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Abstract

Background: Signal regulate protein a (SIRPa) is involved in many functional aspects of monocytes. Here we investigate the
role of SIRPa in regulating b2 integrin-mediated monocyte adhesion, transendothelial migration (TEM) and phagocytosis.

Methodology/Principal Findings: THP-1 monocytes/macropahges treated with advanced glycation end products (AGEs)
resulted in a decrease of SIRPa expression but an increase of b2 integrin cell surface expression and b2 integrin-mediated
adhesion to tumor necrosis factor-a (TNFa)–stimulated human microvascular endothelial cell (HMEC-1) monolayers. In
contrast, SIRPa overexpression in THP-1 cells showed a significant less monocyte chemotactic protein-1 (MCP-1)–triggered
cell surface expression of b2 integrins, in particular CD11b/CD18. SIRPa overexpression reduced b2 integrin-mediated firm
adhesion of THP-1 cells to either TNFa–stimulated HMEC-1 monolayers or to immobilized intercellular adhesion molecule-1
(ICAM-1). SIRPa overexpression also reduced MCP-1–initiated migration of THP-1 cells across TNFa–stimulated HMEC-1
monolayers. Furthermore, b2 integrin-mediated THP-1 cell spreading and actin polymerization in response to MCP-1, and
phagocytosis of bacteria were both inhibited by SIRPa overexpression.

Conclusions/Significance: SIRPa negatively regulates b2 integrin-mediated monocyte adhesion, transendothelial migration
and phagocytosis, thus may serve as a critical molecule in preventing excessive activation and accumulation of monocytes
in the arterial wall during early stage of atherosclerosis.
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Introduction

Recruitment of monocytes from circulation to inflamed tissues

plays a pivotal role in the initiation and progression of

atherosclerosis [1,2,3]. After migrated to lesion region, monocytes

are rapidly differentiated into macrophage which engulf lipids and

form the fatty streak [4]. Although the mechanisms that govern the

delivery of monocytes from circulation to inflammatory site are

not fully understood, the process of monocyte diapedesis has been

regarded as a multi-step event that is sequentially regulated by a

panel of adhesion molecules and signaling pathways. E- and P-

selectins are involved in the initial reversible adherence of

monocytes to the endothelial cell monolayers [5]. The following

firm adhesion is mediated by monocyte b2 integrins,including

CD11a/CD18 and CD11b/CD18,that recognize vascular cell

adhesion molecule-1(VCAM-1) and intercellular adhesion mole-

cule-1 (ICAM-1) on endothelial cells [6]. Firm adhesion of

monocytes requires activation of integrins, which can be triggered

by agonist-induced activation of G protein–coupled chemokine

receptors [7]. Monocytes express CC chemokine receptor 2

(CCR2), which binds monocyte chemoattractant protein-1 (MCP-

1), leading to b2 integrin-mediated firm adhesion and subsequent

transmigration of adhered monocytes through the vascular

endothelium [8].

Recently signal regulatory protein a (SIRPa) (also designate as

SHPS-1[9], p84[10], BIT[11], MFR[12], MyD-1[13], etc.) has

been reported to serve as an important modulator for controlling

leukocyte inflammatory responses [14,15]. As an immunoglobulin

superfamily member (IgSF), SIRPa is expressed mainly by

myeloid. SIRPa has a long intracellular domain that contains

four tyrosine residues to form two immunoreceptor tyrosine-based

inhibition motifs (ITIMs) and this type of signaling structure is

highly conserved between mice, rats and humans. Studies have

suggested that binding of SIRPa with its extracellular ligand CD47

results in phosphorylations of SIRPa ITIMs, which in turn, leads

to their association with SH2-domain-containing protein tyrosine

phosphotases SHP-1 and SHP-2 [16,17] to delivers signals that

regulate a variety of cellular functions [14]. Ligation of SIRPa by

antibody or CD47 recombinant inhibits many leukocyte functions,

including phagocytosis[18,19], tumour-necrosis factor produc-

tion[20] and in vitro transmigration[21,22]. Activation of SIRPa
by arterial elastic laminae also inhibits monocyte adhesion[23].

Fibroblasts expressing a SIRPa mutant lacking ITIMs-containing

cytoplasmic tail showed increased formation of focal adhesions
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and actin stress fibres in response to interaction with extracellular

matrix, suggesting that SIRPa also plays a role in integrin-

mediated cytoskeletal organization [24]. Negative regulatory role

of SIRPa has also been found in tumor metastasis, survival, and

cell transformation [25].

In the present study, to further explore the negative regulatory role

of SIRPa in various functional aspects of monocytes, we examined

the correlation between expression level of SIRPa in THP-1 cells

and THP-1 cell transmigratory capacity. By overexpressing SIRPa
in THP-1 cells, we also determined the alteration of b2 integrin

expression and b2 integrins-mediated cellular functions of monocytes

in response to chemoattractant stimulation.

Materials and Methods

Reagents and Antibodies
Recombinant human MCP-1 and TNFa, were purchased from

PeproTech (Rocky Hill, NJ). AGEs-BSA (AGEs) was prepared

according to a method previously described [26]. Briefly, 50 mg/

ml bovine serum albimin (BSA) (Fraction V, sterile filtered, Sigma-

Aldrich) was incubated with 0.6 M D-ribose or 0.5 M D-glucose

and 0.3 M lysine in PBS containing 100 units/ml penicillin and

streptomycin for 4 weeks. The unincorporated sugars were

removed by dialysis against PBS. Polyclonal anti-human CD11b

were generated against C-terminal peptide of CD11b [27].

Polyclonal anti-SIRPa antibody (SIRPa-ct) was obtained from

Chemicon (Temecula, CA). Monoclonal anti-CD11b (OKM-1),

and anti-CD11a (TIB-217), prepared in our laboratory from

hybridoma, were obtained from American Type Culture Collec-

tion (ATCC) (Manassas, VA). Monoclonal anti-CD11c (S-HCL-3,

IgG2b) and anti-CCR2 (clone 48607) were obtained from BD

Biosciences (San Diego, CA).

Cells
THP-1 cells (Chinese Cell Culture Center, Shanghai, China)

were cultured and maintained as described [8]. In separated

experiments, THP-1 cells were treated with AGEs-BSA (AGEs) at

various concentrations overnight. Cells treated with BSA of the

same concentration served as controls. Immortalized HMEC-1

was kindly provided by Dr. E.W. Ades (Centers for Disease

Control and Prevention, Atlanta, GA)[28] and were grown in

MCDB-131 (Invitrogen) supplemented with 10 ng/ml epidermal

growth factor (Becton-Dickinson), 1 mg/ml hydrocortisone (Sig-

ma-Aldrich) and 10–15% fetal bovine serum (Hyclone). HMEC-1

cells were seeded on collagen (Sigma-Aldrich)-coated tissue culture

plates or permeable Transwell filters (5.0 mm pore size, 0.33 cm2

surface areas, Costar, NY).

SIRPa Overexpression
Complete sequence of human SIRPa was amplified, inserted into

the expression vector pcDNA3.1 (Invitrogen, Carlsbad, CA), and

confirmed by DNA sequencing. The transfection of THP-1 cells was

conducted via Lipofectmin 2000 (Invitrogen). Briefly, Lipofectmin-

SIRPa pcDNA3.1 complex (250 mL) was added dropwise to 56106

THP-1 cells in 20 mL RPMI medium 1640 containing 2% heat-

inactivated fetal bovine serum. After 24 h incubation, THP-1 cells

were harvested and used for further analysis.

Immunofluorescence, Confocal Microscopy and Flow
Cytometry

Surface expressions of b2-integrins were detected using flow

cytometry as described [8,29]. The relative surface expression was

estimated by subtracting the mean fluorescence intensity (MFI) of

cells labeled with the nonspecific antibody from that of cells

labeled with the antibodies detecting b2-integrins. All studies

consisted of at least three independent experiments. Flow

cytometry was performed and data were analyzed using

CELLQUEST software (BD Biosciences). The polymerization of

actin filaments in THP-1 cells, induced by pretreatment with

10 nM MCP-1 or 25 ng/mL TNFa for 30–60 minutes, was

determined using rhodamine-conjugated phalloidin staining

(Molecular Probes) according to the manufacturer’s protocol.

Briefly, cells treated with cytokines were fixed with 3.7%

paraformaldehyde in PBS for 5 minutes, gently permeabilized

with 0.1% Triton X-100, and blocked with 1% BSA in PBS for

30 min followed by rhodamine-conjugated phalloidin staining. In

some experiments, cells were treated with cytochalasin D (Sigma-

Aldrich) to inhibit actin polymerization [30]. Coverslips were

mounted with antifade mounting medium (Molecular Probes).

Images were captured and analyzed by a laser scanning confocal

microscope equipped with an image processing system (Olympus

Microsystems).

Cell Adhesion Assays
Confluent HMEC-1 cell monolayers cultured on gelatin

(Difco)–coated tissue culture plates or permeable Transwell filters.

Monolayers were treated with 25 ng/mL TNFa for 6 h to induce

VCAM-1 and ICAM-1 expression prior to the adhesion assay

[31,32]. In separate experiments, 24-well plates were coated for

2 h with 10 mg/mL human recombinant VCAM-1 or ICAM-1.

THP-1 cells were briefly labeled with 29,79-bis-(2-carboxyethyl)-6-

carboxyfluorescein acetoxymethyl ester (BCECF-AM, Molecular

Probes)[27] and then suspended in RPMI 1640 medium

containing 0.1% BSA and stimulated with 10 nM MCP-1 for

30 min to activate integrins [30]. In a subset of experiments,

monocytes were pre-incubated with 50 mM dibutyl-cAMP

(Bt2cAMP) for 30 min to inhibit chemokine-mediated integrin

activation. Fluorescently labeled monocytes (,26105 cells/well)

were then added to HMEC-1 monolayers or 24-well plates coated

with VCAM-1 or ICAM-1, and incubated for 30 min at 37uC.

Nonadherent monocytes were removed by gentle washing with

PBS and the bound cells were measured by a fluorescence plate

reader at excitation/emission wavelengths of 485/535 nm (Milli-

pore, Milford, MA)[27].

Transendothelial Migration (TEM)
Migration of THP-1 cells across TNFa–pre-activated HMEC-1

monolayers was performed as previously described [30] with

minor modification. Prior to migration assay, HMEC-1 monolay-

ers cultured on gelatin (Difco)–coated transwell filters were treated

with 25 ng/mL TNFa for 6 h. THP-1 cells (5.06105/per well)

were added to the upper chamber of Transwell inserts containing

200 ml HBSS. 700 ml HBSS containing 10 nM MCP-1 was placed

in the bottom chamber. After 90 min and 180 min incubation at

37uC under 5% CO2, cells that had transmigrated to the lower

chamber were harvested in 1 ml PBS containing 0.1% BSA and

labeled with phycoerythrin (PE)-conjugated anti-human CD14

antibody. 106 FITC-conjugated standard beads (PharMingen, La

Jolla, CA) were added to the cell suspension and the number of

THP-1 cells was counted until 10,000 beads were counted by flow

cytometry. All experiments were repeated as triplicated fashion in

at least three independent studies.

Phagocytosis of Fluorescein Conjugated Bacteria
THP-1 cells transfected with SIRPa or Mock vector were

incubated for 3 h with 100 ml of fluorescein-conjugated E. coli K-

12 bioparticles (Molecular Probes) [33]. The E. coli suspension was

aspirated, and after three washes with Hank’s balanced salt
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solution devoid of Ca2+ and Mg2+ (HBSS2), cell associated

fluorescence was observed under microscopy or measured using a

SpectraMax microtiter plate reader (Molecular Devices).

Western Blot
THP-1 cells were solubilized in lysis buffer containing 1%

Triton X-100 and a panel of protease inhibitors at 4uC. Pellet was

removed after centrifuged at 13,0006g for 5 minutes. Supernatant

was normalized for total protein, and loaded on 10% SDS-PAGE.

After electrophoresis and transfer onto Hybond membranes,

membranes were blocked with 5% non-fat milk. Antigens

were detected using suitable primary antibodies followed by

incubation with HRP-conjugated antibodies and ECL (Amer-

sham) detection.

Statistical Analysis
Data were analyzed by the Student t test; P values of ,0.05

were regarded as significant differences (*, p,0.05; **, p,0.01).

Results

Downregulation of SIRPa in THP-1 cells is correlated with
enhanced b2 integrin-mediated cell adhesion

It has been reported that advanced glycation end products

(AGEs) are involved in tissue damage associated with diabetic

complications and aging [34,35]. Although the mechanism is still

not clear, monocytes tend to be activated by AGEs and show an

enhanced chemotaxis under such inflammatory conditions. As

shown by Western blot analysis in Figure 1A, the expression of

SIRPa in THP-1 cells was decreased after AGEs treatment.

Served as controls, b-actin level was not altered. The down-

regulation of SIRPa in AGEs–treated THP-1 cells is contrast to

that of receptor for advanced glycation end products (RAGE) and

junctional adhesion molecule-like protein (JAML), which expres-

sion levels are both increased after AGEs treatment (Zen et al,

unpublished). Fig. 1B showed the quantitative analysis of SIRPa
downregulation by AGEs in a dose-dependent fashion. Interest-

Figure 1. Down-regulation of SIRPa in THP-1 cells treated with BSA-AGEs is correlated to enhanced THP-1 cell surface expression of
leukocyte b2 integrins and b2 integrins-mediated THP-1 cell inflammatory responses. In these experiments, THP-1 cells were treated with
BSA-AGEs (AGEs) or BSA overnight at 37uC. A: SIRPa protein level in THP-1 cells; B: reduction of SIRPa protein level by AGEs in dose-dependent
fashion; C: Cell surface expression level of b2 integrins in THP-1 cells; D and E: THP-1 cell adhesion to and migration across TNFa–pre-activated HMEC-
1 monolayers, respectively. All data are mean6SD (n = 3) of three independent experiments.
doi:10.1371/journal.pone.0003291.g001
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ingly, AGEs–treated THP-1 cells showed a significant enhanced

cell surface expression of b2 integrins, in particular CD11b/CD18,

in response to the stimulation of MCP-1 (Fig. 1C). Also, compared

to BSA–treated THP-1 cells, AGEs– treated THP-1 cells had a

higher percentage of cell adhesion to TNFa–activated HMEC-1

monolayer (Fig. 1D). In response to MCP-1, AGEs–treated THP-

1 cells also showed an increased transmigration across TNFa–

activated HMEC-1 monolayers compared to THP-1 cells treated

with BSA (Fig. 1E). Together, these results suggest that AGEs

treatment can activate THP-1 cells and enhance cell chemotaxis.

Overexpression of SIRPa in THP-1 cells inhibits MCP-1–
induced cell surface expression of b2 integrins

To define the role of SIRPa in regulating monocyte

inflammatory response, we characterized the alteration of b2

integrin expression and b2 integrin-mediated cell adhesion,

migration and phagocytosis in THP-1 cells after significantly

increase SIRPa expression level. As shown in Figure 2A,

immunoblot analysis showed that the delivery of the pcDNA3.1

vector encoding human SIRPa into THP-1 cells profoundly

enhanced SIRPa expression. Compared to mock–transfected

THP-1 cells, SIRPa–transfected THP-1 cells also showed a

significantly enhanced expression of SIRPa on cell surface, as

indicated by flow cytometry (Fig. 2B).

Similar to circulating monocytes, THP-1 cells normally express b2

integrins [8,36,37] and their cell surface expression levels are rapidly

up-regulated by chemoattractants during inflammatory response.

We next determined the alteration of cell surface expression of

CD11b/CD18 and CD11a/CD18 in SIRPa– or mock–transfected

THP-1 cells. In these experiments, SIRPa– or mock–transfected

THP-1 cells were treated with or without 10 nM MCP-1 for 30 min

and then directly labeled with PE-conjugated mouse IgG specific for

human CD11a, CD11b, and CC chemokine receptor 2 (CCR2),

and surface expression was analyzed using flow cytometry. The

results showed that SIRPa overexpression in THP-1 cells did not

affect the basal level of b2 integrin expression on cell surface but

significantly reduced the up-regulation of cell surface b2 integrin

expression by MCP-1 (Fig. 2C).

SIRPa overexpression affects CD11b/CD18-mediated
THP-1 cell functions in response to MCP-1 stimulation

Chemokines such as MCP-1 has been reported to trigger

integrin–mediated firm adhesion and subsequent transmigration of

monocytes [8]. As shown in Figure 3A, MCP-1–stimulated THP-1

cells showed a significant integrin-mediated firm adhesion to

TNFa–activated HMEC-1 monolayers. However, this firm

adhesion was largely reduced in THP-1 cells with SIRPa
overexpression. Since TNFa–stimulated HMEC-1 monolayers

express both VCAM-1 and ICAM-1, the specific ligands for b1

and b2 integrins, respectively, additional adhesion assays were

performed using plates coated with human recombinant ICAM-1

or VCAM-1, respectively. To estimate background adhesion,

control adhesion assays were performed using THP-1 cells

pretreated with Bt2cAMP, a permeable analogue of cAMP that

blocks integrin-dependent firm adhesion triggered by MCP-1 [30].

SIRPa–transfected THP-1 cells did not show MCP-1–induced

firm adhesion to plates coated with ICAM-1, while adhesion to

plates coated with VCAM-1 was intact (Fig. 3B).

Previous studies have reported that chemokine-mediated

activation of b2 integrins was essential for THP-1 cell adhesion

and subsequent transmigration through endothelial monolayers

[7,8,38]. Therefore, the effect of SIRPa overexpression on

transendothelial migration (TEM) of THP-1 cells was examined

by transmigration assay. In mock-transfected THP-1 cells, MCP-1

triggered strong THP-1 cell migration across HMEC-1 monolay-

ers. As shown in Figure 4, more than 20% of total applied THP-1

cells were migrated across TNFa–activated HMEC-1 monolayers

after 3 h incubation. In contrast, MCP-1–triggered transmigration

of THP-1 cells that were overexpressed with SIRPa was strongly

reduced (Fig. 4). In both mock-transfected and SIRPa overex-

pressed THP-1 cells, spontaneous migration of THP-1 cells in the

absence of MCP-1 was minimal (data not shown).

Leukocyte b2 integrin–mediated cell firm adhesion initiates cell

shape changes and spreading of monocytes, events that must occur

for subsequent cellular locomotion and transmigration. Next we

investigated the effect of SIRPa overexpression on TNFa– and

MCP-1–stimulated actin polymerization and cell spreading in

THP-1 cells. SIRPa– or mock– transfected THP-1 cells were

stimulated with TNFa or MCP-1 for 30 minutes, then fixed, and

labeled with rhodamine-conjugated phalloidin to visualize actin

filaments. As a control, mock–transfected THP-1 cells were

pretreated with cytochalasin D to inhibit actin polymerization

[39]. Labeled monocytes were mounted on coverslips and images

were obtained using confocal microscopy. As shown in Figure 5,

confocal microscope images showed that mock– transfected THP-

1 cells exposed to TNFa or MCP-1 underwent morphological

changes resulting in multiple pseudopods (arrowheads) with

abundant actin filaments, and that this process was inhibited by

Figure 2. SIRPa overexpression in THP-1 cells and its effect on
cell surface expression of b2 integrins and CCR2. THP-1 cells were
transfected with the empty pcDNA3.1 vector (Mock) or the SIRPa-
encoding pcDNA3.1 vector (SIRPa). A: SIRPa protein level in SIRPa– or
mock– transfected THP-1 cells; B: Cell surface SIRPa expression in
Mock– and SIRPa–transfected THP-1 cells; C: THP-1 cell surface
expression of CD11a, CD11b, CD11c and CCR2. Note that SIRPa
overexpression significantly suppressed MCP-1–induced up-regulation
of THP-1 surface expression of CD11b and CD11a but not CCR2, and
that SIRPa overexpression did not affect the basal level of b2 integrins.
All data are mean6SD of three independent experiments.
doi:10.1371/journal.pone.0003291.g002
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cytochalasin D. In contrast, significantly less TNFa– or MCP-1–

stimulated actin polymerization and cell spreading had occurred in

THP-1 cells with SIRPa overexpression (Fig. 5).

The phagocytic function of THP-1 cells is also dependent on b2

integrins [40,41,42]. Next we examined the effect of SIRPa
overexpression on the capacity of THP-1 cells to engulf

fluorescein–labeled E. coli K12 bioparticles. As shown by confocal

images in Figure 6A, the mock-transfected THP-1 cells showed a

Figure 3. SIRPa overexpression in THP-1 cells decreases MCP-
1–stimulated adhesion. A: Micrographs and histograms show THP-1
cells adhered to HMEC-1 monolayers. Bar = 20 mm. B: MCP-1–depen-
dent adhesion of SIRPa– or mock–transfected THP1 monocytes to
plates coated with ICAM-1 or VCAM-1. In separate experiments,
monocytes were pretreated with 50 mM Bt2cAMP to determine
background integrin-independent nonspecific adhesion. All data are
mean6SD (n = 3) of three independent experiments.
doi:10.1371/journal.pone.0003291.g003

Figure 4. SIRPa overexpression reduces the MCP-1–induced
migration of THP-1 cells across HMEC-1 monolayers pre-
activated with 25 ng/mL TNFa. All data are mean6SD (n = 3) of
three independent experiments.
doi:10.1371/journal.pone.0003291.g004

Figure 5. TNFa and MCP-1–induced cell spreading and actin
polymerization in THP-1 cells. SIRPa– or mock–transfected THP-1
cells were stimulated with TNFa or MCP-1 for 30 minutes, fixed, and
labeled with rhodamine-conjugated phalloidin to visualize actin
filaments. As a negative control, mock–transfected THP-1 cells were
pretreated with cytochalasin D (Mock+Cyt. D). Bar = 20 mm.
doi:10.1371/journal.pone.0003291.g005

SIRPa Regulates THP-1 Function
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significant phagocytosis of fluorescein–conjugated bacteria parti-

cles after 3 h incubation (Fig. 6A, arrows), while in SIRPa–

transfected THP-1 cells, uptake of fluorescein–conjugated bacteria

particles was strongly reduced. The quantitative analysis of

uptaking fluorescein–conjugated bacteria particles by THP-1 cells

was shown in Figure 6B. Taken together, these results clearly show

that SIRPa overexpression in THP-1 cells reduces various

inflammatory responses mediated by leukocyte b2 integrins.

Discussion

Recent studies have demonstrated that SIRPa is involved in

regulating various inflammatory responses of leukocytes, in

particular leukocyte chemotaxis and phagocytosis. By studying

the leukocyte b2 integrin-mediated functional changes in THP-1

cells after downregulation or overexpression of SIRPa level, we

show that SIRPa negatively regulates b2 integrin-mediated THP-1

cell inflammatory responses, such as adhesion, transendothelial

migration and phagocytosis.

Correlation between SIRPa protein level and CD11b/
CD18-mediated cellular functions in THP-1 cells

Ligation of SIRPa with its extracellular ligand CD47 results in

phosphorylations of SIRPa ITIMs, which in turn, leads to their

association with SH2-domain-containing protein tyrosine phos-

photases SHP-1 and SHP-2 [16,17] to delivers signals that

regulate a variety of cellular functions [14]. Binding of SIRPa by

antibody or CD47 recombinant inhibits many leukocyte functions,

including phagocytosis [18,19], tumour-necrosis factor production

[20] and in vitro transmigration [21,22]. Activation of SIRPa by

arterial elastic laminae also inhibits monocyte adhesion [23].

Fibroblasts expressing a SIRPa mutant lacking ITIMs-containing

cytoplasmic tail showed increased formation of focal adhesions

and actin stress fibres in response to interaction with extracellular

matrix, suggesting that SIRPa is also involved in mediating

outside-in signal transduction during cell-matrix interaction. Using

THP-1 cell as model cell line, here we show that SIRPa protein

level is downregulated by AGEs treatment, which is also correlated

to an enhanced cell surface expression of b2 integrins and b2

integrins-mediated cell adhesion (Fig. 1). The finding of SIRPa
reduction in AGEs-treated THP-1 cells is supported by a recent

report that mouse macrophages have lower SIRPa expression

level following LPS stimulation [43]. The correlation between

SIRPa expression level and chemoattractant-induced cell surface

upregulation of b2 integrins and b2 integrins-mediated THP-1 cell

inflammatory responses is further characterized in THP-1 cells

overexpressed with SIRPa (Fig. 2–6). The results not only confirm

the inhibitory function of SIRPa on THP-1 inflammatory responses,

but also indicated that the role of SIRPa in THP-1 cells is through

affecting the functions of b2 integrins, particularly CD11b/CD18. It

is worthy to note that overexpression of SIRPa does not alter the

basal level of b2 integrin expression but the upregulation of b2

integrins by MCP-1 stimulation, suggesting that SIRPa is one of

essential molecules along the signal pathways that may regulate the

synthesis, transportation and translocation process of b2 integrins.

Moreover, if AGEs and other inflammatory factors can affect b2

integrin expression and function through down-regulating SIRPa, it

might be reasonable to conclude that SIRPa can mediate an inside-

out signal in regulating b2 integrin function.

SIRPa as a negative regulator in monocyte recruitment
during inflammation

The expression of b2 integrins and adhesion molecules in

monocytes is regulated by chemokines such as MCP-1, SDF-1

alpha and RANTES [32,44,45,46]. The positive correlation

between CD11b expression in circulating monocytes and the

degree of monocyte infiltration into the proatherogenic vascular

wall has been well-documented [8,47,48]. The increased expres-

sion of monocyte CD11b under pro-inflammatory conditions

enhanced MCP-1–mediated chemotaxis in vitro [8], induced excess

monocyte adhesion to vascular endothelium, and increased

formation of neointima and atherosclerotic plaques [48]. Although

SIRPa overexpression did not affect surface expression of CCR2,

the receptor for MCP-1, it resulted in a profound reduction of

MCP-1–mediated upregulation of THP-1 cell cell surface b2

integrins and THP-1 cell TEM. In addition to reduction of CD11b

and other b2 integrins, our study has also demonstrated that

overexpressing SIRPa in THP-1 cells display less cell spreading

and actin polymerization in response to chemokine stimulation.

The mechanism by which SIRPa modulates chemokine-induced

cell spreading and actin polymerization is unknown although

several possibilities exist: a) directly activates protein phosphatase

and initiates signal pathways that attenuate filament actin

polymerization and cell spreading, and b) binding to integrin-

associated protein CD47 and modulating the integrin functions.

Since SIRPa is a cellular ligand of CD47, which can augment the

functions of integrins of the b1, b2 and b3 families via initiating

heterotrimeric Gi protein signaling [49], thus modulating a range

of cell activities including cell motility and adhesion, and leukocyte

Figure 6. SIRPa overexpression in THP-1 cells impairs cell
phagocytic function. Fluorescently labeled bacteria were incubated
with SIRPa– or mock–transfected THP-1 cells for 3 h. A: Images of
phagocytosis of bacteria by THP-1 cells; B: Quantitative analysis of
bacteria phagocytosis by THP-1 cells. Bar = 20 mm. All data are
mean6SD (n = 4) of four independent experiments.
doi:10.1371/journal.pone.0003291.g006
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adhesion, migration and phagocytosis. Indeed, phagocytosis of

bacteria by THP-1 cells, an event that is largely dependent on b2

integrin and actin polymerization, was significantly reduced by

overexpression of SIRPa. This result was in agreement with the

previous finding that SIRPa contributes to down-regulating the

macrophage phagocytic response [18]. In summary, the present

study demonstrates for the first time that SIRPa overexpression

potently inhibits the various inflammatory responses of THP-1

monocytes/macrophages mediated by b2 integrins. The induction

of SIRPa expression in THP-1 cells led to a reduction of

chemokine-induced cell surface expression of b2 integrins, which

eventually resulted in less cell adhesion, cellular spreading, cell

transmigration and phagocytosis. This observation suggests that

SIRPa may function to decrease transendothelial migration of

monocytes or other circulating leukocytes, reduce the burden of

inflammatory cells in atheroma, and ultimately decrease plaque

mass under atherogenic conditions. Since migration of monocytes

across blood vessel lining endothelial monolayers is a key

component during early stage of atherosclerosis, such an outcome

would indicate that SIRPa overexpression in monocytes or

macrophages has an anti-atherogenic effect and that SIRPa is a

potential target in therapeutical implications.
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