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Aims: Subarachnoid hemorrhage (SAH) is a devastating stroke subtype. Following SAH,
erythrocyte lysis contributes to cell death and brain injuries. Blockage of the anti-phagocytic
receptor Cluster of Differentiation 47 (CD47) enhances phagocyte clearance of erythrocytes,
though it has not been well-studied post-SAH. The current study aims to determine whether
anti-CD47 treatment can enhance blood clearance after experimental SAH.

Methods: The prechiasmatic blood injection model of SAH was used in mice. Mice were
either treated with the CD47-blocking antibody or IgG as control. The effect of the anti-CD47
antibody on blood clearance and neurological function following SAH was determined.
Neuroinflammation and neuronal injury were compared between the treatment and control
samples on day 1 and day 7 after SAH using flow cytometry, immunofluorescence, Fluoro-
Jade C, and Nissl staining, RT-PCR, and Western blot analysis.

Results: CD47-blocking antibody sped-up blood clearance after SAH, and resulted in
less neuronal injury and neurological deficits than control samples. Microglia played a role
in the anti-CD47 blockade. Following SAH Following SAH, CD47 antibody-treated mice
had less neuroinflammation and lower levels of apoptosis compared to controls and both
one and 7 days.

Conclusions: CD47 antibody treatment has a neuroprotective effect following SAH, by
increasing blood clearance rate and reducing brain injury. These findings suggest CD47
antibody treatment may improve SAH patient outcomes.
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INTRODUCTION

Subarachnoid hemorrhage (SAH) is a devastating disease
associated with high mortality and morbidity in patients
worldwide (1). Delayed cerebral vasospasm has been
considered the major mechanism of brain injury caused by
SAH. Recently, however, randomized double-blind controlled
studies demonstrated that a reduction of cerebral vasospasm did
not reduce mortality or improve patient outcomes (2–4). Several
studies have demonstrated that early brain injury (EBI) plays a
decisive role in the prognosis of SAH (5). Friedrich et al. (6)
found acute activation of apoptosis and neuronal necrosis after
SAH, and, using the rat model, that early management of SAH
can significantly reduce mortality and alleviate neurological
impairment (6). Current studies suggest that EBI pathogenesis
after SAH is multifactorial and highly complex, and includes the
inflammatory response, excitotoxicity, oxidative stress, cell
autophagy, apoptosis, and necrosis (7). Despite persistent poor
patient outcomes, there is no effective therapeutic target for EBI.

During a SAH, a large amount of blood is released into the
subarachnoid space, and subarachnoid clots can cause EBI (7).
The size of the hemorrhage positively correlates with
neurological deficits and poor prognosis (8, 9). During the
hemorrhage, erythrocyte lysis releases large quantities of free
radicals, which cause oxidative stress that directly disrupts cell
signaling, causes protein breakdown, DNA damage, and can
eventually lead to cell death (10). Rapid and effective removal of
erythrocytes, and preventing them from lysing, could therefore
potentially mitigate EBI.

The Cluster of Differentiation 47 (CD47) is an integrin-
associated protein and is widely expressed on the surface of
erythrocytes as a “don’t eat me” signal. CD47 interacts with
Signal-Regulatory Protein alpha (SIRPa) on myeloid cells to
prevent phagocytosis (11, 12). Mechanistic studies show that
the CD47–SIRPa interaction activates tyrosine phosphatase
and the inhibition of myosin-II at the site of the phagocytic
synapse (13, 14). The medication Deferoxamine could
reduce the expression of CD47 after intracerebral hemorrhage,
leading to an acceleration of hematoma removal by promoting
erythrophagocytosis (15). Additionally, anti-CD47 treatment has
been demonstrated to enhance hematoma clearance and improve
prognosis in the experimental intracerebral hemorrhage model
(swine and rats model) (16–18). However, the effect of CD47
antibody on erythrocyte clearance after SAH has not been so
comprehensively studied. Based on this, we aimed to determine
the effect of the CD47-blocking antibody on EBI after SAH.
MATERIALS AND METHODS

Animals
Male C57BL/6J mice (n=150), at 8–10 weeks of age (range 23-
25g), were purchased from Shanghai Laboratory Animal Co.,
Ltd. (SLAC). The mice were raised in a controlled environment
(12:12 h light-dark cycle, 25 ± 1°C) and housed with water and
food ad libitum. All experimental procedures were approved by
Frontiers in Immunology | www.frontiersin.org 2
the ethics committee of Shanghai Jiao Tong University and
implemented according to the National Institutes of Health
guidelines for the Care and Use of Laboratory Animals.

Experimental SAH Model
The prechiasmatic SAH mice model was created as previously
described (19). In brief, with 1% pentobarbital anesthesia, the
head of the mouse was fixed on a stereotactic apparatus
(Stoelting Co.). The scalp above the anterior skull was then
opened with a midline incision and a 0.9 mm diameter burr hole
was drilled (4.5 mm anterior from bregma). A 26-gauge needle
was then passed through the burr hole to the base of the skull
(caudal angel of 40°). A mixture of 10 µg/mL CD47 antibody
(Invitrogen, 16-0479-85) or IgG (Invitrogen, 14-4714-85) with
60 mL autologous blood was injected into the prechiasmatic
cisternae. The needle was left in place for 5 min before retraction
to avoid backflow. Mice underwent the same procedure, without
blood and antibody/IgG injections, served as the sham group. A
representative picture of the mice brain of sham and SAHmodels
was shown in Figure 1A.

Experimental Design
The experiment design is shown in Figure 1B. For the first part
of the experiment (1 day), to evaluate the possible early effects of
CD47 antibody treatment of SAH, 96 mice were divided
randomly into 3 treatment groups (n = 32 per group): sham,
SAH + IgG, and SAH + CD47 antibody (Figure 1). The mice
were executed one day 1 after treatment. We first analyzed the
quantitative analysis of hemorrhage clearance in the brain after
SAH. Eight mice per group were used for hemoglobin
quantification and neurological tests. Six mice per group were
sacrificed for flow cytometry analysis. Six mice per group were
used for immunofluorescence and Fluoro-Jade C staining, and
six for Western blot analysis to measure apoptosis. RT-PCR was
performed to quantify mRNA expression of the four pro-
inflammatory target genes (CD16, CD32, IL-1b, and TNF-a)
(n = 6 per group).

On day seven after SAH (experiment 2), to determine the
potential longer-term effect of CD47 antibody treatment, 48 mice
were tested randomly among the 3 treatment groups (n = 14):
sham, SAH + IgG, and SAH + CD47 antibody. Neurobehavior
was assessed at day 7 post-treatment and performed using 8 mice
per treatment group. The remaining six mice per group were
used for Nissl and Fluoro-Jade C staining to study the
neuronal damage.

Quantitative Estimation of Residual Blood
The cisternal blood volume was estimated by quantifying the
hemoglobin content (20, 21). Briefly, the whole brain (with the
arachnoid membrane intact) was homogenized in 1000 ml of
distilled water. To generate a standard concentration curve,
whole blood was added in increments (0, 0.5, 1.0, 2.0, 5.0, and
10.0 ml volume) to 1000 ml of untreated brain sample lysate. The
homogenized brain was centrifuged at 12,000 g for 30 minutes
and, in a 96 well plate, 20 ml of supernatant was added to 80 ml of
Drabkin’s reagent (Sigma-Aldrich) and incubated at room
temperature (RT) for 15 min. The optical density of the
February 2022 | Volume 13 | Article 823999
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samples and the standard curve was measured at 540 nm and the
hemoglobin concentration was calculated.

Mice Brain Flow Cytometry
Flow Cytometry was performed as previously described (22). On
the first day after treatment, mice were anesthetized and
transcardially perfused with 20 mL of Hanks buffer containing
10 mM HEPES. Brains were then carefully harvested and tissues
homogenized with a pre-chilled Dounce homogenizer and
filtered through a 70 mm mesh. After centrifugation (340 g for
5 minutes at 4°C), the tissue was resuspended by adding 5ml of
30% percoll (GE Healthcare Bio-science) and then centrifuged at
900 g for 20 minutes. The myelin and supernatant were carefully
removed. Red blood cells were lysed using eBioscience™ 1X RBC
Lysis Buffer (Thermo Fisher Scientific) before staining. Single-
cell suspension staining was performed at 4°C for 30 minutes
using the following antibodies: FITC anti-mouse CD45 antibody
(BioLegend, 1:100), PerCP-Cy5.5 Tmem119 Monoclonal
Antibody (Thermo Fisher Scientific, 1:100), Ly-6G Antibody,
PE-Cyanine5 (Thermo Fisher Scientific, 1:100), Brilliant Violet
421 anti-mouse F4/80 Antibody (BioLegend, 1:100), PE/
Cyanine7 anti-mouse/human CD11b Antibody (BioLegend,
1:100), CD172a (SIRP alpha) Monoclonal Antibody (Thermo
Fisher Scientific, 1:100). Cell viability was assessed using LIVE/
DEAD™ Fixable Near-IR Dead Cell Stain Kit (Thermo Fisher
Scientific, 1:100). Cells were acquired on a CytoFLEX flow
cytometer (Beckman Coulter, United States). Using the flow
Frontiers in Immunology | www.frontiersin.org 3
cytometric gating strategy, shown in Figure 2C, we distinguished
three groups of myeloid cells, monocytes (CD45+, CD11b+, F4/
80-), macrophages (Ly6G-, CD45+, CD11b+, F4/80+), and
microglia (CD45-, Ly6G-, Tmem119+). Mean fluorescence
intensity (MFI) of myeloid cells was measured using CytExpert
software (Beckman Coulter).

Western Blotting
To investigate the presence of apoptotic signals, tissue of the
right temporal lobe of sampled mice brains was homogenized in
RIPA lysis buffer (Beyotime) and Pierce Protease and
Phosphatase Inhibitor Mini Tablets (Thermo Scientific), and
centrifuged (13,000 g for 15 minutes at 4°C). Protein
concentrations were determined using BCA Protein Assay Kits
(Thermo Fisher Scientific). An equal amount of protein samples
(40 mg/lane) were loaded onto a 12% SDS-PAGE and transferred
onto PVDF membranes (Merck Millipore). The membranes
were blocked with 5% milk powder and incubated overnight at
4°C with the primary antibodies: Bcl-2 Rabbit Antibody (1:1000,
Cell Signaling Technology #3498) and Bax Rabbit Antibody
(1:1000, Cell Signaling Technology #2772) and b-actin Rabbit
Antibody (1:10000, Cell Signaling Technology #4970). The
PVDF membranes were then incubated with the HRP-linked
secondary antibody (1:5000, Santa Cruz Biotechnology) at RT for
1 h. Protein bands were visualized using chemiluminescence
reagent kit (Amersham Bioscience). The relative densities of the
bands were quantified using ImageJ software (NIH).
B

A

FIGURE 1 | Experimental design. (A) Representative brain images of Sham and SAH mice. (B) Schematic diagram of experimental design.
February 2022 | Volume 13 | Article 823999
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Immunofluorescence Labeling
A series of 8 mm-thick frozen coronal brain tissue slices were
taken from brains for immunofluorescent labeling (23). Brain
sections were blocked with QuickBlock™ Blocking Buffer
(Beyotime) and incubated at 4°C overnight with the following
primary antibodies: goat anti–Iba-1 (1:500, ab5076), anti-CD68
(1:150, ab213363) and recombinant anti-Myeloperoxidase
Frontiers in Immunology | www.frontiersin.org 4
antibody (1:1000, ab225474). The tissue sections were washed
and incubated with Alexa Fluor fluorescence-conjugated
secondary antibodies (1:500, Thermo Fisher) at RT for 2 h.
The tissue sections were fixed in DAPI-containing mounting
medium and observed using a fluorescent microscope
(Olympus). Image superimposition and cell counts were
performed using ImageJ software.
A

C

D

B

FIGURE 2 | Effects of CD47 blocking antibody on blood clearance and neurological function. (A) Representative brain images and quantification analysis of residual
hemorrhage in brain samples. n = 8 per group. Mean ± SD. #P < 0.05 vs. SAH + IgG group. (B) Summary of modified Garcia scores of Sham, SAH + IgG, and SAH +
CD47. n = 8 per group. Medians ± IQR. *P < 0.05 vs. Sham group, #P < 0.05 vs. SAH + IgG group. (C) Gating strategy to distinguish monocytes (CD45+, CD11b+,
F4/80-), macrophages (Ly6G-, CD45+, CD11b+, F4/80+), and microglia (CD45-, Ly6G-, Tmem119+). SIRPa was then assessed based on FMO control. (D) Mean
fluorescence index (MFi) of SIRPa in various groups. n = 6 per group. Mean ± SD.*P < 0.05 vs. Sham group; **P < 0.01 vs. Sham group; #P < 0.05 vs. SAH+IgG group.
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Fluoro-Jade C Staining
Fluoro-Jade C staining (FJC) was used for the specific detection
of degenerating neurons. FJC was performed according to the
manufacturer’s instruction at 1d and 7d post SAH using an FJC
Kit (Biosensis). The FJC positive cells were counted manually
using ImageJ software. Three 200 × microscopic fields were
counted per sample by investigators blinded to the treatment
group. The data were expressed as mean positive cell
number/mm2.

Nissl Staining
Nissl staining was conducted to visualize neuronal survival (23).
Frozen mouse brain tissue sections were washed and then
immersed with 0.5% cresyl violet solution (Sigma-Aldrich).
Sections were then sequentially dehydrated in 70%, 80%, 95%,
and 100% ethanol, and cleared in xylene for 3 minutes. The brain
tissue sections were mounted with Permount and coverslipped.
Random fields in the temporal cortex and the hippocampus were
observed under a light microscope, and the number of surviving
neurons was counted by an investigator blinded to the
treatment group.

qRT-PCR
Total RNA was isolated from brain tissues using TRIzol reagent
(Invitrogen) and used for cDNA synthesis using PrimeScript™

RT Master Mix (Takara BioInc). PCR was performed on an
Applied Biosystems Quant Studio™ 5 (Thermo Fisher Scientific)
and TB Green™ Premix Ex Taq™ (Takara BioInc). The primers
(Sangon Biotech, Shanghai, China) used to measure pro-
inflammatory gene expression were listed as follows: CD16
(Forward: ATGCACACTCTGGAAGCCAA, Reverse: AAGAG
CACTCTGCCTGTCTG), CD32 (Forward: ATCTGGACTG
GAGCCAACAAG, Reverse: TTCTTCATCCAGGGCTTCGG),
b-actin (Forward: AGCTCAGTAACAGTCCGCCTA, Reverse:
AGGCATTGTGATGGACTCCG),

IL-1b (Forward: GATCCACACTCTCCAGCTGCA, Reverse:
CAACCAACAAGTGATATTCTCCATG), TNF-a (Forward:
TTGGTGGTTTGCTACGACGTG, Reverse: ATGGCCTC
CCTCTCAGTTC).

Behavioral Examination
A Modified Garcia neurological test scoring system was used to
evaluate sensorimotor disorders 24 hours post-treatment (24).
Motor functions were evaluated by an investigator blinded to the
treatment groups on day 7 to study motor deficiencies using the
holding time test and the footprint test (25). Briefly, mice were
placed on a 30°-angle-cotton tip wooden applicator, and the
duration of the mouse’s stay was recorded. Each mouse was
tested three times and the mean duration was calculated. To
perform the footprint test, mice were marked with non-toxic
paint on their front paws (yellow) and hind paws (blue). A
narrow corridor apparatus was used to ensure that the mice
walked in a straight line and white paper was used to record paw
prints. While walking, if the front and hind paws reached the
same level (superimposed), suggesting normal motor function, a
score of 0 was recorded. When the left and/or right hind paws
could not follow the position of the front paws while walking (no
Frontiers in Immunology | www.frontiersin.org 5
superimposition), suggesting motor dysfunction, a score of -1
was given. Each mouse was measured three times for each paw
and the scores were summed.

Statistical Analyses
The data of modified Garcia score was presented as medians ±
IQR (Interquartile range), the rest data were expressed as mean ±
SD. Statistical analyses were performed using GraphPad Prism
8.0 (GraphPad Software). Kolmogorov Smirnov test was used for
testing normality. Then data were analyzed using a one-way
analysis of variance (ANOVA), student t-test, or non-parametric
test where applicable. Kruskal Wallis test followed by Dunn
multiple comparisons post hoc was performed since that data is
non-parametric. Results were considered statistically significant
at P < 0.05.
RESULTS

Mortality
All shammice survived for the duration of the experiment. In the
SAH groups, 11.5% (12/104) of mice died (Table 1).

Effects of CD47-Blocking Antibody
on Blood Clearance and
Neurological Function
To study the role of CD47 blocking antibody after SAH in mice,
we first analyzed the quantitative analysis of hemorrhage
clearance in the brain after SAH. There was significantly less
residual blood in the CD47 antibody-treated group as compared
to the control group at one-day post-treatment (P< 0.05,
Figure 2A). The modified Garcia neurological score was
significantly lower in the SAH + IgG group compared to the
sham group (P < 0.05, Figure 2B). However, CD47 blocking
antibody administration improved neurological scores (P < 0.05,
Figure 2B). We then examined the expression levels of the ligand
SIRPa of CD47 in different cells by flow cytometry labeling
following SAH. Compared with the IgG control group, the
SIRPa fluorescence intensity was lower after CD47 antibody
treatment, suggesting that CD47 antibody treatment disrupts
CD47-SIRPa interaction on microglia, which promoted
phagocytic activity (P < 0.05, Figures 2C, D).
TABLE 1 | Mouse mortality among the experimental groups.

Experimental groups Mortality

Experiment 1.
Sham 0/32
SAH+IgG (1d) 4/36
SAH+CD47 (1d) 3/35
Experiment 2.
Sham 0/14
SAH+IgG (7d) 3/17
SAH+CD47 (7d) 2/16
Total 150
Sham 0/46
SAH 12/104
February 2022 | Volume 13 | Artic
le 823999

https://www.frontiersin.org/journals/immunology
http://www.frontiersin.org/
https://www.frontiersin.org/journals/immunology#articles


Xu et al. CD47 Blockade in SAH
Effects of CD47 Antibody on Neuronal
Injury 24 h Post-SAH
We next asked whether CD47 blockade could rescue SAH-
induced neuronal injury. FJC staining and Western blot for
Bcl-2/Bax ratio were conducted to assess neuronal
degeneration and apoptosis. After SAH, One day after SAH,
significantly more FJC-positive cells were observed. While CD47
antibody treatment group had significantly fewer FJC-positive
cells at 1-day post-treatment as compared to the IgG group
(P<0.05, Figures 3A, B). The Bax has been identified as an
indicator of apoptosis, while Bcl-2 is a cellular protein that
inhibits apoptosis. Bcl-2 and Bax proteins were detected, and
the Bcl-2/Bax ratio was significantly higher in the SAH+CD47
antibody group at 1 d post-treatment as compared to the SAH
+IgG group, suggesting that neuronal apoptosis was inhibited in
the CD47 group (P<0.05, Figures 3C, D).
Frontiers in Immunology | www.frontiersin.org 6
CD47 Blockade Suppressed
Neuroinflammation and Neutrophil
Infiltration
Activation of microglia/macrophage is considered as a hallmark
of neuroinflammation, to study the role of CD47 blockade in
neuroinflammation, we identified activated microglia using
CD68 staining. There were significantly more CD68-stained
microglia observed in the treatment group SAH+IgG, as
compared to the sham group, while the number of CD68-
positive cells was significantly less in the SAH+CD47 antibody
group (P<0.05, Figures 4A, B). MPO immunostaining indicated
neutrophil infiltration after SAH, and with fewer neutrophils in
the CD47 antibody group as compared to the SAH+IgG group.
(P<0.05, Figures 4C, D). Expression of the pro-inflammatory
(M1) associated genes CD16, CD32, IL-1b, and TNF-a, was
higher in the SAH+IgG group as compared to control (P<0.05,
A

B C D

FIGURE 3 | Effects of CD47 antibody on neuronal injury 24 h after SAH. (A) Images of Fluoro-Jade C positive cells (indicated by white arrows) in various groups.
Scale bar = 50 mm. (B) Quantitative analysis of Fluoro-Jade C positive cells per mm2. n = 6 per group. Data are expressed as mean ± SD. *P < 0.05 vs. Sham
group; #P < 0.05 vs. SAH+IgG group. (C) Representative Western blotting images shows Bcl-2, Bax, and b-Actin levels in the temporal cortex in various groups.
(D) Quantification analysis of Bcl-2/Bax ratio in various groups. n = 6 per group. Data are expressed as mean ± SD. *P < 0.05 vs. Sham group; #P < 0.05 vs.
SAH+IgG group.
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B

D

E F G H

A

C

FIGURE 4 | CD47 blockade suppressed neuroinflammation and neutrophil infiltration. (A) Images of CD68 immunostaining in various groups, white arrows mark
CD68 positive cells. Scale bar = 100 mm. (B) Quantitative analysis of CD68-positive cells. n = 6 per group. Data are expressed as mean ± SD. *P < 0.05 vs. Sham
group; #P < 0.05 vs. SAH+IgG group. (C) Images of MPO immunostaining (MPO positive cells indicated by white arrows). Scale bar = 50 mm. (D) Quantitative
analysis of MPO-positive cells in various groups. n = 6 per group. Data are expressed as mean ± SD. *P < 0.05 vs. Sham group; #P < 0.05 vs. SAH+IgG group.
(E–H). The bar graph shows mRNA expression of CD16 (E), CD32 (F), IL-1b (G), and TNF-a (H) of brain tissues at 24 h after SAH or sham procedures in mice.
n = 6 mice per group. Data are expressed as mean ± SD. *P < 0.05 vs. Sham group; #P < 0.05 vs. SAH+IgG group.
Frontiers in Immunology | www.frontiersin.org February 2022 | Volume 13 | Article 8239997
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Figures 4E–H). M1-associated genes demonstrated less
expression in the SAH+CD47 antibody treatment group as
compared to SAH+IgG (P<0.05, Figures 4E–H).

Effects of CD47 Blocking Antibody on
Motor Deficiencies Day 7 After SAH
The holding time of mice in the SAH group was significantly less
compared to the sham. Mice treated with the CD47 antibody had
a significantly longer holding time than IgG-treated animals on
day 7 (P<0.05, Figures 5A, B). Mice showed a significantly
deficient gait after injury compared to the sham group, however,
mice in the SAH+CD47 antibody group had relatively less gait
deficiency (P<0.05, Figures 5C, D).

CD47 Blockade Attenuated Neuronal
Degeneration 7 Days After SAH
Nissl staining and FJC staining was performed to determine
whether CD47 could attenuate neuronal degeneration. Mouse
brain slices from the sham treatment group demonstrated a
Frontiers in Immunology | www.frontiersin.org 8
significantly lower number of surviving neurons in the CA1,
CA3, DG areas, and cortex as compared to the SAH+IgG group,
while anti-CD47 treatment reversed this reduction (P<0.05,
Figures 6A, B). Similarly, FJC-positive cells numbers were more
prominent in the hippocampal regions and temporal cortex in
both SAH treatment groups as compared to the sham, however,
the SAH+CD47 antibody had fewer FJC-positive cells compared
to the SAH+IgG group (P<0.05, Figures 6C, D).
DISCUSSION

It was found that CD47-blocking antibodies promoted blood
clearance and alleviated SAH-induced neurological deficits and
neuronal injury in mice. Microglia are effector cells that respond
to the CD47 blockade. Neuroinflammation in response to SAH
was attenuated with CD47 antibody, which also facilitated
improved neurological function and reduced neurodegeneration
by day 7 post-treatment (Figure 7).
DC

BA

FIGURE 5 | Effects of CD47 blocking antibody on motor deficiencies day 7 after SAH. (A) Schematic diagram of the holding time test. (B) The holding capacity of
holding time test in various groups. n = 8 per group. Data are expressed as mean± SD. *P < 0.05 vs. Sham group; #P < 0.05 vs. SAH+IgG group. (C) Yellow paint
on the two forepaws and blue paint on the two hind paws. (D) Scores of footprint test in various groups. n = 8 per group. Data are expressed as mean± SD.
*P < 0.05 vs. Sham group; #P < 0.05 vs. SAH+IgG group.
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The autologous blood prechiasmatic injection model of SAH
was used because blood distribution is more consistent, better
simulating the rupture of anterior circulation aneurysms, than
the cisterna magna SAH model (20, 26). The specific quantity of
injected blood also makes this model highly reproducible, and
the severity of bleeding is less variable than for the endovascular
SAH model (20).

The cell surface glycoprotein CD47 (also known as integrin-
associated protein) is a marker of “self” that is involved in
macrophage signaling regulation (27). As a ligand for the
signal-regulatory protein alpha (SIRPa), CD47 can inhibit
Frontiers in Immunology | www.frontiersin.org 9
erythrocyte phagocytosis (11). Our data indicate that blocking
CD47‐SIRPa interactions, via a CD47 antibody, could enhance
blood clearance while conferring a neuroprotective effect in SAH
models. SIRPa was expressed on the surface of myeloid cells and
indicated that several cells of the myeloid lineage, the brain-
resident microglia, infiltrated peripheral monocytes as well as
differentiated macrophages, could be the phagocytes in response
to SAH. Previous studies suggest that reactive immune cells are
mainly from the CNS-resident microglia pool, rather than
infiltrating inflammatory monocytes (28) and that murine
microglia have the potential to mediate blood clearance after
D

B

A

C

FIGURE 6 | CD47 blockade attenuated neuronal degeneration 7 days after SAH. (A) Images of Nissl staining show surviving neurons in the hippocampal regions
and temporal cortex sham and SAH groups after 7 days. Scale bar = 50 mm. (B) Quantitative analysis of surviving neurons per mm2. n = 6 per group. Data are
expressed as mean± SD. *P < 0.05 vs. Sham group; #P < 0.05 vs. SAH+IgG group. (C) Images of Fluoro-Jade C positive cells in the hippocampal regions and
temporal cortex in sham and SAH groups after 7 days. Scale bar = 50 mm. (D) Quantitative analysis of Fluoro-Jade C positive cells per mm2. n = 6 per group.
Data are expressed as mean ± SD. *P < 0.05 vs. Sham group; #P < 0.05 vs. SAH+IgG group.
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SAH (19). Our findings show that a decrease in SIRPaMFi level
of microglia 1d post-SAH, suggesting that the microglia are the
main effector myeloid cells after CD47-SIRPa axis disruption.
Neuronal injury is considered as the main cause of neurological
symptoms in SAH mice (25), CD47 antibody treatment
significantly reduced neuronal damage and apoptosis, as
compared to SAH+IgG, suggesting a neuroprotective function
of CD47 blockage in EBI after SAH.

After SAH, RBC degradation could produce free hemoglobin
(Hb), released Hb can be oxidized to oxyHb, methemoglobin
(MetHb), and peroxides, which continue to react leading to the
formation of Ferryl(Fe4+)Hb, Reactive oxygen species (ROS),
and Heme (29). Hemoglobin lysis, therefore, has cytotoxic effects
that can lead to neuron death (30). MetHb and FerrylHb, as a
result of erythrocyte lysis, are strong pro-oxidants and pro-
inflammatory agonists, which initiate inflammatory cell
chemotaxis and neuronal necrosis or apoptosis, such as by
Frontiers in Immunology | www.frontiersin.org 10
activating NF-kB (31). Heme can also tr igger the
neuroinflammatory pathways, through the TLR4 signaling
pathway, by activating microglia to produce TNF, IL-6, and
IL-1b, leading to neurological damage (32, 33). We found that
CD47 antibody treatment promoted blood clearance, then we
hypothesized that reduction of erythrocytes in the subarachnoid
space may help to suppress the neuroinflammatory and signaling
cascade thereby alleviating EBI after SAH. Microglia/
macrophage activation, as well as neutrophil infiltration, are
central to the inflammatory response following SAH (25).
Microglia/macrophages of the central nervous system can
polarize into two states in response to injury, termed the
classical phenotype (M1-like phenotype) and the alternative
phenotype (M2-like phenotype) (34). Van Dijk et al. (35)
found that microglia can exhibit phagocytic activity in early
brain injury after SAH, thereby reducing the expression levels of
IL-1, IL-6, and TNF-a, and ultimately reducing neuronal
FIGURE 7 | A diagram of the mechanism by which CD47 blockade accelerates blood clearance and alleviates early brain injury after experimental subarachnoid
hemorrhage. (Created with BioRender.com).
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apoptosis (35). In this study, CD47 antibody treatment reduced
the M1 polarization marker (CD16/32, IL-1, TNF-a), decreased
neutrophil infiltration and microglia/macrophage activation,
suggesting CD47 involvement in orchestrating SAH-induced
neuroinflammation, which confirms our previous hypothesis.

Neuroinflammation during EBI is related to the increase in
neuronal death, often reflected by the development of neurologic
deficits and referred to as Delayed cerebral infarction (DCI), typically
occurring on day 4 to 7 after SAH (36). Erythrocyte lysis is involved
in the majority of DCI pathological processes following SAH (29).
Palade et al. (37) suggested that neuronal apoptosis occurs in the
cortex, but hippocampal neuronal death may be associated with
ischemia (37). We observed motor dysfunction and hippocampal
and cortical neuronal damage 7 days after SAH, suggesting that DCI
may have occurred which result in neuronal apoptosis and further
motor deficits. This result is consistent with previous findings of
SAH-induced motor deficits associated with neuronal death in
clinical patients and animal models (25, 38, 39). Our results
suggest that the CD47 blocking antibody facilitates delayed
neuronal damage and motor deficits by promoting blood clearance.

Limitations of this study should not be ignored. First, the impact
of the blockade antibody on the sham group had not been
determined, which would be more convincing to add the sham +
CD47 group as well for comparison. Besides, we focus on the CD47-
SIRP axis of microglia in regulating erythrophagocytosis, though
other CNS macrophages likely play a role in neuroinflammation.
Previous studies have suggested that resident microglia rather than
infiltrating macrophages are involved in neuroinflammation and
blood clearance after SAH, but recent studies have shown that the
immune cells of choroid plexus and meningeal/perivascular
macrophages also play an important role in outcome after SAH
(40, 41). The exact mechanism of CNS border-associated
macrophages (BAMs) remains to be elucidated. Also, the effect of
sex on CD47 blocking antibody treatment was not explored and
could be investigated in future studies.

In conclusion, our data revealed that the CD47-blocking antibody
can enhance blood clearance and reduce brain injury in the SAH
mice model. These results may help to provide strategies for the
prevention, or treatment, of EBI after SAH. As such, it could lay the
foundation for the application of CD47 antibody in translational
medicine, leading to better patient outcomes in the future.
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