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Background: Although abnormality of cerebellar-cerebral functional connectivity at rest

in obsessive-compulsive disorder (OCD) has been hypothesized, only a few studies have

investigated the neural mechanism. To verify the findings of previous studies, a large

sample of patients with OCD was studied because OCD shows possible heterogeneity.

Methods: Forty-seven medication-free patients with OCD and 62 healthy controls (HCs)

underwent resting-state functional magnetic imaging scans. Seed-based connectivity

was examined to investigate differences in cerebellar-cerebral functional connectivity in

OCD patients compared with HCs. Correlations between functional connectivity and the

severity of obsessive-compulsive symptoms were analyzed.

Results: In OCD, we found significantly increased functional connectivity between the

right lobule VI and the left precuneus, which is a component of the default mode network

(DMN), compared to HCs. However, there was no correlation between the connectivity

of the right lobule VI-left precuneus and obsessive-compulsive severity.

Conclusions: These findings suggest that altered functional connectivity between the

cerebellum and DMN might cause changes in intrinsic large-scale brain networks related

to the traits of OCD.

Keywords: obsessive-compulsive disorder, cerebellum, functional connectivity, default-mode network, precuneus

INTRODUCTION

Obsessive-compulsive disorder (OCD) is characterized by recurrent, intrusive, and distressing
thoughts (obsessions) and repetitive behaviors or mental acts (compulsions) that are executed to
avoid anxiety or neutralize obsessions. A large number of previous neuroimaging studies have
indicated that cortico-striato-thalamo-cortical (CSTC) circuit dysfunction is a pathophysiology
of OCD (1, 2).

In recent years, resting-state functional connectivity (rsFC), which is defined as temporal
correlations of spontaneous blood oxygen level-dependent (BOLD) signal among spatially
distributed brain regions (3) at rest, has been used to analyze neural circuits in the brain. Numerous
studies of rsFC have identified intrinsic large-scale brain networks defined as the default mode
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network (DMN), central executive network (CEN), and salience
network (SN). DMN consists of three major subdivisions:
the ventromedial prefrontal cortex, posterior cingulate cortex,
and precuneus (4). Activities in these cortical regions are
decreased during task states (5). CEN is divided into two major
subdivisions, the dorsolateral prefrontal cortex and posterior
parietal cortex, and activity in them is increased during a wide
range of cognitively demanding tasks (6, 7). SN consists of major
two regions, the dorsal anterior cingulate cortex and anterior
insular cortex (6, 8). SN works on detecting, integrating, and
filtering interoceptive, autonomic, and emotional information
(6). In addition, SN plays a role in switching between DMN
and CEN (8).

In the last decade, several studies using resting-state data
demonstrated not only functional dysconnectivity within the
CSTC circuit (9–13) but also abnormal functional connectivity
within and among the DMN, ECN, and SN (14–18) in
OCD. These studies, however, had mainly focused on the
pathophysiology in the cerebrum of OCD.

Meanwhile, a large number of studies revealed that the
cerebellum is involved in not only motor function but also
cognitive function (19–25). In psychiatric disorders such asmood
disorder, schizophrenia, and neurodevelopmental disorders,
there is abundant evidence of alteration of the cerebellum (26–
29). Furthermore, some neuroimaging meta-analysis studies
of patients with OCD demonstrated structural and functional
abnormalities in the cerebellum. Hu et al. reported greater gray
matter volume in the cerebellum in adult OCD (30). Eng et al.
also indicated that the gray matter volume in the cerebellum was
greater and activation was reduced during a response inhibition
task in patients with OCD (31). However, the precise roles of the
cerebellum in OCD pathophysiology are still unknown.

Based on rs-fMRI, the subregions in the cerebellum are
coupled with specific cortical networks, and rsFC was shown to
mediate executive function, the default mode, and sensorimotor
function in healthy subjects (32, 33). Especially, recent study
revealed that the cerebellum is two times as involved the
frontoparietal network as the cerebral cortex (34).

In recent years, several studies have investigated the altered
cerebellar-cerebral functional connectivity in OCD. In the first
study, Xu et al. compared the cerebellar-cerebral functional
connectivity of 27 patients with OCD with that of 21
healthy controls (HCs) (35). They found that OCD patients
showed significantly decreased cerebellar-cerebral functional
connectivity in executive control and emotion processing
networks. They also demonstrated a positive correlation between
OCD symptom severity and functional connectivity spanning the
right Crus I in the cerebellum and the inferior parietal lobule
in the OCD group. Zhang et al. found decreased functional
connectivity among the left Crus II, lobule VIII, and striatum
and between the right lobule VII and the right striatum
and cingulate in 27 medication-free OCD patients (36). Gao
et al. investigated spontaneous brain activity by measuring the
fractional amplitude of low-frequency fluctuations and resting-
state functional connectivity in 64medication-free OCD patients.
They demonstrated that the OCD patients showed significantly
increased functional connectivity between the left dorsolateral
prefrontal cortex and the left cerebellum (37).

Although these studies reported alterations of cerebellar-
cerebral functional connectivity in OCD, further investigation is
needed to verify these results of previous studies because there
are still few studies of cerebellar-cerebral functional connectivity
in OCD.

For this reason, the aim of this study was to verify the
alteration of cerebellar-cerebral functional connectivity in a
larger number of drug-free OCD patients than previous studies.

METHODS

Subjects
A total of 109 subjects, including 47 medication-free OCD
patients and 62 healthy controls (HCs) matched for age and
sex participated in this study. All OCD patients were recruited
from the Department of Neuropsychiatry, Kyushu University
Hospital, Japan. They were diagnosed primarily using the
Structured Clinical Interview for DSM-IV Axis I Disorders-
Patient Edition (SCID) and fulfilled DSM-IV criteria.We ensured
that none of them met the criteria for any current comorbid
Axis I disorder and that all of them also fulfilled DSM-5
criteria for OCD. No OCD participant had taken any psychiatric
medication for at least 4 weeks, and nine patients were drug-
naïve. HCs were recruited from the local community, and
interviewed according to the Structured Clinical Interviewed
for DSM-IV non-patient Edition (SCID-NP). None of them
had any psychiatric disorder. We excluded participants who
had a comorbid axis I diagnosis, neurological disorder, head
injury, serious medical condition, or history of drug or alcohol
addiction. All of the participants completed an MRI scan, clinical
assessment, and neuropsychological test within a few hours on
the same day.

This study was approved by the Kyushu University Ethics
Committee (No. 27-319). All participants provided written
informed consent prior to study commencement.

Clinical Assessment
To assess the global severity of OCD symptoms, we used the
Japanese version of the Yale-Brown Obsessive Compulsive Scale
(Y-BOCS) (38). The Hamilton Rating Scales for Anxiety (HAM-
A) (39) and Depression (HAM-D, 17-item version) (40) were
also used to quantify the degree of anxiety and depression. The
Japanese version of the National Adult Reading test (JART) (41)
was administered to estimate a participant’s verbal intelligence
quotient (IQ). We used Student’s t-test and the chi-square test
to compare the demographic and clinical data of the OCD and
HCs groups.

Image Data Acquisition and Preprocessing
The preprocessing and processing of image data acquired in this
study were described in our previous study (42). All participants
underwent MRI scanning on a 3.0-Tesla MRI scanner (Achieva
TX, Phillips Healthcare, Best, The Netherlands) equipped with
standard phased array head coils. A T2∗-weighted gradient-echo
echo-planar imaging (EPI) sequence (echo time (TE), 30ms;
repetition time (TR), 2,500ms; field of view (FOV), 212 ×

212mm; matrix, 64 × 64; slice thickness, 3.2mm; flip angle,
80◦) was acquired from each participant. After an initial 10-s
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dummy scan, we completed 240 real scans during a 10-min real
time scan. During a resting-state fMRI scan, participants were
instructed to relax with their eyes opened and watch a presented
gray cross. High-resolution T1-weighted anatomical images were
also acquired (TE = 3.8ms; TR = 8.2ms; FOV 240 × 240mm;
flip angle 8◦; slice thickness, 1mm; inversion time = 1,026ms)
after each EPI image scan. After acquisition of all image data, the
arousal level during the scan of all participants was checked by
the Stanford-Sleepiness Scale.

We used the CONN toolbox 17.f (http://www.nitrc.org/
projects/conn) (43) running on MATLAB R2016b version 9.1.0
(MathWorks, Inc., Natick, MA, USA) on MacOS 10.12.6 to
analyze functional connectivity. After discarding the first four
volumes, the remaining 236 volumes were preprocessed using
the CONN toolbox default spatial and temporal processing.
Functional images were slice timing corrections based on the
slice order, and realigned and normalized in accordance with
the standard Montreal Neurological Institute (MNI) template.
Six rigid-body parameters (translational and rotational) were
estimated for each subject. The ART scrubbing procedure
(https://www.nitrc.org/projects/artifact_detect/) was applied to
exclude image artifacts due to head movement using the 97th
percentile in a normative sample (with thresholds for motion =

0.9mm and global signal z = 5). We showed invalid scans of
each groups applying these thresholds (Table 1). Signal noises
from the white matter and cerebrospinal fluid were discerned.
Next, fMRI data were band-pass filtered at 0.008–0.09Hz, and
all functional images were smoothed using a Gaussian kernel
of 6-mm full width at half-maximum. There was no significant
difference between OCD and HC groups in motion parameters
(max motion [t = 1.45; p = 0.149] and mean motion [t = 0.90;
p = 0.368]). From anatomical image of each participants, we
created white matter and cerebrospinal fluid masks in the spatial
processing steps. Then BOLD signal noise from the white matter
and cerebrospinal fluid (CSF) were discerned applying linear
regression of white matter and CSF signal as confounding effects
(43). To regress out the anatomical component-based noise,
CONN toolbox has implementation of the CompCor method

TABLE 1 | Cerebellar seeds and coordinates grouped by network (35).

Cerebellar network Cerebellar seed Side MNI (x, y, z)

Executive network CrusIExec1 L −12, −78, −28

CrusIExec1 R 12, −78, −28

CrusII Exec2 L −36, −70, −46

CrusII Exec2 R 36, −68, −44

LobuleVI Exec3 L −36, −52, −34

LobuleVI Exec3 R 36, −52, −34

Default mode network CrusIDMN L −32, −76, −34

CrusIDMN R 34, −80, −36

Affective-limbic network LobuleVI Aff L −26, −64, −34

LobuleVI Aff R 26, −64, −34

Vermis Limbic L −4, −80, −34

Motor network LobuleVMot L −20, −50, −24

LobuleVMot R 22, −52, −22

(44) for noise reduction along with the efficient rejection of
motion and artifactual scans.

We used the spherical seed regions-of-interest (ROI) defined
in a previous study (35) (Table 1), referring to the findings
of healthy subjects (32, 33). Each ROI was created in each
hemisphere as a 6mm radius sphere.

Following the preprocessing steps, the blood-oxygen-level-
dependent (BOLD) signal time series correlation was calculated
between each pair of sources for each participant across the
resting-state time series, and then a Fisher z transformation was
applied. Seed-based connectivity maps were generated from each
seed ROI for each participant.

We investigated the difference in functional connectivity from
seed ROIs to whole brain voxels between the OCD and HC
groups by using a two-sample t-test. The significance level
was set at the individual voxel p < 0.001, and a cluster-size
threshold of p < 0.05 false discovery rate (FDR) corrected.
Then, we conducted a correlation analysis between the abnormal
functional connectivity from group-level comparison and the Y-
BOCS total score, obsession score, and compulsive score within
the OCD group.

RESULTS

Demographic and Clinical Characteristics
Table 2 shows the demographic characteristics of the OCD group
and HCs. Both groups were well-matched for age, sex, and
handedness. The mean total Y-BOCS score in the OCD group
was 25.13 (S.D.

= 5.73). The mean HAM-D-17 and HAM-A
scores were significantly higher in the OCD group than in the
HCs (p < 0.001).

Cerebellar-Cerebellum Functional
Connectivity in OCD Group Relative to HCs
The OCD group showed significantly increased functional
connectivity only between the right lobule VIexect3 and the left
precuneus [peak MINI coordinate (−2, 60, 20), p-FDR:0.005277,
cluster size: 195 voxels] (Figure 1). It, however, was not
significant difference with Bonferroni correction (p-FDR <

0.0038) for adjusting 13 seeds ROIs. No decreased functional
connectivity was found in the OCD group compared with HCs.
There were no correlations were found between this functional
connectivity from the right lobule VIexact3 to left precuneus
and the Y-BOCS total score (r = 0.11) (Figure 2), obsession
(r = 0.20) score, or compulsion (r = −0.014) score within
the OCD group (Supplementary Figure 1). For supplemental
analysis, within OCD group, we conducted voxel-wise regression
analysis from right LobuleVIexact3 related to Y-BOCS total scores,
while controlling for age and gender (statistical significance was
set at a voxel height threshold of p < 0.001, and a cluster-size
threshold of p< 0.05 FDR corrected). Though, there was no brain
area that survive statistical significance.

DISCUSSION

This study showed an increased rsFC between the right lobule
VIexact3 and left precuneus in OCD patients compared with

Frontiers in Psychiatry | www.frontiersin.org 3 April 2021 | Volume 12 | Article 659616

http://www.nitrc.org/projects/conn
http://www.nitrc.org/projects/conn
https://www.nitrc.org/projects/artifact_detect/
https://www.frontiersin.org/journals/psychiatry
https://www.frontiersin.org
https://www.frontiersin.org/journals/psychiatry#articles


Murayama et al. Cerebellar-Cerebral Functional Connectivity in OCD

TABLE 2 | Demographic and clinical features.

Variables mean (S.D.) OCD (n = 47) HC (n = 62) Statistics

χ
2 t df p-value

Age, years 33.30 (11.87) 32.61 (11.04) 0.308 107 0.759

Sex, male/female 18/29 22/40 0.091 1 0.763

Handed, right/left 41/6 60/2 3.578 1 0.059

Estimated verbal IQa b104.20 (8.37) 107.45 (9.26) −1.864 106 0.065

HAM-D-17 5.09 (4.73) 0.26 (0.65) 6.873 47.3 **0.000

HAM-A 6.36 (7.47) 0.40 (1.03) 5.371 47.34 **0.000

Y-BOCS total score 25.13 (5.73) 0.03 29.712 46.06 **0.000

Obsession subscale score 12.68 (3.16) 0.03 (0.19) 27.249 46.00 **0.000

Compulsive subscale score 12.45 (3.30) 0.00 (0.00) 25.493 46.20 **0.000

Invalid Scan 10.98 (19.41) 7.35 (14.96) 1.09 107 0.278

HAM-A, Hamilton Anxiety Scale; HAM-D, Hamilton Depression Scale; Y-BOCS, Yale-Brown Obsessive-Compulsive Scale.
aEstimated verbal IQ was measured by the Japanese version of the National Adult Reading Test (JART).
bOne participant did not complete JART.

**p < 0.01.

FIGURE 1 | Increased cerebellar-cerebral functional connectivity in OCD group compared with HC group. Patients with OCD showed significantly increased functional

connectivity between right lobuleVIexect3 and left precuneus than HC (cluster size corrected significance p < 0.05 FDR, after applying a per-voxel height

threshold of p < 0.001).

HCs. There was no correlation between this rsFC and obsessive-
compulsive symptom severity. Our findings were different from
the results of previous studies that reported hypo- or hyper-
connectivity between Crus I and DMN in OCD (35, 45).
However, this study had the advantages of a larger number of
subjects and more seeds in the cerebellum than previous studies.

Previous studies showed that there were some intrinsic
connectivity networks not only DMN, CEN but also visual,
somatomotor, attention, limbic networks in the cerebrum (46)
and the precuneus participated in paralimbic networks which
include subsystems of the DMN (47). We, however, proceed
with the discussion based on triple network model hypothesis
which was proposed by Menon (48). The precuneus is mapped
to the medial parietal cortex and associated with higher-
order cognitive processes such as visio-spatial imagery, episodic
memory retrieval, and self-processing operations (49). Moreover,

the precuneus is one of the brain regions involving the DMN
(50–52) which has rsFC with Crus I, Crus II, and Lobule IX
in HC (32, 53, 54). Numerous studies revealed alterations of
the rsFC within or between the DMN, CEN, and SN in several
psychiatric disorders such as schizophrenia, major depressive
disorder, and autism (55–60). Menon proposed a triple network
model in which a deficit in engagement and disengagement of
these core neurocognitive networks play a role in psychiatric
disorders (48). In a meta-analysis study of rsFC in OCD,
Gürsel et al. demonstrated consistent hypoconnectivity within
the DMN, CEN, and SN and general dysconnectivity within
the DMN and frontoparietal network, which is involved in
CEN, as well as between the frontoparietal lobe, DMN, and SN
(60). Therefore, they concluded that the pathological interplay
within and between network alterations could underlie core
OCD symptoms (60).
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FIGURE 2 | Correlation between altered functional connectivity with severity of

obsessive-compulsive symptoms. There was no correlation of increased right

lobule VIexec3-left precuneus connectivity with the Y-BOCS total score. L, left;

R, right; rsFC, resting-state functional connectivity; Y-BOCS, Yale Brown

Obsessive-Compulsive Scale.

Our findings suggest that the aberrant rsFCs might occur
not only in the cerebral regions but also in the cerebello-
cerebral region in OCD. Patients with OCD have executive
dysfunctions, such as working memory, cognitive flexibility, and
response inhibition (61, 62). The deactivation of DMN that
is associated with these cognitive performances usually occurs
when an individual is required to focus attention on an external
stimulus in HC (63–65). However, OCD patients have decreased
DMN homogeneity (18) in resting conditions and difficulties
with deactivation of DMN in non-resting conditions (17).
Therefore, we supposed that the increased rsFC between lobule
VI, which has resting functional connectivity to the CEN, and the
precuneus might relate to interference with the function of DMN
and involve the cognitive dysfunction in OCD (Figure 3).

We did not find a correlation between the functional
connectivity of the right lobule VIexact3–left precuneus and
the severity of obsessive-compulsive symptoms measured by
Y-BOCS. This result means that the aberrant rsFC between
the cerebellum and DMN is not associated directly with
the obsessive-compulsive symptoms. DMN relates to response
inhibition (66, 67), planning (68), and decision-making (69),
which are trait markers for OCD (70). Our results, therefore,
might show that this aberrant rsFC is not a state but a trait of
OCD patients.

There are several reasons for the differences in the results
between the previous study and the current study. First, OCD
has heterogeneity (71). It, therefore, has been pointed out
that replication of the findings has been variable (71). Second,
functional organization of the cerebellum is individual specific
(34). Marek et al. (34) revealed that there were differences
across individuals from the group average in terms of relative
amount of cerebellum associated with each intrinsic cerebral
network. Third, there is methodological difference in imaging

FIGURE 3 | Our hypothesis of aberrant cerebellar-cerebral resting state

functional network and cognitive dysfunction of OCD. (A) In HC, there is a

resting functional connectivity between the lobuleVIexect3 and the central

executive network. The allow indicates functional connectivity. DLPFC,

dorsolateral prefrontal cortex; PCC, posterior cingulate cortex; VMPFC,

ventromedial prefrontal cortex. (B) Cognitive dysfunction in OCD patients

might be associated with increased functional connectivity from lobuleVIexect3
to the precuneus, hypoconnectivities in the default mode network and the

central executive network and dysconnectivity between these large-scale

intrinsic brain networks (60). Dashed line arrow means hypoconnectivity. Red

arrow indicates increased connectivity.

data analysis between the previous study and current study. We
used CONN toolbox (43) which was commonly used in many
previous studies, though previous study which was conducted Xu
et al. (35) used the Data Processing & Analysis for Brain Imaging
(72). We do not think that either of these twomethods of analysis
is better than the other.

There are several limitations in this study. First, we
did not investigate the correlation between aspects of the
neuropsychological performance such as response inhibition and
aberrant rsFC in the OCD group. Therefore, we could not
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verify our suggestion that altered cerebellar-cerebral connectivity
might relate to the cognitive dysfunction and be a trait of OCD.
Second, we did not consider other aspects of OCD heterogeneity,
such as the age at onset, duration of the illness, and OCD
dimensional symptoms. Future studies with neuropsychological
tests and more comprehensive clinical data would validate our
study. Third, we had not used the newest validated seed regions
which Seitzman et al. (73) had revealed. We, however, use the
seed regions which were used in the previous study (35) since
the aim of this study was to verify that study. In the future, it is
necessary to conduct new analysis using the newest seed regions.

CONCLUSION

In conclusion, we found increased functional connectivity
between lobule VI and the precuneus at rest in medication-
free patients with OCD. There was no correlation between
the functional connectivity and severity of obsessive-compulsive
symptoms. These findings suggest that aberrant resting state
cerebellar-cerebral functional connectivity might be associated
with executive dysfunction in OCD patients and be a trait
of OCD.
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