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Abstract: In this paper, we present a novel cooperative scheme of joint optimal resource allocation,
such that the overall performance of the coexisting radar-communications (CRC) system can be
improved. In our proposed scheme, target detection and multiuser communication are performed by
radar and communication subsystems at the same time, as well as a control center, which is responsi-
ble for joint resource management. We aim to minimize the ISLR for target detection and maximize
the sum-rate for communications simultaneously by jointly optimizing the band assignment and
transmit power allocation. Since the resulting optimization problem involving two performance
metrics and a binary constraint is a multiobjective nonconvex problem, a two-tier iterative decompo-
sition (TT-ID) approach is devised to obtain the globally optimal solution. However, compared with
the conventional radar signals, the autocorrelation function of the devised radar signal may still have
relatively high sidelobes. In particular, when the data transmission becomes the primary purpose
of the CRC system, the sidelobe performance gets worse. As a consequence, some weak targets
are most likely overshadowed by the adjacent strong targets through the matched filtering at the
radar receiver. To address this, a spectral estimation algorithm based on the Bayes Cauchy–Gaussian
(Bayes–CG) model is employed to further reduce the range sidelobes of the matched filter output at
the radar receiver according to the prior distribution of the desired autocorrelation. Finally, several
numerical results are provided to show the merits of the proposed method.

Keywords: cooperative scheme; joint optimization; coexisting radar-communications (CRC) system;
band assignment; power allocation; spectral estimation

1. Introduction

Owing to the rapid growth of electronic devices, the electromagnetic frequency spec-
trum is increasingly congested. As a consequence, radio frequency interference (RFI) is
a sharp challenge to face. It is shown that RFI significantly deteriorates the performance
for radar and communication applications. Recently, the design of a coexisting radar-
communications (CRC) system is becoming a key mechanism to cope with this challenge,
which has been widely used in several scenarios, such as the spectral coexistence of airborne
early warning radar systems and time division duplexing long term evolution (TDD-LTE)
systems [1], spectrum sharing between air traffic radars and commercial cellular networks
or wireless local area networks (WLAN) [2], and internet of vehicles [3]. It is shown that the
CRC techniques can enable radar and communication systems to share the same bandwidth
by mitigating mutual interference through some common protocols and strategies.

Technically speaking, the signaling strategy of the CRC system includes three main
categories, namely time-division based design, frequency-division based design, and
spatial-division based design [4]. A straightforward time-division method uses a switch to
allocate different time slots to the radar and communication functions, which can be found
in autonomous vehicle applications [5]. The studies in [6,7] indicate that the preamble
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duration increments are potential solutions to improve the detection range of the radar but
with the trade-off of communication performance. Instead, a cycle time frame is proposed
in [8], where the time portion for any function in the current cycle time can vary adaptively
to improve the radar estimate rate and communication rate in the meantime. The study
in [9] investigates the frequency division-based technique in radar-communication spectral
coexistence for the first time, where a spectral null is added to the ultra-wide band (UWD)
noise radar waveform on purpose, and the orthogonal frequency division multiplexing
(OFDM) signal for communication can then be embedded in above-mentioned notch.
Inspired by this work, the design of a spectrally compliant waveform has been widely
exploited in [10–13]. Similarly, the authors in [14,15] have so far investigated the frequency-
modulated continuous wave (FMCW). As spatial approaches, the key idea of [16,17] is to
project the radar waveform onto the null space of the interference channel from the radar
transmitter to the communication receiver. Moreover, the works in [18,19] have proved
that a lower effective interference power (EIP) can be obtained by a joint radar sampling
and communication precoding matrix design under the constraints of the transmit power
budget and target communication capacity. However, the above studies just focus on
mitigating the mutual interference between radar and communication subsystems without
regards to several arising challenges, such as performance degradation, low resource
utilization, and complicated design and processing.

Motivated by the great demand for performance improvement and resource manage-
ment in CRC systems, a cooperative design has attracted substantial attention for recent
years. Unlike the conventional noncooperative systems, the cooperative schemes aim to
share the information and adaptively allocate the resources between the subsystems so
as to enhance the performance of the radar and communication functions [20]. For ex-
ample, a cooperative CRC system is developed in [21], where a water-filling successive
interference cancellation (SIC) technique is employed at the joint radar-communications
receiver to maximize the data rate. Meanwhile, a unimodular radar waveform is designed
to guarantee fine correlation performance by using a spectral shape method. With the
objective of minimizing the transmit beamforming error subject to the total power con-
straint and per-antenna power constraint, the works in [22,23] also consider the transmit
covariance matrices for two functions in different array deployments, which is inspired by
the nullspace projection method [16,17]. Specially, the contribution in [23] further improves
the spatial gain through an appropriate beampattern template and an interleaved array
optimization. Additionally, several sparse array configurations are developed in [24,25],
where two simultaneous beamformers for different functions are implemented by antenna
selection. On the other hand, the works in [26–34] target power allocation strategies to
improve the spectrum efficiency of the CRC system. In [26], the authors formulate a prob-
lem to maximize the radar SINR with the constraints of transmit power and downlink
communication rate. Later on, the works in [27,28] focus on multiuser communication
scenarios. Since the conditional mutual information (MI) can be measured by the accuracy
of target estimation for radar detection, the purpose of [27] is to maximize the weighted
summation of MI for radar and communication purposes by optimizing the covariance
matrices of transmit waveforms. As an extension, the studies in [28] consider the trans-
mit beampattern design in perfect and imperfect channel state information (CSI) cases.
Similarly, joint designs of communication code-book and radar waveform/received filter
are developed to maximize the SINR and MI in [29–31], respectively. Different from the
aforementioned works, the authors in [32] study a robust OFDM waveform optimization
in signal-dependent clutters under the condition of uncertainty target spectra, whereas the
communication signals backscattered off the targets at the radar receiver can be ignored
or viewed as interference and even useful energy based on the prior knowledge of the
communication signals, the target spectra, and the propagation loss of the channels. In
addition, a low probability of intercept (LPI)-based waveform optimization for the CRC
system in the same scenario is taken into account in [33]. These authors further present a
novel optimal power allocation for a bistatic CRC system in [34], whose goal is to achieve
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the prescribed data rate for the communication receiver and LPI performance for the radar
receiver by minimizing the transmit power consumption for both communication symbols
and radar waveform.

In this paper, we focus on the joint design of a frequency-division-based approach for
a CRC system. It is well-known that this approach has the advantage of simplicity and
ease of implementation, existing, however, with several flaws, including low spectrum
efficiency and performance loss. To tackle these issues, we develop a cooperative scheme
in which the radar and communication performances can be enhanced simultaneously by
jointly allocating the bandwidth and transmit power resources on the radar subsystem
and communication subsystem. To this end, a control center is devised to implement
the information sharing between the above two subsystems and subsequently realize the
optimal resource management according to the practical demands.

For clarity, our contributions are summarized as follows:

(1) We present a novel cooperative scheme for a frequency-division-based approach and
establish the specific resource model in a CRC system. In our proposed scheme, a
control center is equipped to collect the necessary information from the radar and
communication subsystems, solve the joint resource allocation problem, and assign
the corresponding optimal parameters to each subsystem. In order to assess the
performance metrics of two functions well, two resource allocation models are estab-
lished through a two-scale approach; one called the rough scale resource allocation
for communications, and another one called the thinning scale resource allocation
for radar.

(2) For the sake of enhancing the detection performance and transmission capacity of
the CRC system simultaneously, a joint working band assignment and transmit
power allocation strategy is investigated. Different from the above-mentioned works,
we focus on optimizing the range sidelobe level and sum-rate subject to several
resource constraints, which are important performance metrics for target detection
and multiuser communication networks, respectively.

(3) A global optimization algorithm based on the heuristic method and decomposition for
solving the aforementioned problem is developed. Due to the performance metrics
and binary constraint, the joint resource allocation is a multiobjective nonconvex
problem and NP-hard. Based on the relationship between the two types of resource
allocation variables, we develop a two-tier solution methodology, where the original
nonconvex problem can be decomposed into two subproblems. We first search the
optimal band selection variable with fixed power allocation variables. For a given
band selection variable, the power allocation subproblem can be further divided
into two convex sub-subproblems, which both can be solvable by the Lagrange
multiplier approach.

(4) Due to the disjoint spectrum, the autocorrelation sidelobes of the radar signal obtained
by joint resource allocation probably still reach an unsatisfying level compared with
the conventional radar signals, especially when the sum-rate performance is the
top priority of the CRC system. In such cases, the matched filtering procedure
in the radar receiver fails to detect some weak targets that are overshadowed by
the nearby strong targets. Since the matched filtering model with respect to the
radar signal can be viewed as a missing data recovery problem in the frequency
domain, the high sidelobes of the matched filter output can be effectively suppressed
by the spectral estimation algorithm based on the prior knowledge of the desired
autocorrelation response.

To the best of our knowledge, the joint resource allocation scheme for range side-
lobe minimization for probing waveform and the sum-data maximization for multiuser
communication network has not been exploited in studies on the design of frequency-
division-based CRC system. The proposed optimization leads to a high computational
complexity. Nevertheless, this challenge can be effectively tackled by the equipped control
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center thanks to the ever-growing cloud computing techniques and specific integrated
circuit designs.

The rest of this paper is organized as follows. In Section 2, we introduce the devised
cooperative scheme as well as the system model of the CRC system. The ISLR for the
radar metric and sum-rate for the communication metric are also formulated. In Section 3,
the joint optimization subject to resource allocation is proposed. Section 4 provides an
effective approach to further suppress the sidelobes in signal processing in the case that
the autocorrelation of the devised radar signal still maintains an unacceptable sidelobe
level. Several numerical results are provided to validate that the proposed method can
improve the target detection performance and data transmission rate of the CRC system in
Section 5. Finally, conclusions are drawn in Section 6.

Notation 1. In this paper, bold lower-case letters and bold upper-case letters represent the vectors
and matrices, respectively. R and C represent the real and complex set, respectively. ∗ represents
the convolution operator. ⊗ and �, respectively, represent Kronecker product and Hadamard
product. (�)T , (�)∗ , and (�)H represent the transpose, complex conjugate, and Hermitian transpose,
respectively. (�)r represents the reverse of the argument. ‖�‖2 represents the l2 norm. diag(�)
represents the diagonal matrix with the elements given by the vector arguments. I(�) represents the
prescribed-dimensionality identity matrix. 1(�) and 0(�) represent prescribed-length all-ones and
all-zeros vector, respectively. d�e represents the round up of the argument.

2. System Model

Let us consider a CRC system, which is equipped with a control center, a radar
subsystem, and a communication subsystem, as illustrated in Figure 1. Except the basic
dual functionality implemented by radar and communication subsystems in the meantime,
a cooperative scheme for the CRC system is proposed, where the control center is designed
to collect information from above two subsystems, solve joint optimization problems, and
optimally allocate the transmit power and working band to each subsystem dynamically,
according to the designer’s demands. Moreover, we rely on the following assumptions:
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Figure 1. The proposed cooperative CRC system, including a control center, a radar subsystem, and
a communication subsystem.

(1) The spectrally compliant waveform is transmitted to perform the target detections,
while preventing the communication subsystem from the strong radio interference of

Figure 1. The proposed cooperative CRC system, including a control center, a radar subsystem, and
a communication subsystem.

(1) The spectrally compliant waveform is transmitted to perform the target detection,
while preventing the communication subsystem from the strong radio interference of
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high-power radar signals. Thus, the radar signal can be equivalently viewed as an
FDM signal among the communication signals.

(2) The communication subsystem and M downlink users constitute a communication
network together, in which M communication symbols are sent in parallel to serve
corresponding downlink users via FDM technology. The communication symbols
are occupying the same bandwidths (denoted by BC), statistically independent of the
radar signal, and arbitrary information modulations are allowed to use. Moreover,
the communication channel is slow time variant and frequency selective fading, and
CSI can be perfectly estimated by pilot symbols [28].

(3) The resources for radar use and communication use are, respectively, modeled from
two scale viewpoints, as shown in Figure 2. The rough scale resource model is
defined that radar and communication subsystem share the total transmit power
resource ξt and bandwidth resource B. In particular, B is an integral multiple of
the bandwidth occupied by each communication signal. That is to say, it can be
divided into K subband sections, M of which are assigned to the communication
subsystem, while the rest are accessed by radar. In radar subsystem, the thinning
transmit power allocated on frequency bins is considered, which is an underlying
degree of freedom to achieve the desired performance. That is referred to as the
thinning scale resource model.

Radar Communications

B

P

0 B
C

B
C

B
C

C[P ]
1

C[P ]
m

C[P ]
M

R[P ]
n

Figure 2. The resource model of different subsystems. [pC]m and [pR]n are the transmit powers assigned
to the m-th communication symbol and allocated on the n-th frequency bin for the radar subsystem.

Accordingly, the transmitted signal of the cooperative CRC system can be formulated
in the frequency domain as

s = (e⊗ 1L)� z + [(1K − e)� c]⊗ 1L

= (e⊗ 1L)�
(

ΦR � p1/2
R

)
+
[
(1K − e)�

(
ΦC � p1/2

C

)]
⊗ 1L

(1)

where z ∈ CNs×1 is the frequency domain transmitted radar waveform, where Ns is the
sample length. The vector c ∈ CK×1 is a set of communication signals in the frequency domain.
L is the thinning frequency sampling factor with satisfying L = Ns/K. pR ∈ RNs×1 and
pC ∈ RK×1 stand for the power spectrum density (PSD) sequences of the radar waveform z and
communication signals c, respectively. By introducing a phase auxiliary vector ΦR ∈ CNs×1,
the radar waveform z can be decomposed into the amplitude component p1/2

R and the phase
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component ΦR. Similarly, p1/2
C and ΦC ∈ CK×1 denote the envelope and phase information

of the communication signal vector c, respectively. Since z and c are non-overlapping in the
frequency domain, the vector e ∈ RK×1 is used to select the working band sections that are
assigned to the radar subsystem, which is defined by

ek =

{
1, k belongs to the radar subsystem

0, otherwise
(2)

According to Assumption (3) above, we define the bandwidth occupancy ratio of the
radar subsystem as

η =
K−M

K
(3)

Likewise, we define the power occupancy ratio of the radar subsystem as

ρ =
ξR
ξt

(4)

where ξR denotes the transmit power allocated to the radar subsystem.

2.1. Range Sidelobe Level for Radar

For target detection, matched filtering is a well-known technique to estimate the target
information in the ranges of interest. It can be accomplished by convolving the radar return
signal with the transmitted waveform, which indicates that the detection performance is
determined by the autocorrelation performance of the transmitted waveform. In particular,
low range sidelobes will prevent the weak targets from the interferences caused by the
ambient strong targets [35]. To analyze this issue, we use the integrated sidelobe level ratio
(ISLR) metric to measure the range sidelobe level, and it is defined as

ISLR =
1
r2

0
∑

τ∈Θs

|rτ |2 (5)

where r = [r−Ns+1, . . . , r0, . . . , rNs ]
T denotes the autocorrelation function (ACF) sequence of

the waveform, where r0 is a constant representing the total energy. Θs = [−Ns + 1,−∆) ∪
(∆, Ns] denotes the index set of the sidelobe region of the ACF, where ∆ is the sample index
of the autocorrelation mainlobe width. To facilitate the calculation, here, ∆ is defined as the
Nyquist distance [36], and the sample length of r is set to be 2Ns.

Since the ACF and PSD form a Fourier transform pair, the ISLR can be also rewritten as

ISLR =
1
r2

0
∑

τ∈Θs

∣∣∣fH
τ [(e⊗ 1L)� pR]

∣∣∣
2

(6)

where fτ ∈ CNs×1 here denotes the τ-th column of the DFT matrix FNs ∈ CNs×2Ns , which
is given by

[FNs ]n,τ = exp
[
−j2π

(n− 1)(τ − 1)
Ns

]
, n = 1, . . . , Ns, τ = 1, . . . , 2Ns (7)

Remark 1. It is worthy to mention that the ultimate goal is to achieve a spectrally compliant
waveform with the desired PSD (equivalently the ACF). Since the studies on PSD-to-waveform
implementation approaches have been widely exploited in [10–13]; in this paper, we focus on
optimizing the resource allocation to minimize the ISLR.

2.2. Sum-Rate for Communication

As to the communications, the sum-rate is a significant performance metric in the
multiuser network [37]. In the frequency selective fading channel, the transmit power
assignment and channel quality both play important roles in the data rate for each com-
munication link. Accordingly, in the devised cooperative scheme, the achievable sum-rate
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can be formulated in the following by employing the parameters defined previously in
Equations (1) and (2)

Rt =
K

∑
k=1

BClog2

(
1 +

(1− ek)|hk|2[pC]k
σ2

C

)
(8)

where hk denotes the channel frequency response of the m-th communication symbols, and
σC is the noise power in the communications channel.

3. Joint Optimization for the CRC System

We devote this section to the joint working band assignment and transmit power
allocation for the cooperative CRC system to maximize the weighted summation of radar
and communication metrics. Then, a two-tier iteration solution is developed to solve the
resources allocation problem.

3.1. Problem Formulation

As discussed in the last section, whether the ISLR or the sum-rate is heavily dependent
on the working band selection variable e and transmit power allocation variables {pR, pC}.
Therefore, our goal is to minimize the ISLR for target detection while maximizing the
sum-rate for the multiuser network by jointly allocating the available bandwidth and power
resources. Taking into account the limitations on those resources, the joint resource allocation
problem for the cooperative CRC system is also subject to the following constraints.

(1) To maximize the probability of target detection, the transmit power ξR is no doubt fully
utilized in the radar subsystem. Thus, the following transmit power requirements
should be met {

∑Ns
n=1 [(e⊗ 1L)� pR]n = ξR = ρξt

[pR]n ≥ 0, n = 1, . . . , Ns
(9)

(2) Our criterion for the multiuser network is to maximize the sum-rate while guarantee-
ing the data rate required for each user. Hence, the transmit power should be subject
to the constraints as follows{

log2(1 + (1− ek)gk[pC]k) ≥ ζ, k = 1, . . . , K

∑K
k=1 (1− ek)[pC]k = ξt − ξR = (1− ρ)ξt

(10)

where ζ is the specified data rate threshold for each user; gk = |hk|2/σ2
C for simplicity.

The second constraint is determined by the conservation of energy.
(3) As previously defined in Equation (3), only K − M subbands can be allocated for

radar use. Thus, for the binary type parameter ek, the following constraints should
be met {

∑K
k=1 ek = K−M = ηK

ek ∈ {0, 1}, i = 1, . . . , K
(11)

Then, fusing the above-mentioned constraints together, the joint optimization problem
for the cooperative CRC system with respect to the working band selection variable e and
transmit power allocation variables {pR, pC} can be formulated as
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max
e,pR ,pC

ω

FR
ISLR−1(e, pR) +

(1−ω)

FC
Rt(e, pC) (12a)

s.t. ∑Ns
n=1 [(e⊗ 1L)� pR]n = ρξt (12b)

[pR]n ≥ 0, n = 1, . . . , Ns (12c)

log2(1 + (1− ek)gk[pC]k) ≥ ζ, k = 1, . . . , K (12d)

∑K
k=1 (1− ek)[pC]k = (1− ρ)ξt (12e)

∑K
k=1 ek = ηK (12f)

ek ∈ {0, 1}, k = 1, . . . , K (12g)

where ω is a weighting factor that determines the task priority of radar and communication,
according to the practical demands. FR and FC are the optimal conditions for the radar
and communication criteria under the constraints, respectively. Due to the two perfor-
mance metrics involved in Equation (12a) and the binary constraint in Equation (12g),
the optimization problem in Equation (12) is a multiobjective nonconvex mixed integer
programming (MNMIP), and there is no efficient approach to solve this problem directly
in polynomial time [37]. In what follows, we propose a two-tier iterative decomposition
(TT-ID) algorithm to obtain the globally optimal solution of the optimization problem in
Equation (12).

Remark 2. Instead of ISLR, we employ the reciprocal of ISLR as the first part of the objective
function in Equation (12) for the more intuitive formulation, which can also be interpreted as the
ratio of mainlobe energy to the integrated sidelobe energy based on the fact that the maximization of
ISLR−1 is the dual-problem of the minimization of ISLR.

3.2. Proposed Solution by TT-ID Algorithm

Notice that the transmit power allocation variables {pR, pC} are both coupled with
the working band selection variable e in Equation (12). For this reason, we develop a
two-tier iteration approach for eliminating the aforementioned couples. As a consequence,
the original problem can be decomposed into a band assignment subproblem and a power
allocation subproblem. For the given pR and pC, we first aim to determine e by using the
heuristic method, which is named the outer tier procedure for solving the band assignment
subproblem. Then, we further partition the power allocation subproblem into two convex
sub-subproblems, where pR and pC can be efficiently optimized with a fixed e. It is
referred as to the inner tier procedure. The above procedures are executed iteratively
until convergency.

Accordingly, with fixed transmit power allocation variables {pR, pC}, the original
problem can be reformulated as the following band assignment subproblem

max
e

ω

FR
ISLR−1(e) +

(1−ω)

FC
Rt(e) (13a)

s.t. ∑K
k=1 ek = ηK (13b)

ek ∈ {0, 1}, k = 1, . . . , K (13c)

Likewise, the original problem can be rewritten as the following power allocation subprob-
lem for the given working band selection variable e
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max
pR ,pC

ω

FR
ISLR−1(pR) +

(1−ω)

FC
Rt(pC)

s.t. ∑Ns
n=1 [(e⊗ 1L)� pR]n = ρξt

[pR]n ≥ 0, n = 1, . . . , Ns

log2(1 + (1− ek)gk[pC]k) ≥ ζ, k = 1, . . . , K

∑K
k=1 (1− ek)[pC]k = (1− ρ)ξt

(14)

3.2.1. Outer Tier for Band Assignment

In the outer tier procedure, we focus on how to solve the band assignment subprob-
lem (13). It can be seen that with the binary constraint of the band selection variable e, the
problem in (13) is a typical 0-1 inter programming, which is the most intractable part to
address. For this reason, a heuristic search based on the nondominated sorting genetic
algorithm (NSGA-II) is employed to find the globally optimal solution.

It is well-known that NSGA-II is well suitable for solving multiobjective optimization
problems because the optimal solution can be obtained by searching exhaustively in
parallel, regardless of the convexity of the problem [38]. Besides, NSGA-II provides two
major advantages of the lower computational complexity of the nondominated sorting
procedure, and an elite preservation strategy introduced to prevent good solutions from
the spread of solution regions, compared to the conventional heuristic methods. The outer
tier for optimal band assignment using NSGA-II with some modifications is introduced in
the following.

At the beginning of NSGA-II, a random set of P individuals of the working band
selection variable e is initialized, with meeting the constraint condition in Equation (11).
The p-th individual for the q-th generation is defined as ep,q for the given power allocation
variables {pR, pC} . The goal of NSGA-II is to evolve this population over several gen-
erations such that the target variables converge to the global optimum. To this end, the
evolutionary procedure of ep,q in each generation will be executed by the following rules:

• Fitness: The fitness is determined by the objective function in Equation (12), namely

fp,q =
ω

FR
ISLR−1(ep,q) +

(1−ω)

FC
Rt(ep,q) (15)

• Selection: The parent individuals are selected by the roulette strategy, where the
selection probability of each individual is dominated by its fitness value.

• Crossover: Each individual is tantamount to a binary code. However, the binary
encoding can not work well in the constrained evolution procedure because of the
extra computation cost for determining whether the solution is feasible. To solve
this, a projection-based space transformation method [38] is employed to convert the
discrete binary feasible space into a continuous real-value feasible space.

• Mutation: To avoid the risk of premature convergence, a small percentage of children
are required to mutate. The mutation operation is implemented in the above real-value
feasible space. Then, the child and parent populations are merged to form an elite
population [38].

• Sorting and Ranking: The feasible solutions are sorted based on the nondominated
sorting approach. The dominance between any two individuals ei,q and ej,q is defined
as: if ISLR−1(ei,q) > ISLR−1(ej,q)while Rt

(
ei,q) > Rt

(
ej,q), we say ei,q dominates ej,q,

and vice versa; otherwise, ei,q and ej,q are nondominant. Then, rank the dominances
of all individuals from 1 to P, where rank 1 represents the individual that dominates
all other individuals.
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3.2.2. Inner Tier for Power Allocation

The inner tier procedure for power allocation starts after the update of the population
of the band selection variable e is completed in each generation. Since the power allocation
variables {pR, pC} are not coupled with each other for a given e, the subproblem in (14)
can be further partitioned into two power allocation sub-subproblems. Defining a matrix
Γ = diag[e⊗ 1L] ∈ RNs×Ns , the power allocation sub-subproblem for radar performance
can be formulated as

min
pR

α1 ∑
τ∈Θs

∣∣∣fH
τ ΓpR

∣∣∣
2

(16a)

s.t. 1T
Ns

ΓpR = ρξt (16b)

[pR]n ≥ 0, n = 1, . . . , Ns (16c)

and the power allocation sub-subproblem for communication performance is formulated as

max
pC

α2

K

∑
k=1

log2(1 + (1− ek)gk[pC]k) (17a)

s.t. log2(1 + (1− ek)gk[pC]k) ≥ ζ, k = 1, . . . , K (17b)

∑K
k=1 (1− ek)[pC]k = (1− ρ)ξt (17c)

where α1 = ω/FR and α2 = (1−ω)BC/FC are defined to simplify the formulations.

Remark 3. For sub-subproblem (16), it does not need to be formulated as the maximization of
ISLR−1 after the communication metric term is removed.

(1) For Radar Performance: Let us consider the sub-subproblem (16) with respect to
the power allocation variable pR for ISLR reduction. The sub-subproblem (16) can be
transformed into the following quadratic optimization by introducing an auxiliary variable

β
−∆
∑

l=−∆

∣∣fH
l ΓpR

∣∣2, where β is set to be zero.

min
pR

α1

∥∥∥V
1
2 FH

Ns
ΓpR

∥∥∥
2

2

s.t. 1T
Ns

ΓpR = ρξt

(18)

where V ∈ C2Ns×2Ns is the diagonal matrix with elements

Vττ =

{
α1, τ ∈ [−Ns + 1,−∆) ∪ (∆, Ns]

β, τ ∈ [−∆, ∆]
(19)

From the term of ΓpR, it is noteworthy that only ηNS available elements of pR make a
contribution to the ISLR minimization. Therefore, the optimization problem in Equation (18)
should be revised as

min
p̄R

α1

∥∥∥V
1
2 F̄Ns p̄R

∥∥∥
2

2

s.t. 1T
ηNs

p̄R = ρξt

(20)

where p̄R = JΓpR ∈ RηNs×1 stacks the corresponding ηNs coefficients of ΓpR , where J is the
ηNs × Ns stack matrix with binary elements. Each row of J contains only one element equal to
1, whose position is selected by the nonzero element of band selection variable e. Likewise,
F̄Ns = JFNs ∈ RηNs×Ns is obtained by extracting the corresponding rows from FNs .

The optimization problem in Equation (20) is a standard linear constrained quadratic pro-
gramming (LCQP), which can be efficiently solved by the Lagrange multiplier method [36,39].
Thus, the closed-form solution of p̄R is given by

p̄R = ρξt
U−11ηNs

1T
ηNs

U−11ηNs

(21)
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where U is a Herimitan positive semidefinite matrix, namely

U = F̄Ns VF̄H
Ns

(22)

(2) For Communication Performance: Now, we focus on the sub-subproblem (17) of
optimal power allocation for the multiuser network. Since the dual problem of (17) is
convex, it can be solvable under the Karush–Kuhn–Tucker (KKT) conditions [39]

γ ln 2(1 + (1− ek)gk[pC]k)− (1− ek)gk(α2 + ηk) = 0 (23a)

γ

(
K

∑
k=1

(1− ek)[pC]k − (1− ρ)ξt

)
= 0 (23b)

γk[ζ − log2(1 + (1− ek)gk[pC]k)] = 0 (23c)

γk ≥ 0, k = 1, . . . , K (23d)

where γ and γk for k = 1, . . . , K represent Lagrange multipliers. Thus, the optimal power
allocation pC for maximizing the sum-rate can be obtained by

[pC]k =





0, ek = 1
1
gk

(
2eζ − 1

)
,

1
gk

> ϑ, ek = 0

ϑ− 1
gk

,
1
gk

< ϑ, ek = 0

(24)

where the positive parameter ϑ = 1
2gk

egkα2−γ can be obtained by a bisection search proce-
dure when the γ meets the condition of

(1− ek)
K

∑
k=1

(
ϑ− 1

gk

)
− (1− ρ)ξt = 0 (25)

Once the optimal power allocation variables {pR, pC} are determined for each indi-
vidual for the band selection variable e, the inner tier procedure is completed. pR and
pC subsequently participate in the update of e in the outer tier procedure. These two
procedures are alternately executed until convergency.

The pseudocode of the bisection search of ϑ is given in Algorithm 1. Finally, the
flowchart of the proposed TT-ID algorithm is given in Figure 3.
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Algorithm 1 Bisection search of ϑ.

Initialization: ϑmin, ϑmax, t = 0 and the tolerance δ > 0

1: while
∣∣∣∣(1− ek)

K
∑

k=1

(
ϑ− 1

gk

)
− (1− ρ)ξt

∣∣∣∣ > δ do

2: for k = 1, · · · , K do
3: ϑ(t) ← (ϑmin + ϑmax)/2

4: if (1− ek)
K
∑

k=1

(
ϑ(t) − 1

gk

)
> (1− ρ)ξt then

5: ϑmax ← ϑ(t)

6: ϑ(t) ← (ϑmin + ϑmax)/2

7: else if (1− ek)
K
∑

k=1

(
ϑ(t) − 1

gk

)
< (1− ρ)ξt then

8: ϑmin ← ϑ(t)

9: ϑ(t) ← (ϑmin + ϑmax)/2
10: end if
11: Let t← t + 1
12: end for
13: end while

3.3. Complexity Analysis

The computational complexity of the TT-ID algorithm is dominated by the complexity
per iteration. Considering the outer tier procedure for the band assignment subproblem
(OP3.2.1), the complexity of the crossover and mutation in NSGA-II for P individuals is
the order of O(PK). Additionally, the complexity of sorting is of order O(P log2 P). In
the inner tier procedure, for each individual, the computational complexity of the sub-
subproblem (OP3.2.1) is dominated by matrix inversion, which is the order of O

(
N3

s
)
.

Besides, the complexity of the sub-subproblem (OP3.2.2) is O(Mlog2(ϑmax − ϑmin)/δ) due
to the bisection search method, where M is the number of communication signals.

For comparison, the complexity analysis of two related works is provided. One of
the related works in [40] aims to improve SINR and PSLR by assigning the adaptable

Figure 3. The flowchart of TT-ID algorithm.
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Algorithm 1 Bisection search of ϑ.

Initialization: ϑmin, ϑmax, t = 0 and the tolerance δ > 0

1: while
∣∣∣∣(1− ek)

K
∑

k=1

(
ϑ− 1

gk

)
− (1− ρ)ξt

∣∣∣∣ > δ do

2: for k = 1, · · · , K do
3: ϑ(t) ← (ϑmin + ϑmax)/2

4: if (1− ek)
K
∑

k=1

(
ϑ(t) − 1

gk

)
> (1− ρ)ξt then

5: ϑmax ← ϑ(t)

6: ϑ(t) ← (ϑmin + ϑmax)/2

7: else if (1− ek)
K
∑

k=1

(
ϑ(t) − 1

gk

)
< (1− ρ)ξt then

8: ϑmin ← ϑ(t)

9: ϑ(t) ← (ϑmin + ϑmax)/2
10: end if
11: Let t← t + 1
12: end for
13: end while

3.3. Complexity Analysis

The computational complexity of the TT-ID algorithm is dominated by the complexity
per iteration. Considering the outer tier procedure for the band assignment subproblem
(16), the complexity of the crossover and mutation in NSGA-II for P individuals is the order
of O(PK). Additionally, the complexity of sorting is of order O(P log2 P). In the inner tier
procedure, for each individual, the computational complexity of the sub-subproblem (16)
is dominated by matrix inversion, which is the order of O

(
N3

s
)
. Besides, the complexity of

the sub-subproblem (17) is O(Mlog2(ϑmax − ϑmin)/δ) due to the bisection search method,
where M is the number of communication signals.

For comparison, the complexity analysis of two related works is provided. One of
the related works in [40] aims to improve SINR and PSLR by assigning the adaptable
bandwidths in the CRC system. To this end, two approaches are employed to solve the
optimization problem, namely the weighted sum multiobjective optimization (WSMO)
algorithm and NSGA-II algorithm. The complexity of WSMO is of order O

(
K2) , while

the complexity of NSGA-II for P individuals is of order O(P log2 2P) in each iteration.
The other one in [41] proposes a joint subcarrier selection and power allocation scheme
for maximizing the mutual information for radar and data rate for communication in a
multicarrier dual-function radar-communication (DFRC) system. The convergence rate
of the approach in [41] is dominated by the bisection search method, which is of order
O(Mslog2(ϑmax − ϑmin)/δ), where Ms denotes the number of subcarriers.

4. Sidelobe Reduction at Radar Receiver

In the last section, by allocating the adaptable working bands and transmit power
for two subsystems, the sidelobes of the ACF of the radar signal can be reduced while
guaranteeing a desired sum-rate for the multiuser network. However, compared with the
conventional radar signals, the autocorrelation sidelobes of the resulting radar signal may
still reach a high level due to its disjoint spectrum. Especially when the weighting factor
ω tends to be 0, the sidelobe performance gets worse with high probability. To address
this problem, in this section, we investigate how to further reduce the sidelobes at the
radar receiver.

4.1. Signal Model at Radar Receiver

Let us consider the radar return signal at the radar receiver. The radar return signal
can be viewed as the convolution of the transmitted waveform with the target responses of
the observation area, namely
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x = b ∗ z̄ + n (26)

where b ∈ CNt×1 represents the Nt impulse responses of the corresponding range cells in
the observation area, z̄ ∈ CNs×1 denotes the temporal radar waveform, and n ∈ CNp×1 is
the white Gaussian noise vector with the distribution of N

(
0, σ2

n
)
. Np is the total length

of the processing window, and it is not difficult to see that Nt, Ns, and Np satisfy the
following identity

Np = Nt + Ns − 1 (27)

Subsequently, the matched filtering procedure can be accomplished by

y = z̃r ∗ x

= z̃r ∗ (b ∗ z̄ + n)
(28)

where z̃r refers to the complex conjugate and reverse of the temporal signal z̄, which is the
standard matched filter. According to the convolution rules, Equation (28) can be recast as

y = b ∗ (z̃r ∗ z̄) + z̃r ∗ n

= b ∗ r + n̄
(29)

where n̄ = z̃r ∗ n ∈ C(Np+Ns−1)×1 is the noise output of the matched filter.
Equation (29) suggests that the matched filter output y is regarded as the convolution

of the ACF r of the probing waveform with the impulse response b of the scene, which
explains why the target estimation performance of the matched filter highly depends on
the correlation properties of the transmitted signal. It is not hard to imagine that the radar
signal with intolerably high range sidelobes may result in a situation where the weak
targets are most probably overshadowed by the neighboring strong targets.

4.2. Sidelobe Reduction Approach

As we mentioned before, the capacity of sidelobe reduction of the joint optimization
is limited in some particular scenarios. Hence, in this subsection, our goal is to investigate
a sidelobe reduction approach from the perspective of processing at the radar receiver.

The matched filtering procedure in Equation (29) can also be written as the frequency
domain formulation according to the convolution rules, namely

y= FH
Ny

[(
F1

Ny
b
)
�
(

F2
Ny

r
)]

+ n̄

= FH
Ny

[
b̃� (ΓpR ⊗ 1D)

]
+ n̄

= FH
Ny

B̃(ΓpR ⊗ 1D) + n̄

(30)

where FNy ∈ CNy×Ny , F1
Ny
∈ CNy×Np , and F2

Ny
∈ CNy×2Ns denote the DFT matrices for

the matched filtering, for the Fourier transform of the impulse response b, and for the
Fourier transform of ACF r, respectively, where Ny = DNs ≥

(
Np + Ns − 1

)
for facilitating

calculation, and the integer D satisfies

D ≥
⌈

Np + Ns − 1
Ns

⌉
(31)

B̃ = diag
[
b̃
]
∈ CNy×Ny is a diagonal matrix, where the vector b̃ denotes the frequency

domain target impulse response. Based on the time-frequency duality, it can be found that
Equation (30) is similar to the classic spectral estimation problem for missing data in the
frequency domain [42]. Like the definitions in Equation (20), we also introduce the stack
matrix J to reconstruct the available samples vector pr ∈ RηNy×1 and the corresponding
DFT matrix F̄Ny ∈ CηNy×Ny , namely

pr = (J⊗ ID)B̃(ΓpR ⊗ 1D) (32)

F̄Ny = (J⊗ ID)FNy (33)
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The objective function of spectral estimation with respect to the matched filter output y can
then be formulated as

min
y

∥∥∥pr − F̄Ny y
∥∥∥

2

2
(34)

However, the objective function in Equation (34) is a linear underdetermined problem,
which can be possibly met by many feasible solutions. To obtain the unique solution, a
regularized term is imposed to the objective function from Equation (34) as follows

min
y

Φ(y) +
∥∥∥pr − F̄Ny y

∥∥∥
2

2
(35)

Obviously, the key to spectral estimation in Equation (35) is to select a reasonable
regularizer Φ(y). As mentioned before, Φ(y) is in fact dominated by the ACF. It is well-
known that a Gaussian-like shaped autocorrelation for the bandlimited signal is widely
used as the ideal target spectra response, whose amplitude distribution with a high roll-
off and a quite low sidelobe floor is “long-tailed” [14,15,43]. In particular, the Cauchy
distribution, one of the Gaussian-like shaped functions, can further enhance the peaks and
resolution of spectral amplitude [43]. Thus, we employ the Cauchy distribution to impose
the regularizer, namely

Φ(y) =
Ny

∑
l=1

ln

(
1 +

ylyl
∗

2σ2
y

)
(36)

where σy denotes the scale parameter. Here, σy is defined as the −3 dB mainlobe width
(i.e., range resolution) of the ACF of the radar waveform z. In practice, the −3 dB mainlobe
width can be estimated by calculating the reciprocal of the root-mean-square bandwidth of
the desired PSD without spectral nulls [35]. Therefore, σy can be preset at the beginning of
the spectral estimation algorithm.

Substituting Equation (36) into Equation (35), taking the derivative of Equation (35)
and letting it equal to zero, the optimal solution to the objective function in Equation (35) is
obtained by

y = QF̄Ny

(
λINy + F̄Ny QF̄H

Ny

)−1
pr (37)

where λ = σ2
n/σ2

y is the ridge regression parameter. Q ∈ CNy×Ny is the diagonal matrix
with entries

Qll = 1 +
ylyl

∗

2σ2
y

, l = 1, . . . , Ny (38)

Because of the Cauchy and Gaussian distribution models for target response and noise,
respectively, established, as well as the Bayes theorem applied in this spectral estimation
algorithm, we refer to it as the Bayes–CG algorithm.

From Equations (37) and (38), it is noteworthy that the matrix Q is determined by y,
which suggests that the solution from Equation (37) has to be computed by an iterative
procedure. The iterative procedure is provided as follows.

Letting d =
(

λINy + F̄Ny QF̄H
Ny

)−1
pr, the solution in Equation (37) can be rewritten as

y = QF̄Ny d (39)

Accordingly, we first initialize y using the matched filter output in Equation (30). Next,
in the t-th iteration, we compute the d(t) as

d(t) =
[
λINy + F̄Ny Q(t)F̄H

Ny

]−1
pr (40)

Then, update the y, namely

y(t+1) = Q(t)F̄Ny d(t) (41)
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The iterative procedure is terminated until the following condition is reached

∥∥∥y(t+1) − y(t)
∥∥∥

2

2
≤ ε (42)

where ε represents the difference tolerance between two successive iterations.
The iterative procedure of the Bayes–CG algorithm to minimize the objective function

in Equation (35) is listed in Algorithm 2, and we refer to Appendix A to know the detailed
derivations of Equation (37).

Remark 4. The basis of the spectral estimation algorithm above is to recover missing samples (i.e.,
spectral nulls) by using interpolation and extrapolation based on the received available data (i.e., pr)
and the prior distribution of the desired autocorrelation response. Therefore, it can be seen that the
nulls in ΓpR will be filled using the DFT of the optimal estimator y.

Algorithm 2 Bayes–CG algorithm for solving Equation (35)

Initialization: y(0), t = 0, and ε > 0

1: while
∥∥∥y(t+1) − y(t)

∥∥∥
2

2
> ε do

2: Compute the d(t) according to Equation (40)
3: Update the y(t) using Equations (40) and (41)
4: Let t← t + 1
5: end while

Output: y∗

5. Numerical Results

In this section, we provide various numerical results to verify the effectiveness of
the proposed joint resource allocation optimization. The resulting radar waveform is
synthesized by PSD fitting in [12], and quadrature amplitude modulation (QAM) signals
are used for data delivery. We assume that the frequency response of the communications
channel is determined by the standard normal distribution, and the noise is complex
additive white Gaussian noise. The other simulation parameters are given in Table 1.

Table 1. Simulation parameters.

Parameter Value Parameter Value

Total bandwidth B 128 MHz Center frequency fc 5 GHz
Total power ξt 1000 W Noise power σC 1× 10−14 W/Hz

Communication users M 4 Waveform sample length Ns 512
Generation Q 100 Population P 100

Crossover probability 0.9 Mutation probability 0.1

We denote the proposed joint band assignment and power allocation scheme as
“JBAPA” and employ the following four resource allocation schemes to form a comparison:

• Random Band Assignment and Equal Power Allocation (RBAEPA): The working bands are
randomly assigned to both functions. In each subsystem, the transmit power allocated
on the corresponding scale frequency bin is uniformly distributed.

• Random Band Assignment and Optimal Power Allocation (RBAPA): The working bands
are randomly assigned to both functions, whereas the transmit power allocations for
two functions are implemented by the KKT conditions, respectively.

• Optimal Band Assignment and Equal Power allocation (BAEPA): The best working band
assignment is optimized by NSGA-II, while the PSD distribution of radar waveform
is a rectangle shape, and transmit powers for communication users are equal to
each other.
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5.1. Performance Comparision

Under different resource allocation schemes, the sum-rate performance with the
power occupancy ratio (i.e., 1− ρ) of the communication subsystem is depicted in Figure 4.
Here, each communication link is assumed to occupy an 8 MHz bandwidth, namely the
bandwidth occupancy ratio η = 75%. From Figure 4, we can see that by occupying more
system power, the sum-rate performance is enhanced, and the proposed JBAPA scheme
outperforms most of the resource allocation schemes, even if the weighting factor ω equals
1. That is because the JBAPA scheme makes full use of two-dimensional bandwidth-power
resources to enhance the sum-rate performance, whereas the RBAPA and BAEPA schemes
only employ the DOF of a one-dimensional resource, which causes limited improvement.
Furthermore, compared with the RBAEPA scheme, the other three schemes validate the
benefits of band assignment and power allocation for CRC systems.
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Figure 4. Comparison of the sum-rate of different schemes, where η = 75%.

Similarly, compared with other resource allocation schemes, the outstanding ISLR
performance of the proposed JBAPA scheme in most cases is shown in Figure 5. As
expected, the autocorrelation sidelobe level of the transmit waveform gets better with the
increase of η. That is because more resources can be utilized as the degrees of freedom to
achieve radar waveform optimization. However, when the bandwidth occupancy ratio
η is in the interval (0.5, 0.65) and the weighting factor ω tends to a smaller value, it is
shown that the ISLR of the JABAPA scheme rises to an unacceptably high level in most
cases, not to mention the other schemes. That is why we further investigate a sidelobe
reduction method at the radar receiver. Besides, by comparing the RBAPA scheme with
the BAEPA scheme, it reveals that the power allocation can make greater contributions
to ISLR minimization than the band assignment unless a few bandwidth resources are
allocated to radar subsystem.

Figure 6 plots the optimal tradeoff curve of radar performance and communication
performance. The weighting factor ω for the radar is decreasing from 1 to 0 along the
direction of the arrow. The ISLR performance suffers from the degradation with the ω
decreasing, whereas the sum-rate is improved. According to the above results, the control
center in the proposed CRC system will select the appropriate weighting factor and power
occupancy ratio to meet the practical demands for the ISLR and sum-rate.
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Figure 5. Comparison of the ISLR of different schemes.
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5.2. Sidelobe Reduction at Radar Receiver

As mentioned above, in this subsection, we study the capacity of range sidelobe
suppression through the proposed spectral estimation algorithm at radar receiver.

Consider a scenario where the best four channels have been assigned to corresponding
communication links to maximize the sum-rate (i.e., ω = 0). We assume that there are
20 targets randomly located at the range from 3500 m to 5500 m in the observing area,
whose SNRs are also randomly assigned subject to a uniform distribution on the interval
(15, 80) dB.The ground truth involving the zero-mean additive complex Gaussian noise is
provided as the baseline. With the loss of generality, we here assume that the Doppler shift
of the target has been precisely estimated and compensated before the matched filtering.

The target estimation results of the matched filtering and the proposed Bayes–CG
algorithm are shown in Figure 7a. As predicted, the matched filtering results in an extremely
high sidelobe level due to the poor ISLR performance caused in the radar’s worst case.
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In particular, it can be seen that the targets in (3928, 4188, 4388, 5201) m, which are
overshadowed by the neighboring higher SNR target, respectively, fail to be detected
through the matched filtering. Additionally, the SNRs of the targets located at (4557, 4789,
5085) m are comparable with the sidelobe level of the nearby strong targets, which may
make the radar confused possibly. On the other hand, the Bayes–CG algorithm provides a
great target estimation performance. All of the targets can be detected significantly because
the average sidelobe level of the Bayes–CG algorithm is 40 dB lower than the level of
the matched filter. Furthermore, Figure 7b,c plot the PSDs of the target estimation result
using matched filter and Bayes–CG methods, respectively. It is noticed that the existing
spectral nulls during the matched filtering have been filled in after the implementation of
the Bayes–CG algorithm. Note that it is similar to the PSD of the generalized nonlinear
frequency modulation (NLFM) waveform, whose sidelobe level can reach −40 dB below.
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Figure 7. (a) Target estimation comparison between matched filtering and Bayes–CG algorithm, where η = 75%. (b) PSD of the
target estimation result using a standard matched filter; (c) PSD of the target estimation result using the Bayes–CG algorithm.

Generally speaking, the performance of the spectral estimation algorithm may degrade
in high data missing ratio cases. In what follows, the cases of a high bandwidth occupancy
ratio η compared with the missing ratio are taken into consideration. To show the robust
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performance of the presented spectral estimation algorithm under varying ρ conditions,
we compare it with the normalized matched filter and the following three typical sidelobe
reduction approaches from the perspective of processing:

• Least-Square (LS) Filter: This approach is a well-known method to reduce the range
sidelobe for arbitrary modulation signals.

• Spectral Nulls Oriented (SNO) Mismatched Filter [44]: The mismatched filter is specially
designed for ISLR minimization of spectrally compliant waveforms. In such a method,
the filter response can achieve the same range sidelobe level as the that of the transmit
waveform without frequency notches based on the concept of the inverse filter.

• Autoregressive (AR) Based Interpolation [45]: A straightforward method to solve the
missing sample problem is to interpolate the gaps between the disjoint samples. The
AR coefficients derived by the Burg algorithm are used to achieve the interpolation,
which is denoted as the AR-Burg approach. It has been widely used for high-resolution
imaging in an interrupted synthetic aperture radar (SAR).

Here, we consider a scenario containing only one target to focus on the resulting range
sidelobe level after applying the aforementioned methods. Here, we are more concerned
about the normalized peak sidelobe level (PSL), which is defined as

PSL = 20log10

max
l∈Θs
|rl |

|r0|
(43)

Moreover, we employ 100 standard Monte Carlo trails to guarantee the reliability of simulations.
Figure 8 provides the PSL and SNR loss of different approaches under varying band-

width occupancy ratio η conditions. The direction of the arrow indicates η is decreasing
from 95% to 50%. From Figure 8, it can be seen that the four approaches can suppress the
range sidelobes effectively when the η is large, even the matched filter. As η decreases,
however, the PSL of the matched filter output rapidly rises to approximately −5 dB, which
results in the radar hardly detecting the weak targets from the interferences of the nearby
strong targets. The performances of the AR-Burg approach and SNO approach also suffer
different degrees of degradation. Note that the PSL of the AR-Burg approach is increasing
significantly with the decrease of η due to the unsatisfied demand for sufficient available
samples. Nevertheless, the SNR may slightly benefit from the AR-Burg approach because
the data gaps are compensated by interpolation and extrapolation. In contrast, although
the SNO approach can achieve the same sidelobe as NLFM waveform (e.g., −40 dB below),
similar to the conventional inverse filter, the SNR loss is very sensitive to both spectral
null depth and the bandwidth occupancy ratio due to the fact that the power of received
noises embed in nulls are significantly amplified during processing. The LS filter is a
relatively robust approach, which always maintains about −30 dB of PSL unchanged with
a slight SNR loss, due to the fact that the capacity of sidelobe suppression of the LS filter is
only dependent on the filter length. Compared with the above approaches, the outstand-
ing robust performance of the Bayes–CG algorithm is shown. Moreover, it still behaves
well when the η decreases to 50%, i.e., the performance loss of PSL does not exceed 3 dB.
That is because compared with the AR-Burg-based interpolation, the Bayes–CG algorithm
makes the best of the prior knowledge of the autocorrelation response instead of partial
information, which guarantees the desired sidelobe level with a fine SNR gain.
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Figure 8. PSL versus SNR loss under different sidelobe reduction approaches with the decreasing
bandwidth occupancy ratio η, where ω = 0.

5.3. Algorithm Convergence

In this subsection, the convergences of the proposed TT-ID algorithm and Bayes–CG
algorithm are evaluated. For TT-ID, the variation of relative change between any two
consecutive generations is employed as the convergence criteria, which are given by

Rch =

∣∣∣ f ′p+1 − f
′
p

∣∣∣
∣∣∣ f ′p+1

∣∣∣
(44)

where f
′
p denotes the local optimum of the p-th generation. For the Bayes–CG algorithm,

the relative change metric is redefined as

Rch =
∥∥∥y(t+1) − y(t)

∥∥∥
2

2
(45)

In Figure 9, it can be seen that using the TT-ID algorithm, the objective functions in
Equation (12) under different weighting factor conditions are converged within the 20th
to 35th generation, where η is set to be 75%. Moreover, only about 10 iterations are spent
on target spectra estimation through the Bayes–CG algorithm under different η, as shown
in Figure 10. These numerical results reveal that our proposed approaches can effectively
address the joint resource allocation and sidelobe reduction problem at the radar receiver,
respectively, within a few tens of iterations.
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Figure 9. The convergence of the proposed TT-ID algorithm, where η = 75%. (a) Completed; (b) Part enlarged.
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Figure 10. The convergence of the Bayes–CG algorithm.

6. Conclusions

In this paper, we propose a joint optimization framework for a frequency-division-
based CRC system. In the proposed CRC system, the spectrally compliant waveform is
used for target detection, and communication signals serve the multiuser network via
the FDM technique. Moreover, a control center plays a key role in implementing optimal
resource management, which can force the cooperation between the radar and commu-
nication subsystems. By taking the minimization of ISLR for target detection and the
maximization of the sum-rate for the multiuser communication network into account, a
joint band assignment and power allocation strategy with some relevant requirements is
a multiobjective nonconvex optimization problem, which is solved iteratively by using
decomposition and global minimization. However, the autocorrelation sidelobes of the
resulting radar signal may still maintain a relatively high level compared with the con-
ventional radar signals, especially when the data transmission is the primary purpose. By
deriving the signal model at the radar receiver, the target detection through the matched
filtering can be viewed as a spectral estimation problem of missing samples. Thus, a
Bayes–CG algorithm is employed to further suppress the range sidelobes of the matched
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filter output to a quite low floor. Simulations and theoretical analysis have shown that
the proposed scheme outperforms the conventional schemes in the CRC system, and the
presented ISLR minimization based on the spectral estimation algorithm is effective and
robust in the radar’s worst case.

Since the proposed TS-HD algorithm suffers from a high computational complexity,
future studies will investigate a more efficient approach to solve the joint resource allocation
problem for the CRC system. Moreover, it is worthy to note that the range resolution may
not maintain a great condition, particularly in some cases. Hence, the range resolution will
be taken into account in our future work.
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Appendix A

First of all, we explain how to use the Cauchy distribution to impose the regularizer
in Equation (36).

Without loss of generality, it is assumed that the radar transmit waveform z̄ satisfies
|z̄| = 1. Hence, the output noise n̄ is still subject to N

(
0, σn

2) after the matched filtering.
Based on Bayes’ theorem, we can obtain the conditional distribution of the pr as

p(pr|y, σn ) =

(
1

2πσ2
n

)Ny

exp
(
− 1

2σ2
n

∥∥∥pr − F̄H
Ny

y
∥∥∥

2

2

)
(A1)

Furthermore, the a posterior distribution of the y is formulated as

p
(
y
∣∣pr, σy, σn

)
=

p
(
y
∣∣σy
)

p(pr|y, σn )

p
(
pr
∣∣σy, σn

) (A2)

The p
(
y
∣∣pr, σy, σn

)
can be maximized using the maximum a posterior (MAP) estimator, for

the given σy and σn. Since the desired y approximates the Cauchy distribution, it can be
modeled as

p
(
y
∣∣ σy

)
∝ Π

Ny

(
1 +

yly∗l
2σ2

y

)−1

(A3)

Accordingly, the desired regularizer is obtained in Equation (36).
Then, let us consider the derivatives of the objective function in Equation (35). It is

not difficult to compute the derivative of the second part in Equation (35), namely

∂

∂y∗

∥∥∥pr − F̄H
Ny

y
∥∥∥

2

2
=

1
2σ2

n
F̄Ny

(
pr − F̄H

Ny
y
)

(A4)
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Subsequently, we focus on the derivative of the regularization term

∂

∂yl
∗Φ(y) =

∂

∂yl
∗

Ny

∑
l=1

ln

(
1 +

ylyl
∗

2σ2
y

)

=
1

2σ2
y

(
1 +

ylyl
∗

2σ2
y

)−1

yl

=
1

2σ2
y

Qll
−1yl

(A5)

Transform (A5) into the matrix form, namely

∂

∂y∗
Φ(y) =

1
2σ2

y
Q−1y (A6)

Combining Equations (A4) and (A6) and letting it equal to zero, we have

y =
(

λQ−1 + F̄Ny F̄H
Ny

)−1
F̄Ny pr (A7)

Note that the Equation (37) is tantamount to Equation (A7) by applying the following
transformations, and the former is more suitable to use for the iterative computations

F̄H
Np

(
λINy + F̄Ny QF̄H

Ny

)
=
(

λQ−1 + F̄Ny F̄H
Ny

)
QF̄Ny (A8)

F̄H
Ny

(
λQ−1 + F̄Ny F̄H

Ny

)−1
= QF̄Ny

(
λINy + F̄Ny QF̄H

Ny

)−1
(A9)

where the terms
(

λQ−1 + F̄Ny F̄H
Ny

)
and

(
λINy + F̄Ny QF̄H

Ny

)
are both positive definite.
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