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1. Introduction

Peroxisome proliferator-activated receptor γ (PPARγ), a nuclear hormone receptor, is
the master regulator in adipocytes since it is critical for the differentiation of precursor cells
into adipocytes [1–5]. Pparγ regulates inflammation and lipid metabolism [1,6,7]. Upon
stimulation by fatty acids, prostaglandin J2, or synthetic thiazolidinediones, Pparγ het-
erodimerized with RXR increased the transcription of C/EBP-α, FABP4, CD36, adiponectin,
and LPL [7,8].

Besides the effects in adipogenesis, Pparγ modulates systemic glucose metabolism,
as shown by the application of thiazolidinediones (TZDs), PPARγ agonists in diabetic
mice [1,8]. Although TZDs are used in the diabetes, adverse effects have limited their
clinical use [9,10]. However, studies on Pparγ expression and its modification have brought
attention back to Pparγ [11–13]. The induction of Pparγ expression by the small molecule
harmine improves insulin sensitivity with little effect on weight gain, suggesting that
inducing Pparγ expression can be used against obesity related insulin dysfunctions [14].
Phosphorylation at S273 of Pparγ is positively associated with obesity in rodents [13].
Furthermore, inhibition of S273 Pparγ phosphorylation ameliorates insulin activity without
effects on weight gain and fluid retention [13]. Therefore, the modulation of Pparγ activity
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and expression can provide alternative therapeutic strategies against insulin resistance and
diabetes.

The bioactive compounds in various natural products have been used to treat cancer,
inflammation, and obesity [15]. Chloranthus japonicus is traditionally used for the treatment
of various conditions such as rheumatic arthralgia, bone fractures, pulmonary tuberculosis,
and neurasthenia [16,17]. Sesquiterpenoids isolated from Chloranthus japonicus exhibit
cytotoxic [18] and anti-HIV effects, anti-inflammatory activity [19], and reduce hepatic lipid
content [20]. Therefore, we hypothesized that Chloranthus japonicus could also modulate
adipocyte differentiation in preadipocytes. Here, we showed that Chloranthus japonicus
extract increased PPARγ expression and adipogenesis by acting on the Wnt pathway.

2. Materials and Methods
2.1. Chloranthus Japonicus Extraction

Chloranthus japonicus extract was purchased from the Korea Plant Extract Bank and the
plants were also collected from May–June from Baek-duk Mountain in Kangwon, Korea.
The whole plants, leaves, and stems were dried and powdered, and 23.8 g of the whole
plants was extracted with 20 volumes of 70% methanol (400 mL) for 48 hours. The extracts
were filtered, concentrated, and freeze-dried as described previously [21]. The extract was
fractionated in various solvents of n-hexane, dichloromethane, ethyl acetate, butanol, and
water. The extracts were reconstituted in dimethyl sulfoxide (DMSO) at a concentration of
10 mg/mL.

2.2. Cell Culture and Adipocyte Differentiation

C3H10T1/2 cells and 3T3-L1 cells were cultured and differentiated as previously
described [22]. During differentiation, the media was changed to media of DMEM, 10%
FBS, and 5 µg/mL insulin every 2 days. The PPARγ agonist GW1929 was bought from
Sigma (St. Louis, MO, USA) and supplemented for C3H10T1/2 differentiation. The
differentiated adipocytes were fixed and stained with Oil Red O (Sigma) as described
previously [22].

2.3. mRNA Expression Analysis

RNA isolated from cells using TRIzol reagent (Invitrogen, Carlsbad, CA, USA).
cDNA was synthesized from the total RNA by the AMV Reverse Transcription System kit
(Promega, Madison, WI, USA). The gene was amplified in a Thermal Cycler Dice (Takara,
Shiga, Japan). Expression was normalized to the levels of acidic ribosomal phosphoprotein
P0 (36B4) and the expression level was calculated using 2−∆CT method. The oligonucleotide
primer was synthesized from Integrated DNA Technologies (San Diego, CA, USA). The
sequences for PCR primers were previously shown [22].

2.4. Wnt Activation and Inhibition Studies

Purified Wnt3a protein (R&D Systems, Minneapolis, MN, USA) and Wnt-3a condi-
tioned media was used as previously described [23]. The Wnt inhibitor hexachlorophene
(HCP) was purchased from Sigma. The cells were treated with 5 µM HCP, extracts, Wnt
conditioned media, or Wnt3a protein and differentiated into adipocytes. For the knock-
down studies, β-Catenin siRNA (sc-29210, and control nonspecific siRNA (sc-37007) were
purchased from Santa Cruz Biotechnology (Santa Cruz, CA, USA) and were transfected
with 50 nmol of siRNA using RNAiMAX (Invitrogen). For the reporter assay, a TOP lu-
ciferase vector was co-transfected with renilla into 293T cells using Lipofectamine 2000
(Invitrogen) and HCP or hexane extract was treated for 24 hours. After 48 hours, reporter
activity was measured using the Dual-luciferase Reporter Assay System (Promega).

2.5. Statistical Analysis

The data are were analyzed using two-tailed unpaired Student’s t-tests. A p-value of
<0.05 was used to define statistical significance.
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3. Results
3.1. Chloranthus Japonicus Methanol Extract Promotes Adipogenesis in C3H10T1/2 and
3T3-L1 Cells

We previously identified several herbal extracts with pro- or anti-adipogenic activities
in C3H10T1/2 cells [24]. From this screening, we recognized Chloranthus japonicus as a
possible pro-adipogenic herbal product. To verify the effects of Chloranthus japonicus, the
methanol extract was used to treat C3H10T1/2 cells and differentiated them to adipocytes.
The extracts dramatically increased lipid accumulation in the C3H10T1/2 cells (Figure 1A).
The expression of adipogenic markers, Pparγ, Fabp4, Cd36, C/EBPα, adiponectin, and Lpl
increased after 2–6 days of treatment with Chloranthus japonicus methanol extract indicating
the stimulatory effects of Chloranthus japonicus on adipogenic differentiation in C3H10T1/2
cells (Figure 1B). Consistently, the methanol extract promoted the adipocyte differentiation
of preadipocyte 3T3-L1 cells (Figure 1C,D).
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Figure 1. Chloranthus japonicus extract promotes the adipocyte differentiation. (A) Chloranthus japonicus methanol extract
increased lipid accumulation in C3H10T1/2 cells (left). Lipid accumulation was determined by Oil Red O and quantified
(right). (B) Chloranthus japonicus methanol extract increased the expression of adipocyte markers. C3H10T1/2 cells were
stimulated into adipocytes and treated with Chloranthus japonicus methanol extract for the indicated time. The gene
expression was measured by real-time PCR. (C) Chloranthus japonicus methanol extract increased lipid accumulation during
the adipocyte differentiation in 3T3-L1 cells (left). Lipid accumulation was quantified (right). (D) Chloranthus japonicus
methanol extract increased the expression of adipogenic genes. 3T3-L1 cells were differentiated and treated with Chloranthus
japonicus methanol extract for the indicated time. The gene expression levels were measured. The data represent the mean
± standard error of the mean (SEM) of triplicates. Statistical significance was determined relative to the controls by the
Student’s t-test (* p < 0.05; ** p < 0.001).
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3.2. Chloranthus Japonicus Hexane Fraction Is the Most Potent Stimulator of Adipogenesis in
C3H10T1/2 and 3T3-L1 Cells

We further separated the Chloranthus japonicus extracts into hexane, dichloromethane
(DCM), ethyl acetate (E.A), n-butanol, and Water (H2O) to enrich the ingredients exhibiting
the pro-adipogenic effects of Chloranthus japonicus (Figure 2A). The Chloranthus japonicus
hexane fraction (CJHE) was the most potent promoter of lipid accumulation in C3H10T1/2
adipogenic differentiation (Figure 2B). The hexane fractions similarly promoted the dif-
ferentiation of 3T3-L1 cells (Figure 2C). Consistently, the expression levels of adipocyte
markers was increased by the treatment with CJHE in C3H10T1/2 cells (Figure 3).
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Figure 2. Chloranthus japonicus hexane extract promotes adipogenesis. (A) Preparation of fractionated extracts from
Chloranthus Japonicus. Chloranthus Japonicus was successively extracted in methanol, n-hexane, dichloromethane (DCM),
ethyl acetate (E.A), butanol (BtOH), and water. (B) The adipogenic effects of various solvent-fractionated extracts in
C3H10T1/2 cells. (C) The adipogenic effects of Chloranthus japonicus hexane extract (CJHE) in C3H10T1/2 (upper panel)
and 3T3-L1 (lower panel) cells.

3.3. The Pro-Adipogenic Effect of CHJE Is Dependent upon Dexamethasone and Insulin

To further investigate the effects of CJHE on adipogenesis, we treated CJHE in various
adipogenesis-stimulating conditions. 3T3-L1 cells were stimulated into adipocytes in media
supplemented with dexamethasone, isobutyl-1-methylxanthine, and insulin. Treatment
with CJHE in either DI or DMI-supplemented conditions but not others increased the
capacity for lipid accumulation compared to the control (Figure 4A). These data indicate
that both dexamethasone and insulin were essential but isobutyl-1-methylxanthine was
not required for the promotion of adipogenesis.

3.4. The Pro-Adipogenic Effect of CHJE Is Critical during the Early Adiogenic Stages

We assessed the temporal effects of CJHE in adipocyte differentiation. To investigate
the temporal effects of CJHE, 20 µg/mL of CJHE were treated at 0–2, 2–4, 4–6, 2–6, and
0–6 days of adipocyte differentiation. Treatments with CJHE at 0–2, 2–4, 2–6, and 0–6 days
promoted adipocyte differentiation of 3T3-L1 cells. However, treatment from 4 to 6 days did
not stimulate adipocyte differentiation, with levels similar to degrees in control (DMSO)-
treated cells (Figure 4B). These results show that CJHE acted at the early stage (days 0–4) to
promote adipogenesis.
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Figure 3. Chloranthus japonicus hexane extract increases the expression of adipocyte markers.
C3H10T1/2 cells were differentiated in the presence of Chloranthus japonicus hexane extract at
the indicated doses for 4 days. Expression of adipocyte markers was measured by real-time PCR. The
data represent the mean ± standard error of the mean (SEM) of triplicates. Statistical significance
was determined relative to the controls by the Student’s t-test (* p < 0.05; ** p < 0.001).
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Figure 4. Pro-adipogenic effects of CJHE in 3T3-L1 cells. (A) Pro-adipogenic actions of CJHE in various adipogenesis-stimulating
conditions. 3T3-L1 cells were differentiated in media containing DMI, DM, DI, or MI and treated with CJHE (20 µg/mL) for 6
days. (B) Pro-adipogenic CJHE primarily acts during the early stages of adipocyte differentiation. 3T3-L1 cells were treated
with CJHE from 0 to 2, 2 to 4, 4 to 6, 0 to 2, and 0 to 6 days. The differentiated cells were stained with Oil Red O.
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3.5. CJHE Inhibits the Wnt Pathway

Previous studies showed that various phytochemicals including shizukaol D and F
found in Chloranthus japonicus were bioactive compounds. Shizukaol D was shown to
suppress the Wnt signaling pathway [25], an important physiological modulator of Pparγ
expression and adipogenesis [4,26]. Based on these reports, we reasoned that CJHE may act
on the Wnt signaling pathway to stimulate Pparγ expression and adipogenesis. To test this
possibility, we treated 3T3-L1 cells with CJHE (at 20 µg/mL) for 12 hours and measured
the expression of the previously known Wnt target genes, Wisp2 and cyclinD1 (CycD1).
We observed the reduced expression of Wisp2 and CycD1 in 3T3-L1 cells (Figure 5A). We
also found similar inhibitory effects for the expression of Wisp2 and CycD1 in CJHE-treated
C3H10T1/2 cells (Figure S1).

To further examine the activities of CJHE on the Wnt signaling, we employed a Wnt-
pathway selective reporter. We transiently transfected a Wnt-specific luciferase reporter
plasmid, TOP flash, into 3T3-L1 cells and treated with CJHE. We observed that purified
Wnt3a protein-driven luciferase TOP flash was inhibited by treatment with CJHE similar
to the inhibitory effects of the known Wnt inhibitor, HCP (Figure 5B).

To further confirm the pro-adipogenic effects of Wnt inhibition in our system, we
treated cells with HCP, a known Wnt inhibitor, and induced adipogenesis. Consistent
with the stimulatory effects of Wnt inhibition on adipogenesis, we verified the increased
adipocyte differentiation by HCP and CJHE (Figure 5C). Conversely, Wnt3a-conditioned
media collected as previously described [23], suppressed the effects of CJHE on Pparγ and
Fabp4 expression further, confirming the critical role of Wnt signaling in CJHE-mediated
adipogenesis (Figure 5D). Similarly, the increased lipid accumulation by CJHE was partly
suppressed in the presence of Wnt3a protein (Figure S2).
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Figure 5. CJHE inhibits Wnt signaling in 3T3-L1 cells. (A) 3T3-L1 cells were treated with CJHE for 24 h and the level of
Wnt target genes, Wisp2 and cyclin D1 (CycD1) was assessed. (B) CJHE inhibits Wnt reporter activity. 293FT cells were
transfected with Wnt (TOP-Luc) reporter and treated with bovine serum albumin (BSA), control, or purified Wnt-3a, followed
by treatment with 10 or 20 µg of CJHE or a known Wnt chemical inhibitor, hexachlorophene (HCP, 5 µM) for 24 h. Statistical
significance was determined by the Student’s t-test (* p < 0.05). (C) HCP, a Wnt chemical inhibitor stimulated adipogenesis.
3T3-L1 cells were differentiated in the presence of CJHE or HCP for 6 days and lipid accumulation was determined by Oil Red
O. (D) 3T3-L1 cells were differentiated in the presence of control-conditioned media or Wnt-conditioned media and treated
with CJHE or HCP for 6 days. Gene expression was assessed by real-time PCR. The data represent the mean ± standard error
of the mean (SEM) of triplicates. Statistical significance was determined by the Student’s t-test (* p < 0.05; ** p < 0.001).
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3.6. Wnt Signaling Is Essemtial for the Effects of CJHE

To show that Wnt signaling was critical for the pro-adipogenic effect of CJHE, we used
CJHE to treat β-catenin-abrogated 3T3-L1 cells using siRNA. We employed siRNA verified
to effectively silence β-catenin expression [27]. Control or β-catenin siRNA-transfected
3T3-L1 cells were differentiated and treated with CJHE. The expression of β-catenin and its
target genes Cycd1 and Wisp2 was successfully decreased in the β-catenin siRNA transfected
cells. We found consistent decreases in Cycd1 and Wisp2 expression in control siRNA-
transfected cells by CJHE treatment. However, the effects on the expression of Cycd1 and
Wisp2 were impaired in the β-catenin-targeted siRNA-transfected 3T3-L1 cells (Figure 6A).
We further assessed the effects of CJHE in adipogenesis of β-catenin-deficient cells. As
expected, β-catenin-deficient cells showed increased lipid staining and adipogenic markers
expression (Figure 6B,C). The increase in adipogenic potential by CJHE treatment was
not further induced in the β-catenin siRNA-transfected cells (Figure 6B). Similarly, the
expression of Pparγ, Fabp4, Cd36, and C/EBPα was increased in control CJHE treated cells.
However, the stimulatory action of CJHE on these adipocyte markers was significantly
blunted in β-catenin-defective 3T3-L1 cells (Figure 6C). Together, these data demonstrated
that although the exact molecular actions still need further investigation, Wnt/β-catenin
signaling, at least in part, was necessary for the effect of CJHE on adipocyte differentiation.
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Figure 6. CJHE promotes adipocyte differentiation through the Wnt/β-catenin signaling. (A) Knockdown of β-catenin
expression in 3T3-L1 cells attenuated the CJHE inhibitory effects on the Wnt target genes. The expression of β-catenin, Wisp2,
and CycD1 in the control and β-catenin-targeting siRNA-transfected cells was measured. (B) Knockdown of β-catenin
expression blunted the stimulatory effects of CJHE on lipid accumulation (left). Lipid accumulation was quantified (right).
Control and β-catenin siRNA-transfected 3T3-L1 cells were treated with DMSO or CJHE (20 µg/mL) and differentiated
for 6 days. (C) Silencing β-catenin blunted the inhibitory effect of CJHE on the expression of adipocyte markers. The
data represent the mean ± standard error of the mean (SEM) of triplicates. Statistical significance was determined by the
Student’s t-test (* p < 0.05; ** p < 0.001).
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3.7. Differential Effects of the Extracts Generated from Different Plant Parts on Adipogenesis

It has been shown that plants collected in different seasons and different parts of
the plant could display different activities [28,29]. Thus, it is possible that different parts
of Chloranthus japonicus may also exhibit differential effects on adipogenic activities. To
investigate this possibility, we analyzed the effects of extracts originating from the leaves
or stems and compared them to the aerial parts of the plant (whole plants). Extracts from
the leaves, stems, and whole plants promoted lipid accumulation that was comparable to
the effects of the extracts from the whole plants (Figure 7A). Consistently, Pparγ, Fabp4,
and Cd36 expression in cells treated with the leaf or stem extracts mirrored the effects of
the extracts from the whole plants (Figure 7B). These data show that the stems and leaves
of Chloranthus japonicus may act similarly to promote lipid accumulation and adipocyte
differentiation.
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Figure 7. The pro-adipogenic activities of CJHE extracts from different plant parts. (A) 3T3-L1 cells were treated with
extracts from leaves, stems, or the whole plant (at 10, 20, and 40 µg/mL), differentiated for 6 days, and assessed by Oil
Red O. (B) The expression of adipocyte markers from the differentiated 3T3-L1 cells treated with 40 µg/mL of leaf, stem,
or whole plant extracts was quantified. The data represent the mean ± standard error of the mean (SEM) of triplicates.
Statistical significance was determined by the Student’s t-test (* p < 0.05; ** p < 0.001).

4. Discussion

Pparγ, when stimulated by TZDs, a class of Pparγ ligands, controls glucose home-
ostasis in diabetes [8]. However, TZDs have been shown to cause weight gain and increase
the risk of congestive heart failure, suggesting the need for alternatives to treat type 2
diabetes [7]. Recent evidence shows that the modulation of Pparγ phosphorylation events
(S273) protect against insulin resistance [11,12], indicating that the selective regulation of
Pparγ can provide new strategies against metabolic diseases, including diabetes, without
deleterious effects [13]. Given the regulatory roles of Pparγ in diabetes [6], the identi-
fication of Pparγ inducers from herbal products and the further isolation of bioactive
compounds can be useful for treating insulin resistance [14]. Previous studies reported that
Chloranthus japonicus, primarily distributed throughout northern China, Korea, and Japan,
could improve conditions such as injuries, rheumatic arthralgia, bone fractures, pulmonary
tuberculosis, neurasthenia, and dysregulated glucose metabolism [17,18,30]. However, its
activity on adipogenesis has not been reported. In this study, we investigated the effects of
Chloranthus japonicus in adipocyte differentiation and Pparγ expression. We also identified
the hexane fraction of Chloranthus japonicus as a prominent inducer of adipogenesis and
elucidated its underlying molecular mechanisms.

Natural products are well-acknowledged sources of small molecules biologically ac-
tive in various signaling pathways and these are often used for drug development [31,32].
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Similarly, various plant extracts exert biological activities by acting on the Wnt signaling
pathway [33,34]. For example, Euodia sutchuenensis stimulates the Wnt pathway to increase
osteoblast differentiation [35]. Furthermore, numerous Wnt regulators including indiru-
bins [36,37], andrographolide [38], flavone fukugetin [39], curcumin [40], and harmine [14]
have been discovered from natural products. In particular, harmine found in Peganum
harmala and Banisteriopsis caapi induces Pparγ expression by inhibiting the Wnt signaling
pathway [14,23]. These findings suggest that various herbal products and phytochem-
icals mediate biological activity by acting on the Wnt pathway. Other phytochemicals
such as delphinidin [41], coumestrol [42], and epigallocatechin gallate [43] regulate both
adipogenesis and Wnt signaling. Here, we also explored the links between Chloranthus
japonicus, Pparγ, and the Wnt signaling pathway. We showed that Chloranthus japonicus
suppressed Wnt-downstream target gene expression. The treatment of 3T3-L1 cells with
Wnt-conditioned medium or purified Wnt-3a suppressed the pro-adipogenic effects of
Chloranthus japonicus. We also showed that treatment with a chemical inhibitor of Wnt-
signaling mimicked the effects of Chloranthus japonicus in adipocyte differentiation and that
siRNA-mediated knockdown of β-catenin abolished the ability of Chloranthus japonicus to
stimulate differentiation. These data suggest that Chloranthus japonicus acted on the Wnt
signaling pathway to regulate PPARγ during adipogenesis. However, we cannot entirely
exclude the possibility that CJHE may act on other signaling pathways to regulate PPARγ
expression.

We showed that CJHE promoted lipid accumulation in C3H10T1/2 and 3T3-L1 cells.
The extracts also increased the expression of Pparγ mRNA and its direct target genes.
In this study, we did not identify the bioactive compounds in CJHE responsible for the
observed activities. As polyphenols were highly prevalent in herbal extracts including
Chloranthus japonicus, these might be bioactive pro-adipogenic compounds [16,31]. Indeed,
sesquiterpene and diterpenoids such as chlojaponilactone B, shizukaol D, and shizukaol F
have been identified [16,19,20,25]. Interestingly, selected sesquiterpenes, bilobalide, dehy-
droleucodine, and zaluzanin C were shown to regulate adipogenesis [44–46], suggesting
the possibility that these bioactive compounds are likely to confer the pro-adipogenic
effects of the CJHE. Further analysis is necessary to identify the major bioactive compounds
for stimulating adipogenesis. In the current study, we investigated the effect of CJHE
and molecular mechanism during adipocyte differentiation. Therefore, future studies on
the effects of CJHE in the PPARγ expression and insulin sensitivity in the differentiated
adipocytes will be also critical to determine utility of CJHE for insulin resistance and
diabetes.

Supplementary Materials: The following are available online at https://www.mdpi.com/2075-172
9/11/3/241/s1, Figure S1: CJHE inhibits Wnt target gene expression in C3H10T1/2 cells, Figure S2:
Wnt3a inhibits the effects of CJHE on adipocyte differentiation.
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