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Abstract
The melanocortin 1 receptor (MC1R) is involved in the control of melanogenesis. Polymor-

phisms in this gene have been associated with variation in skin and hair color and with ele-

vated risk for the development of melanoma. Here we used 11 computational tools based

on different approaches to predict the damage-associated non-synonymous single nucleo-

tide polymorphisms (nsSNPs) in the coding region of the humanMC1R gene. Among the

92 nsSNPs arranged according to the predictions 62% were classified as damaging in more

than five tools. The classification was significantly correlated with the scores of two consen-

sus programs. Alleles associated with the red hair color (RHC) phenotype and with the risk

of melanoma were examined. The R variants D84E, R142H, R151C, I155T, R160W and

D294H were classified as damaging by the majority of the tools while the r variants V60L,

V92M and R163Q have been predicted as neutral in most of the programs The combination

of the prediction tools results in 14 nsSNPs indicated as the most damaging mutations in

MC1R (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S,

C273Y, C289R and R306H); C273Y showed to be highly damaging in SIFT, Polyphen-2,

MutPred, PANTHER and PROVEAN scores. The computational analysis proved capable of

identifying the potentially damaging nsSNPs inMC1R, which are candidates for further lab-

oratory studies of the functional and pharmacological significance of the alterations in the

receptor and the phenotypic outcomes.

Introduction
The melanocortin 1 receptor (MC1R) gene encodes for a G protein-coupled receptor (GPCR)
with seven transmembrane domains involved in the control of melanogenesis. Ligation of the
α-melanocyte stimulating hormone (α-MSH) to MC1R stimulates adenylate cyclase, with a
consequent increase of cAMP levels that leads to the activation of tyrosinase (TYR) and other
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enzymes, resulting in the switch from the synthesis of phaeomelanin (red/yellow pigment) to
eumelanin (black/brown pigment) in melanocytes [1].

The human MC1R protein contains 317 amino acids encoded in a single exon, and shows
many polymorphisms that have been described in different populations [2]. Some human
MC1R variants have been associated with variation in hair and skin pigmentation and with in-
creased risk of developing melanoma and other skin cancers, and have been characterized in
laboratory studies [3] [4] [5] [6] [7] [8] [9]. However, many of the polymorphisms have un-
known effects. The non-synonymous single nucleotide polymorphisms (nsSNPs) in the coding
region alter the corresponding proteins. These changes may affect the protein functions in
many different ways, for instance by altering the catalytic or ligand binding sites, leading to im-
proper protein folding, incorrect intracellular transportation, or decrease in the stability or loss
of function of the gene product [10] [11] [12] [13] [14] [15] [16] [17] [18]. Understanding
which molecular variations are related to Mendelian or complex diseases and to variations in
phenotype is a challenge in genetic research [19]. Genome-wide association studies (GWAS)
are powerful approaches to detect complex disease associated SNPs [20] [21] [22] [23] [24]
however, factors as the degree of linkage disequilibrium between the disease variant and the
SNP marker, difference in allele frequencies and the choose of the SNPs affect GWAS studies,
resulting in lower detection power and in the demand of much larger samples than association
studies using targeted candidate loci [25] [26] [27]. While in vitro tests can assess the effect of
specific variations, it is laborious and time-consuming to evaluate the large amount of variation
in the human genome [28].

Determining which SNPs affect the phenotype would make it possible to identify the molec-
ular mechanisms of disease and phenotypic variation, and to help select the most important for
association studies with populations. Several tools have been developed to differentiate the del-
eterious or disease-associated SNPs occurring in a gene from the neutral or tolerated alter-
ations, and these tools use approaches based on different features [10]. These approaches
include sequence-based methods that use evolutionary information on the amino-acid conser-
vation in the gene, based on multiple sequence alignment (MSA) of homologous proteins in re-
lated species. Assuming that amino acids that are highly important for the structure and
function of the protein will be more conserved in a protein family, mutations in those positions
are more likely to be deleterious. Methods based on the structural, physical and chemical prop-
erties of the wild and mutant proteins also are available, and allow the identification of the
SNPs that affect the stability and function of the protein [29] [30]. Other tools use machine-
learning methods (such as the support vector machine, SVM; or Random Forest, RF) to predict
the association of the SNPs with disease. These tools combine properties of the amino acid resi-
dues, structural information and evolutionary conservation, and databases that contain validat-
ed information about the biochemical and clinical evidence for SNPs known to be deleterious
[19] [28]. In order to combine the results of the various tools, consensus predictors have been
developed to allow comparison between methods that use different analytical approaches [10]
[31]. Studies using combination of different prediction tools have identified deleterious muta-
tions in genes involved in different biological processes, including, for example, cancer (breast
cancer 1, early onset—BRCA1 gene) [32], STIL gene [33], Centromere-associated protein-E
gene (CENP-E) [34], leukemia (c-abl oncogene 1—ABL1 gene) [35], lipoprotein metabolism
(ATP-binding cassette transporter A1—ABCA1 gene) [36], cardiomyopathy (beta myosin
heavy chain—MyH7 gene) [28], oxidative stress (superoxide dismutase 2—SOD2 gene) [37],
amyotrophic lateral sclerosis (superoxide dismutase 1—SOD1 gene) [38], and melanogenesis
(receptor tyrosine kinase—KIT gene [39], oculocutaneous albinism type 2—OCA2—P protein
gene [40], tyrosinase—TYR gene [41], and tyrosinase-related protein 1—TYRP1 gene [42]), re-
sulting in the establishment of the mutations with the highest pathogenic prediction.

Prediction of the nsSNPs in the HumanMC1RGene
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Here we used prediction tools to evaluate 92 nsSNPs in theMC1R gene in relation to their
damaging or pathogenic effects, and to predict the disease-associated variation.

Thus, by the combination of the prediction tools we classified the nsSNPs in theMC1R
gene, and selected those that are the most likely to affect the function of the receptor in a way
that could result in disease or phenotypic variation in pigmentation.

Material and Methods

Data
HumanMC1R gene data were obtained from OMIM (#155555 - http://www.ncbi.nlm.nih.
gov/omim) and Entrez on the National Center for Biotechnology Information (NCBI) website,
including Protein accession number (NP_002377) and mRNA accession number
(NM_002386). The Uniprot accession number (Q01726) was obtained in the Swissprot data-
base (http://expasy.org). The information on 92 SNPs in humanMC1R was collected from
dbSNP (http://www.ncbi.nlm.nih.gov/snp) including SNP ID (S1 Table), chromosome posi-
tion, alleles and functional consequences, when available.

Functional analysis Prediction
The nsSNPs were analyzed using 11 prediction tools: SIFT, MutPred, Polyphen-2, PROVEAN,
I-Mutant 3.0, PANTHER, SNPs3D, Mutation Assessor, PhD-SNP, SNPs&GO and SNAP
(Table 1) and the consensus prediction tools PON-P and PredictSNP 1.0. The data for chromo-
some location, amino acid sequence of the humanMC1R gene (ref. Seq. NP_002377), Uniprot
accession number (Q01726), position in the protein, and wild and mutated residue of the
nsSNPs were used according to the program requirements. The prediction tools were selected
by use different approaches in order to obtain a classification of the nsSNPs according to one
or more features. The tools are freely accessible and described in the literature. Each program's
approach is detailed below.

The SIFT (Sorting Intolerant From Tolerant) tool uses a sequence homology based on the
multiple sequence alignment (MSA) conservation approach to classify the nsSNPs as tolerated

Table 1. Prediction tools used in the analysis.

Prediction tool URL Type Reference

I-Mutant 3.0 http://gpcr2.biocomp.unibo.it/cgi/predictors/I-Mutant3.
0/I-Mutant3.0.cgi

machine learning method (SVM) 30

Mutation
Assessor

http://mutationassessor.org/ evolutionary conservation-based 34

MutPred http://mutpred.mutdb.org/ evolutionary conservation and structure-based 26

PANTHER http://www.pantherdb.org/tools/csnpScore.do evolutionary conservation-based 31

PhD-SNP http://snps.biofold.org/phd-snp/phd-snp.html machine learning method (SVM) 35

PolyPhen-2 http://genetics.bwh.harvard.edu/pph2/index.shtml evolutionary conservation and structure-based 27

PROVEAN http://provean.jcvi.org/ evolutionary conservation-based 28

SIFT http://sift.jcvi.org/ evolutionary conservation-based 25

SNAP https://www.rostlab.org/services/SNAP/ machine learning method (neural-network), protein sequence
and structure-based

37

SNPs&GO http://snps-and-go.biocomp.unibo.it/snps-and-go/ machine learning method (SVM) 36

SNPs3D http://snps3d.org/ machine learning method (SVM) 33

PON-P http://bioinf.uta.fi/PON-P/ Consensus tool 38

PredictSNP 1.0 http://loschmidt.chemi.muni.cz/predictsnp Consensus tool 15

doi:10.1371/journal.pone.0121812.t001
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by or damaging to the protein. The SIFT score is the normalized probability that the amino
acid change is tolerated. The score ranges from 0 to 1 with a cut-off score of 0.05. Amino acids
substitutions with less than 0.05 are predicted to be deleterious, and those greater than or equal
to 0.05 are predicted to be tolerated [43].

The MutPred tool was developed to classify an amino acid substitution as deleterious-
/disease-associated or neutral, based on three classes of attributes, the evolutionary conserva-
tion of the protein sequence, the protein structure and dynamics, and in functional properties,
including secondary structure, solvent accessibility, stability, intrinsic disorder, B-factor, trans-
membrane helix, catalytic residues and others. It determines the changes at atomic and molec-
ular level induced by the amino acid substitution. MutPred uses the RF (Random Forest)
classifier to provide the g score for the prediction of the probability that the substitution is dele-
terious, and the p score for the indication of the structural and functional properties impacted,
for instance, gain of helical propensity or loss of a phosphorylation site [44].

Polyphen-2 (Polymorphism Phenotyping v2) is a sequence and structure-based method
that determines the structural and functional consequences of nsSNPs. The PolyPhen-2 calcu-
lates the posterior probability that a nsSNP is damaging by a Bayesian classifier [45]. The con-
servation of a position in the MSA and the deleterious effect on the protein structure results in
the Position-Specific Independent Count (PSIC) score that ranges from 0 to 1. The classifica-
tion of the nsSNPs results in Possibly Damaging and Probably Damaging (PSIC> 0.5) or Be-
nign (PSIC< 0.5).

PROVEAN (Protein Variation Effect Analyzer) measures the damaging effect of variations
in protein sequences [46]. The prediction is based on the change, caused by an nsSNP, in the
similarity of the sequence to related protein sequences in a MSA. PROVEAN uses a delta align-
ment score based on the reference and variant versions of the protein sequence with respect to
the alignment of homologous sequences [47]. A score equal or below the threshold of-2.5 de-
termines the classification as a deleterious nsSNP.

I-Mutant 3.0 is a support vector machine (SVM) tool for the prediction of protein stability
free-energy change (ΔΔG or DDG) on a specific nsSNP. It predicts the free energy changes
starting from either the protein structure or the protein sequence [48]. A negative DDG value
means that the mutation decreases the stability of the protein, while a positive DDG value indi-
cates an increase in stability. I-Mutant 3.0 also implements a prediction of disease-associated
SNPs from a sequence analysis based on a decision tree with the SVM-based classifier
(SVM-Sequence) coupled to the SVM-Profile trained on sequence profile information. The
nsSNPs are then classified as disease-related or neutral polymorphisms.

PANTHER (Protein ANalysis THrough Evolutionary Relationships) estimates the likeli-
hood that a particular nsSNP will result in a functional alteration of the protein. It calculates
the subPSEC (substitution position-specific evolutionary conservation) score based on a hid-
den Markov model alignment of evolutionarily related proteins [49] [50]. Substitution with
subPSEC = 0 is indicated as functionally neutral, whereas negative values of subPSEC predict
deleterious substitutions. A subPSEC score cut-off of-3 corresponds to a 50% probability that
an nsSNP is deleterious to the protein, with a probability of causing a deleterious effect on the
protein function (Pdeleterious) of 0.5.

SNPs3D analyzes the likely impact of nsSNPs on protein function by two methods, one
based on the protein structure and stability, stemming from the hypothesis that many disease
nsSNPs affect protein function primarily by decreasing protein stability. The program is in-
tended to identify which amino acid substitutions significantly destabilize the folded state.
The second model was based on analysis of homology in a sequence of families related to
human proteins, through analysis of amino acid conservation at the affected sequence posi-
tion [30] [51]. A positive SVM score indicates a variant classified as non-deleterious, and a
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negative score indicates a deleterious variant. The larger the score, the more confident is the
classification of the nsSNP, with accuracy significantly higher for scores greater 0.5 or less
than-0.5 [51].

The Mutation Assessor predicts the functional impact of amino acid substitutions in pro-
teins based on evolutionary conservation of the affected amino acid in protein homologs, pro-
viding a rough estimate of the probability that the mutation has a phenotypic consequence at
the level of the organism. It uses information based on the analysis of evolutionary conserva-
tion patterns in protein family multiple-sequence alignments, which are subject to selective
forces at the level of the ability of the organism to survive and reproduce [52]. The analysis re-
sults in a functional impact score based on evolutionary information (FIS) that classifies the
nsSNP as neutral, low, medium or high.

PhD-SNP (Predictor of Human Deleterious Single Nucleotide Polymorphisms) is a
SVM-based classifier that uses protein sequence information to predict whether an nsSNP is
disease-associated, based on a supervised training algorithm. The output is obtained from the
frequencies of the wild and mutant residues, the number of aligned sequences, and the conser-
vation index calculated for the position involved, and provides a prediction of disease-related
(disease) or neutral polymorphism [53].

SNPs&GO is a method based on SVM to predict disease-related mutations from the protein
sequence, that uses information derived from evolutionary information, protein sequence and
function as encoded in the Gene Ontology (GO) terms annotation to predict if a given muta-
tion can be classified as disease-related or neutral [54].

SNAP (Screening for Non-Acceptable Polymorphisms) is a neural network-based method
for the prediction of the functional effects of nsSNPs. SNAP uses evolutionary information for
the residue conservation within sequence families, aspects of protein structure, and annota-
tions, when available. The SNAP network takes protein sequences and lists of mutants and pro-
vides a score for each substitution, which can then be translated into binary predictions of a
neutral or non-neutral effect [55].

We compared the prediction results of our combined analysis with two consensus tools,
PON-P and PredictSNP1.0. The PON-P is a meta tool that combines five methods (SIFT, PhD-
-SNP, PolyPhen-2, SNAP and I-Mutant 3.0) to predict the probability that a nsSNP will affect
protein function and may consequently be disease-related. It utilizes a machine learning-based
method (RF) for predicting whether variants affect functions and thereby lead to diseases. The
PON-P classifies the nsSNPs as neutral, unclassified or pathogenic with a corresponding prob-
ability of pathogenicity, and provides the data available in the Uniprot database for each entry
[56].

PredictSNP1.0 is a SNP classifier tool that combines six prediction methods (MAPP,
PhD-SNP, PolyPhen-1, PolyPhen-2, SIFT and SNAP) to obtain a consensus prediction of the
effect of the amino acid substitution. The six prediction tools are run using a dataset of non-
redundant mutations. The individual confidence scores are transformed to percentages to
allow comparison, and the individual predictions are combined in the consensus prediction.
The predictions are supplemented by experimental annotations from Protein Mutant Database
and Uniprot [31].

In order to identify the nsSNPs more probably damaging in the gene the categorical predic-
tion of the individual tools were combined by the count of damage results and the nsSNPs
were classified from the most neutral (no damaging results) to the most damaging (damaging
prediction in the eleven tools).

Prediction of the nsSNPs in the HumanMC1RGene
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Statistical analysis
The Pearson correlation coefficients between the prediction scores for deleterious effect or the
probability of pathogenicity provided by the programs SIFT, Polyphen-2, PROVEAN,
MutPred, PANTHER, SNPs3D and Mutation Assessor were analyzed. The associations among
the neutral or damaging results of the categorical classification of the prediction tools were
evaluated by Chi-square test (χ2) for independence by contingency table analysis. The statisti-
cal significance of differences in the combine of damaging results of individual tools in the do-
mains of theMC1R protein were evaluated by the Kruskal-Wallis test. The statistical analyses
were performed in the SPSS v. 20 program (IBM Corp., Armonk, NY, USA).

Results

Prediction Programs
A total of 92 nsSNPs from the NCBI dbSNP database were analyzed to identify the deleterious
mutations. Of these, 76 were found to be damaging (score< 0.05) by SIFT, with 38 assigned a
score of 0.

The PROVEAN score was lower than-2.5 for 51 nsSNPs, indicating that these variants do
affect the protein function and are likely to be deleterious.

In Polyphen-2, a total of 54 nsSNPs were predicted as damaging (PSIC> 0.5); 12 of these
nsSNPs were predicted to be highly deleterious, with a PSIC score of 1.

In the MutPred analysis, 57 nsSNPs showed a probability of being a deleterious mutation,
with g scores higher than 0.5. For 22 of these nsSNPs the program indicated an actionable or
confident hypothesis (p score< 0.05) that the molecular mechanism would be disrupted.

The PANTHER software estimates the likelihood that the nsSNPs will affect the function of
the protein [50]. The calculated subPSECs were equal to or lower than-3, resulting in a proba-
bility of deleterious effect higher than 0.5 for 43 nsSNPs.

The DDG predicted by I-Mutant 3.0 classified 86 of the nsSNPs as decreasing the stability
of the mutated protein (DDG<0) and 6 as increasing it (DDG>0). We used the sequence-
based tool of the I-Mutant 3.0 suite to predict the disease-associated nsSNPs. A total of 73
nsSNPs were predictted to be disease-related by this method.

According to the Mutation Assessor analysis, 15 nsSNPs showed a high functional impact
score (FI), 48 a medium score, and 21 had a low functional impact; 8 were neutral (High:
FI> 3.5 / Low: 0.8< FI� 1.9 / Medium: 1.9< FI� 3.5 / Neutral: FI� 0.8).

A negative SVM score in SNPs3D was obtained for 49 nsSNPs, indicating a variant classified
as deleterious; the other 43 nsSNPs received a positive score, which indicates a likely non-
deleterious mutation.

The PhD-SNP 2.0 and SNPs&GO tools classify the mutation as a disease-related or neutral
polymorphism. Of the set of nsSNPs in theMC1R gene analyzed, 56 were predicted to be dis-
ease-related by PhD-SNP 2.0, and the SNPs&GO method classified 24 nsSNPs as disease-
related. The SNAP method indicated that 60 nsSNPs were functionally non-neutral. The pre-
diction results of the 11 tools are summarized in Fig. 1.

The deleterious scores from SIFT, Polyphen-2, PROVEAN, MutPred, PANTHER, SNPs3D
and Mutation Assessor, provide a numerical value associated with the prediction. In Polyphen-
2, MutPred, and Mutation Assessor highers scores indicate damaging mutations, while in
SIFT, PROVEAN, PANTHER, SNPs3D lower or negative scores correspond to damaging
SNPs. These differences in the score results in negative values of the correlation coeficient be-
tween tools with inverse mathematical signal. Considering the absolute value of the Pearson
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coefficients the tools showed significant correlation with each other with R2 ranging from
0.276 between SIFT and MutPred to 0.755 between SNPs3D and Mutation Assessor (Table 2).

The majority of the 11 tools had a significant association between their categorical predic-
tion results (Chi-square test for independence—P<0.05), with the exception of I-Mutant 3.0,
which showed a significant association only with SNPs&GO (Table 3).

The results of the 11 prediction tools were combined in order to identify the most damage
nsSNPs in theMC1R gene. A total of 57 nsSNPs (about 62%) were predicted as damaging by
more than five tools (Fig. 2).

The numbers of damage results in the 11 tools for the 92 nsSNPs in theMC1R protein are
represented in Fig. 3. Two nsSNPs (T19I and I98V) showed neutral results in all tools. A total
of 14 nsSNPs (L48P, R67W, H70Y, P72L, S83P, R151H, S172I, L206P, T242I, G255R, P256S,

Fig 1. Prediction results of the 92 nsSNPs in theMC1R gene analyzed by the 11 tools. The different categorical classifications of the 11 tools
are showed.

doi:10.1371/journal.pone.0121812.g001

Table 2. Matrix of Pearson correlation between the prediction tools.

Polyphen-2 PROVEAN MutPred PANTHER SNPs3D Mutation Assessor

SIFT -0.390* 0.441* -0.276* 0.361* 0.508* -0.578*

POLYPHEN-2 - -0.629* 0.323* -0.583* -0.700* 0.619*

PROVEAN - -0.351* 0.740* 0.705* -0.711*

MutPred - -0.294* -0.390* 0.368*

PANTHER - 0.610* -0.662*

SNPs3D - -0.755*

Mutation assessor -

* significative association with p<0.05.

doi:10.1371/journal.pone.0121812.t002

Prediction of the nsSNPs in the HumanMC1RGene

PLOSONE | DOI:10.1371/journal.pone.0121812 March 20, 2015 7 / 16



C273Y, C289R and R306H) present damage results in all the prediction methods, likely a
harmful variation in the gene.

The prediction scores of the tools indicate differences between the nsSNPs selected as dam-
aging by the 11 tools. Among the 14 nsSNPs, 12 showed a SIFT score of 0, and six (L48P,
R67W, R151H, L206P, P256S and C273Y) showed a Polyphen-2 PSIC score of 1, indicating
that they may be highly damaging mutations. The MutPred tool indicated hypotheses of the
molecular mechanisms disrupted (g score>0.5 and p score<0.05) by the nsSNPs L48P,
R67W, R151H, S172I, L206P and C273Y, including loss of solvent accessibility, loss of catalytic

Table 3. Matrix of Chi-square analysis of association between the prediction tools results.

Tool Polyphen-
2

PROVEAN MutPred PANTHER I-Mutant
3.0

SNPs3D PhD-SNP SNP&GO Mutation
Assessor

SNAP

SIFT 21.974 10.551 11.223 9.121 0.223 12.927 14.426 6.836 5.487 13.810

Polyphen-2 - 26.418 5.845 24.912 0.197 31.568 15.692 18.472 20.861 18.914

PROVEAN - 7.651 22.025 3.351 33.840 31.010 21.451 16.791 31.477

MUTPRED - 10.031 0.168 13.833 10.330 2.344 17.180 9.472

PANTHER - 0.942 21.603 21.486 31.438 22.533 15.441

I-Mutant 3.0 - 1.197 3.540 5.385 0.001 1.672

SNPs3D - 31.815 19.240 22.071 32.748

PhD-SNP - 16.665 12.380 22.088

SNP&GO - 11.256 13.417

Mutation
Assessor

- 17.635

The results in bold were not significant (P>0.05).

doi:10.1371/journal.pone.0121812.t003

Fig 2. Distribution of the count of damage results of the 11 tools in the nsSNPs inMC1R gene.

doi:10.1371/journal.pone.0121812.g002
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residue, loss of stability, and gain of methylation (Table 4). The nsSNP C273Y showed the
highest deleterious scores of the mutations in the SIFT, Polyphen-2, PANTHER, PROVEAN
and MutPred programs, demonstrating the concordance of the results from the different tools
used to predict the most damaging polymorphisms in theMC1R gene.

The distribution of the prediction results was not equal along the protein: 18 nsSNPs occur
in the extracellular domain, 28 in the intracellular domain, and 46 in the transmembrane do-
main. The number of damaging results was significantly lower in the extracellular domain
(mean = 4.22±3.26) in relation to the transmembrane (mean = 6.89±3.17) and intracellular
(mean = 7.6±3.28) domains (Kruskal-Wallis Test H: 10.978, P = 0.004, df = 2). The different
transmembrane domains did not show significant differences in the number of damaging re-
sults of the nsSNPs (Kruskal-Wallis Test H: 6.84, P = 0.336, df = 6).

Analysis of consensus prediction tools
The PredictSNP 1.0 and PON-P consensus tools predicted 58 and 20 nsSNPs as deleterious
and pathogenic, respectively (S1 Table). The PON-P gave unclassified results for 36 nsSNPs.
The two consensus analysis tools showed a significant association among these (χ2: 36.823,
p<0.05).

While most of the nsSNPs with more than five damaging results coincided with PredictSNP
1.0 classifications, three nsSNPs that were classified as deleterious (S41C, I120T and I297V)
were predicted as neutral in PredictSNP 1.0, and four (M1I, M128T, K278E, and I292T) with
less than five damaging results were classified as deleterious in the PredictSNP 1.0 analysis.

Of the 57 nsSNPs classified as deleterious by more than five tools, 20 were predicted as path-
ogenic, 30 as unclassified and 7 as neutral by PON-P; while of the 35 nsSNPs classified as neu-
tral in the combine analysis, 29 were also classified as neutral in PON-P and six were predicted
as unclassified.

Fig 3. Two-dimensional structure of theMC1R protein according to the reference sequence of theMC1R gene (NP_002377).One letter amino acid
code is used. The 92 nsSNPs analyzed are colored in relation to the count of damage results in the 11 tools (legend). The RHC associated mutations are
indicated by the arrows. TM: transmembrane domains.

doi:10.1371/journal.pone.0121812.g003
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Discussion

Determination of the most damaging nsSNPs
The non-synonymous polymorphisms situated in theMC1R gene were evaluated by 11 pro-
grams that use different methods to predict the damaging nsSNPs. The differences in the pre-
dictions generated by the programs indicate the need for a combined analysis that could
identify with accuracy the nsSNPs that are most damaging to the function of theMC1R gene.

Table 4. Prediction scores from SIFT, PROVEAN, Polyphen-2, PANTHER, SNPs3D, Mutation Assessor and MutPred tools of the nsSNPs
selected as the most damaging in MC1R gene.

SNP ID Mutation SIFT
score

PROVEANsc
ore

PolyPhen-
2 PSIC
score

PANTHER SNPs3D
SMV
score

Mutation assessor MutPred

subPSEC Pdeleterious FIS
score

Functional
Impactor

g
score

Molecular
Mechanism
Disrupted
(P)

rs201787533 L48P 0 -6.202 1 -4.77696 0.85532 -2.64 3.250 medium 0.717 Loss of
catalytic
residue at
L48
(P = 0.0274)

rs372590533 R67W 0 -5.538 1 -5.53364 0.92647 -1.19 3.880 high 0.535 Loss of
solvent
accessibility
(P = 0.0087)

rs377122753 H70Y 0 -5.526 0.996 -3.71378 0.67123 -1.61 3.785 high 0.746

rs377297107 P72L 0 -9.182 0.997 -6.50925 0.97095 -1.07 3.055 medium 0.767

rs34474212 S83P 0.001 -3.287 0.999 -3.35336 0.58743 -1.06 3.800 high 0.759

rs149922657 R151H 0 -4.533 1 -4.31313 0.78804 -0.59 2.580 medium 0.542 Loss of
solvent
accessibility
(P = 0.0299)

rs376670171 S172I 0 -3.222 0.996 -4.19542 0.76771 -0.71 4.190 high 0.759 Loss of
glycosylation
at S172
(P = 0.0252)

rs377499038 L206P 0 -6.564 1 -6.45286 0.96932 -2.64 3.910 high 0.824 Loss of
stability
(P = 0.0428)
*

rs200051702 T242I 0 -5.619 0.999 -3.53343 0.63028 -1.61 3.620 high 0.815

rs371214731 G255R 0 -4.036 0.992 -3.60908 0.64773 -0.78 3.175 medium 0.824

rs200215218 P256S 0 -7.311 1 -5.89441 0.94757 -1.96 4.255 high 0.844

rs368281517 C273Y 0 -9.733 1 -6.92057 0.98056 -0.59 3.530 high 0.854 Gain of
methylation
at K278
(P = 0.0482)
*

rs369542041 C289R 0 -8.928 0.981 -3.52876 0.62919 -1.37 3.380 medium 0.885

rs368507952 R306H 0.001 -3.680 0.999 -5.97409 0.95139 -1.75 3.835 high 0.799

(*)The molecular mechanism disrupted show the actionable hypothesis when the probability of deleterious mutation (g score) are bigger than 0.5 and the

probability of impacted structural or functional properties (p score) are < 0.05.

doi:10.1371/journal.pone.0121812.t004
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For this purpose we combined the results of the 11 tools to classify the nsSNPs from, the
most neutral to the more damaging. The majority of the nsSNPs (57, about 62%) were pre-
dicted as damaging, deleterious or disease-associated by more than five programs showing
high concordance with two consensus prediction tools (Fig. 2).

The 14 nsSNPs classified as deleterious in the 11 tools were selected as the most damaging
in our combined analysis and were predicted as deleterious by PredictSNP 1.0, and as patho-
genic or unclassified by PON-P (S1 Table). Among the 14 nsSNPs only C289R (rs369542041)
has been previously analyzed in the literature [8] showing absence of functional coupling to the
cAMP pathway, and being unable to bind to agonist efficiently. The C273Y nsSNP that pres-
ents higher scores in five of the 11 tools are localized in the third extracellular loop domain
(Fig. 3) and affects a cystein highly conserved inMC1R gene across different species, according
to MSA analysis in Polyphen-2, PANTHER and Mutation Assessor. Although the majority of
the 14 nsSNPs most damaging described here were not analyzed by in vitro tests and there is
no information on the functional significance of these mutations inMC1R protein the results
demonstrated that these can be prioritized in further populational and laboratory studies.

The strategy of use the predictions of different tools was utilized to analyze the nsSNPs in
different genes involved in biological processes, allowing the most deleterious mutations to be
selected. The combination of tools resulted in the indication of four, two and one nsSNPs as
the most deleterious mutations in the TYR, TYRP1 and P proteins of the gene, which are asso-
ciated with oculocutaneous albinism type IA (OCA1A) [41], type III (OCA3) [42] and type II
(OCA2) [40], respectively. These results demonstrate that the use of a combination of tools
could adjust for the differences between the programs and improve the accuracy of the search
for the important polymorphisms, the occurrence of diseases or the phenotype variations.

Analysis of Red Hair Color (RHC) and Pathogenic MC1R variants
TheMC1R gene has been associated with variation in human skin and hair pigmentation, UV-
induced skin damage, and cutaneous malignant melanoma. The red hair color (RHC) pheno-
type is due to the production of more pheomelanin than eumelanin, and is usually a result of
MC1R recessive alleles that impair the function of the receptor [57] [58]. The variants D84E,
R151C, R160W and D294H are strongly associated with red hair and fair skin phenotypes, and
are classified as high-penetrance R alleles; while the variants V60L, V92M, and R163Q have
low penetrance in these features and are classified as r alleles [6] [8] [59] [60] [61] [62]. The
variants R142H and I155T are less frequent and have also been associated with RHC, based on
findings of a strong family association. R142H shows an association with RHC that is similar
to the other R alleles, while the association of I155T was low in a meta-analysis [63].

Additionally, some polymorphisms (V60L, D84E, V92M, R142H, R151C, I155T, R160W,
R163Q and D294H) were identified as involved in elevated risk of the development of melano-
ma [63] [64] [65] [66] [67] [68]. The available information in the NCBI and Uniprot databases
about nsSNPs that are classified as pathogenic is listed in S2 Table.

The polymorphisms characterized as RHC-associated or pathogenic in the dbSNP database
R142H, R151C, R160W and D294H were predicted as having damaging effects in 10 of the 11
programs, I155T in nine programs and D84E in seven programs (Fig. 3 and S2 Table). These
six polymorphisms were classified as deleterious in the two consensus analyses (S1 Table).

The nsSNP R163Q was predicted as damaging in three programs, and V60L in two. The
V92Mmutation was classified as damaging only in I-Mutant 3.0. Those three nsSNPs were
predicted as neutral in PredictSNP and PON-P consensus analyses.

Kanetsky et al. [69] found a concordance between the RHC categories of theMC1R variants
and the prediction of damaging changes, by means of an evolutionary amino acid conservation
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approach using SIFT. The R alleles D84E, R142H, R151C, I155T, R160W and D284H were pre-
dicted to be intolerant, and the variants V60L, V92M and R163Q were predicted to be tolerant.
Their categories defined by SIFT gave similar results in the analysis of association with pheno-
types in relation to the literature classification in a Caucasian population. Zhang et al. [70] ana-
lyzed a set of 22 nsSNPs inMC1R with SIFT and Polyphen, and found that the two programs
classified 11 as damaging, including the R variants.

The variation in the prediction results of nsSNPs indicated in the literature classification as
major (R) and minor (r) associated with the RHC phenotype [71] [72] [73], [74], [75] highlight
the need for laboratory studies of the functional effects of the other nsSNPs predicted as dam-
aging in theMC1R gene.

Conclusion
The analysis of the SNP involved in the determination of variation in phenotypes or in complex
diseases is a challenge that requires different approaches. Here, we used different methods to
predict the most damaging mutations in the humanMC1R gene, a key protein in the control of
pigmentation in animals. Although some of the polymorphisms found inMC1R have been
studied in the laboratory, many others have not yet been evaluated with respect to their possi-
ble damaging effects on protein structure and function.

The programs used here are based on evolutionary, structural and computational methods,
gathering information on these different properties of the alterations caused by the mutations
and predicting those that are most probably damaging or disease-associated. The analysis of
the results demonstrated the association between the different methods employed, with the
consensus tools supporting the strategies applied to the discrimination of the damaging from
the neutral nsSNPs.

Our characterization of the nsSNPs as damaging or neutral based in the combination of the
tools indicate differences in the damaging prediction of the RHC-associated alleles classified in
the literature as high-penetrance (R) or low-penetrance (r) alleles, although it was not clear
what mechanism or mechanisms are involved in the differences in the effects of these alleles.
The selected most-probably damaging nsSNPs could be prioritized in further studies of the
functional properties of the mutated receptor. In particular, the C273Y polymorphism, located
in the third extracellular loop, was indicated as the most deleterious by different tools.

Finally, these results may contribute to the understanding of the variations in skin and hair
phenotypes, and of the causes of complex diseases such as melanoma.

Supporting Information
S1 Table. Prediction results of the nsSNPs inMC1R human gene. Results of the eleven indi-
vidual tools, of the two consensus tools PON-P and PredictSNP 1.0. The nsSNPs in bold were
selected by filter analysis.
(DOC)

S2 Table. Information available about theMC1R nsSNPs. The data in dbSNP (NCBI) and
Uniprot databases about the nsSNPs classified as pathogenic and the alleles associated with
RHC phenotype in literature. R: alleles with high penetrance; r: alleles with low penetrance in
RHC. � alleles with divergences in the RHC classification.
(DOC)
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