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RNA-Seq is emerging as an increasingly important tool in biological research, and it provides the most direct evidence of the
relationship between the physiological state and molecular changes in cells. A large amount of RNA-Seq data across diverse
experimental conditions have been generated and deposited in public databases. However, most developed approaches for
coexpression analyses focus on the coexpression pattern mining of the transcriptome, thereby ignoring the magnitude of gene
differences in one pattern. Furthermore, the functional relationships of genes in one pattern, and notably among patterns, were
not always recognized. In this study, we developed an integrated strategy to identify differential coexpression patterns of genes and
probed the functional mechanisms of the modules. Two real datasets were used to validate the method and allow comparisons
with other methods. One of the datasets was selected to illustrate the flow of a typical analysis. In summary, we present an
approach to robustly detect coexpression patterns in transcriptomes and to stratify patterns according to their relative differences.
Furthermore, a global relationship between patterns and biological functions was constructed. In addition, a freely accessible web
toolkit “coexpression pattern mining and GO functional analysis” (COGO) was developed.

1. Introduction

High-throughput RNA sequencing (RNA-Seq) is a revolu-
tionary technology in the postgenome era. RNA-Seq rapidly
generates transcript sequences and provides more detailed
information than microarray-based technologies. RNA-Seq
has the ability to reconstruct a completemap of the transcrip-
tome in different cell types or physiological conditions [1, 2].
The dynamic transcriptome of cells is an importantmolecular
signature that can represent the physiological state of different
tissues, facilitating an understanding of the mechanism of
gene regulation. RNA-Seq technology is becoming increas-
ingly common as the sequencing cost is reduced and the
accuracy is improved. More studies use RNA-seq technology,

resulting in a series of RNA-Seq datasets across multiple
related experimental conditions, such as in comparisons of
multiple tumor subtypes or the effect of the concentration of a
drug. Genes that exhibit similar responses to external stimuli
are potentially controlled by similar regulatory mechanisms
[3]. Therefore, it is important to monitor the expression pat-
tern of genes and to discover the genes that are coexpressed
amongmultiple conditions.These coexpression patters could
describe the biological regulatory relationships of these genes.

Since the emergence of RNA-Seq technology, many dif-
ferential expression (DE) analysis methods based on RNA-
Seq data have been developed, such as Cuffdiff [4], DESeq
[5], edgeR [6], and SAMseq [7]. These methods have been
extensively used for differential expression analysis between
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two conditions. Numerous genes related to specific biological
functions have been found by these bioinformatics methods
and confirmed by follow-up biological experiments [8, 9].
However, the DE methods described above were developed
for pairwise comparisons, creating cumbersome, and con-
fusing analyses when processing data from more than two
conditions. In addition, a functional analysis was performed
for only the DE genes that were isolated from the whole
transcriptome, overlooking useful additional gene expression
information. Because of the gene dosage effect, genes that
are only slightly differently expressed may still provide useful
information as a measure of functional status [10, 11]. Even
the overlooked stably-expressed genes may be more essential
for the survival of an organism [12].

Therefore, we developed an integrated strategy for dif-
ferential coexpression pattern and GO function mining
(COGO) for a RNA-Seq data series. The COGO strategy
enables the biologist to view the data from a global per-
spective (Figure 1). First, the characteristic attributes should
be extracted from the expression values of a series of
RNA-Seq datasets. Second, the expression patterns can be
established and stratified according to feature attributes
that were extracted. Finally, functional enrichment analyses
are performed for each category to determine significant
function terms and the functional relationships of different
GO terms that are obtained by measuring their functional
semantic similarity [13]. The algorithms used in COGO are
detailed in Section 2 and in Figure 1.

To illustrate a typical analysis, we applied a pub-
lished RNA-Seq dataset obtained from the Gene Expression
Omnibus (GEO) that contains three biological conditions
[14]. The results indicated that genes coexpressed in spe-
cific categories could represent the response and stability
of biological functions to the experimental conditions. In
addition, a web toolkit, “COGO”, was developed based on
this method (http://202.97.205.74:8080/COGO). Users of this
toolkit submit a profile of RNA-Seq data and receive stratified
gene coexpression categories and the affected functional
modules.

2. Methods

2.1. Differences in Gene Expression among Multiple Groups.
Gene expression levels were quantified and normalized as
FPKM/RPKM measurements. The Cufflinks package was
used to calculate gene expression values using default settings
[15]. Then, the average gene expression level was calculated
for the experimental replicates. To identify coexpression
patterns of a series of RNA-Seq libraries with 𝑀(𝑀 ≥ 3)
experimental conditions in one study, we first quantified
gene expression differences among multiple conditions. We
defined 𝑒

𝑖,𝑗
as the expression value of gene 𝑖 = {1, . . . , 𝑁}

of condition 𝑗 = {1, . . . ,𝑀}, where 𝑁 is the number of
genes in the dataset. We adopted a method that was based
on Shannon’s Entropy (SE). SE has been used previously to
identify DE genes and alternative splicing in gene expression
data [16]. In this procedure, SE was introduced to measure

the differences in gene expression values across experimental
conditions and was defined as follows:

SE
𝑖
= −

𝑀

∑

𝑗=1

𝑎𝑒
𝑖,𝑗

𝑆
𝑖

log
2
(

𝑎𝑒
𝑖,𝑗

𝑆
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) . (1)

A tiny value 𝛼 was added to the expression value 𝑒
𝑖,𝑗
to avoid

0 values.The new expression value was 𝑎𝑒
𝑖,𝑗
= 𝑒
𝑖,𝑗
+𝛼, and the

sum of the expression value of gene 𝑖 among𝑀 experimental
conditions was calculated as 𝑆

𝑖
= ∑
𝑀

𝑗=1
𝑎𝑒
𝑖,𝑗
.

2.2. Attributes Extraction according toGene Expression Trends.
SE could measure differences in variable elements, but was
unable to determine the specific expression patterns within a
calculation unit. Therefore, we introduced a pattern mining
method based on a derivation method of polynomial curve
fitting (DPCF) to describe the expression patterns of a
specific gene among multiple conditions [17]. To facilitate
the pattern mining of genes, the gene expression values were
normalized because the polynomial fitting coefficients and
fitted values are positively correlated. We defined a new
dimensionless expression value, 𝑒𝑛

𝑖,𝑗
= 𝑎𝑒
𝑖,𝑗
𝑀/𝑆
𝑖
, as the gene

relative-expression level among multiple conditions. Then,
the polynomial fitting formula was defined as 𝑦 = 𝑓

𝑖
(𝑥),

𝑥 ∈ (1 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅𝑀). The derivative is a measure of how a
function changes and the response of the curve trend as
the inputs change. Therefore, the derivative function value
of each experimental point was obtained from the following
clustering attribute formula:

Der
𝑖
= 𝑓
󸀠

𝑖
(𝑥) , 𝑥 ∈ (1 ⋅ ⋅ ⋅ 𝑗 ⋅ ⋅ ⋅𝑀) . (2)

The changes in the gene expression trendbetween successions
of conditions could be represented byDer

𝑖
.The arrangements

of data should influence the discovery of the effect of
expression patterns. Therefore, the order of the data must
be consistent with the properties of the study, for example,
sorting data according to a drug concentration gradient or
tumor stages of development.

2.3. Clustering to Mine Coexpression Patterns. The determi-
nation of DE genes was obscured by the fact that a 2-fold-
change may not be more meaningful than a 1.5-fold-change
at the level of biological function.Therefore, we aimed to dis-
cover the expression patterns that led to different phenotypes.
A hierarchical clustering method was applied, which sought
to create a hierarchy of clusters in an unsupervised classifier
[18]. To decide which genes should be combined in a cluster, a
measure of dissimilarity in the sets of attributes was obtained.
A distance matrix was constructed with 𝑀 + 1 attributes
and 𝑁 genes, and then the hierarchical clusters were built
by progressively merging clusters. To construct a relatively
objective map of the transcriptome, the default value for the
cluster number (CN) was defined as follows:

CN = ⌊(𝑀 + 1)⌋ log
10
𝑁. (3)

However, we zoomed in/out of themap by changing the value
of CN(1 < CN < 𝑁) if rigorous expression patterns were
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Figure 1: A schematic overview of COGO. A series of RNA-Seq data with three conditions was selected to illustrate the analysis process.
The characteristic attributes “Der” and “SE” were extracted by a derivation method of polynomial curve fitting (DPCF) and by Shannon’s
Entropy (SE) models, respectively. Gene categories can then be established through clustering. A functional enrichment analysis was then
performed for the categories to determine significant functions. Finally, the semantic similarity measurement was conducted to identify
functional modules.

needed for detailed analysis.Then, categories of coexpression
genes were obtained and represented as 𝐶𝑛 (1 < 𝑛 <
CN), and the gene number of category 𝐶𝑛 is 𝑁

𝑛
. The gene

expression patterns of categories were represented by the
average of the gene relative-expression level, which is defined
as 𝐴𝑒𝑛

𝐶𝑛,𝑗
= ∑
𝑁
𝑛

1
𝑒𝑛
𝑖,𝑗
/𝑁
𝑛
, 𝑗 ∈ (1 ⋅ ⋅ ⋅𝑀). Therefore, stably

expressed and unstably expressed categories among multiple
conditions were divided by the following criteria:

max (𝐴𝑒𝑛
𝐶𝑛,𝑗
)

min (𝐴𝑒𝑛
𝐶𝑛,𝑗
)

{
≤ 𝛽, Stable expressed,
> 𝛽,Unstable expressed,

𝑗 ∈ (1 ⋅ ⋅ ⋅𝑀) ,

(4)

where 𝛽 was defined as the Relative Average Expression
Difference (RAED) andwas set to 1.2 as default, which ismore
stringent than the fold-change cutoff value of “2” and can be
defined by users [19].

2.4. Global Functional Enrichment Analysis. To explore the
biological relationships of genes in the categories obtained
by our method, a functional enrichment analysis (FEA) was
introduced for the gene categories using DAVID [20]. The
goal of the enrichment analysis was to determine which
biological functions might be predominantly affected in
the set of genes with identical expression patterns among
different experimental conditions [21]. We established the
Gene Ontology categories as the background knowledgebase
of the FEA to acquire the functional annotating concepts for

each gene category and arrive at a profile of the biological
function or mechanisms. Performing a FEA on all categories
was meaningful because we were able to explore the effect
of external factors or physiological state on the stability of
gene expression or on the biological function. To elucidate
the mechanisms of regulation, a semantic similarity mea-
surement in GO terms was conducted to identify functional
modules [13].

3. Application and Results

3.1. Data Acquisition. To examine the newly developed
expression pattern classifying method, published RNA-
Seq data were obtained from the GEO (http://www.ncbi
.nlm.nih.gov/geo/, accession number GSE33782). The data
contains three RNA-Seq libraries from a colorectal cancer
patient: cancer (C), paracancer (P), anddistant normal tissues
(N). To avoid potential biases, the datasets were filtered
according to the status code provided by theCufflinks and the
FPKM value; all expression levels for a specific gene among
samples were reliable (status code is OK), and the average of
the gene’s FPKM among samples was greater than 2. In total,
11,969 genes were detected as expressed in at least one of the
samples (see Table S1).

3.2. Coexpression Pattern Mining. The characteristic
attributes were computed and genes were clustered into
16 categories using the defined formula (see Section 2).
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Figure 2: Gene expression pattern classification results of the colon RNA-Seq dataset. (a) A chart showing gene expression patterns among
different tissues for each cluster category. The 𝑦-axis is dimensionless and represents the mean gene relative expression level; error bars show
the standard deviation. (b) The hollow dots represent the mean of SE for each category; error bars show the standard deviation. (c) The
number of genes in each category and the cumulative percentage of the number of genes from C1 to C16.

The results showed that the genes with similar expression
patterns among different types of tissues clustered into
identical categories (Figure S1(a)). For example, transcripts
in C1 were absent in or at a very low level in normal
tissues and paracancer tissues; however, these transcripts
were expressed at relatively high levels in cancer tissues
(Figure 2(a)). Similarly, genes in C2 were expressed at
low levels in paracancer tissues and cancer tissues, but
were expressed at high levels in normal tissues. In general,
the gene expression differences among the three types of
tissues gradually reduced from C1 to C16 (Figure 2(a)). We
conducted a statistical analysis of the number of gene and
average entropy of each category and then calculated the
category frequency over the total number of genes. The
mean of the SE of the categories gradually increased, which
represents a decrease in the expression difference treads
from C1 to C16 (Figure 2(b)). The majority of the genes

were gathered in higher-numbered categories, which was
in agreement with real biological situations (Figure 2(c))
[22]. The gene expression differences of the categories
were determined using a stringent default value. The
results showed that the top 14 categories accounted for
51.2% of the total genes and had differences in various
degrees, and 48.8% of genes in the last two categories
were stably expressed. These results indicated that the
expression levels of most genes were relatively stable among
different physiological states; this finding is consistent
with the assumption that most genes are equivalently
expressed at different conditions [22, 23] (Figure 2(c)).
Furthermore, the number of significant upregulated genes
exceeded the downregulated genes. The overrepresentation
of upregulated gene transcripts is likely because of the
metabolic exuberant state of cancer cells promoting related
genes to be upregulated.Therefore, upregulated genes may be
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Figure 3: The functional relationship network of categories and
enriched GO terms for the biological process category.The enriched
GO terms of C15 and C16 are indicated by blue circles, and the
other categories are indicated by red circles.The bar charts represent
the expression pattern of the category. This figure was constructed
to show the overall relationship of GO functions to gene patterns
and gene patterns to gene patterns. More detailed GO terms are
presented in Table S2 in Supplementary Material available online at
http://dx.doi.org/10.1155/2014/969768.

more involved in the process of tumor formation compared
to downregulated genes (Figures 2(a) and 2(c)).

3.3. Functional Enrichment Analysis. Most cancers, including
colon cancer, are complex and can be caused by multiple
genes and interactions. With the advance of high throughput
technologies, it is now feasible to reverse engineer the
underlying genetic networks that describe the interplay of
molecular elements that lead to complex diseases. To explore
the biological relationship of coexpressed genes obtained by
our method, a FEA was performed for the gene categories
using DAVID [20].The gene ontology (GO) analysis revealed
that not every category was significantly enriched for GO
terms, but the number of GO terms that were significantly
enriched in C15 and C16 substantially exceeded the other
categories (Figure 3, Figure S2, and Figure S3). This finding
suggested that the majority of the core physiological function
of the cell remains stable, such as “cell death” and the “cell
cycle.” The FEA identified 23% of the significantly enriched
terms in the biological process category to be associated with
dysfunctional terms (see Table S2). However, the percent of
dysfunctional terms (23%) is not proportional to the percent
of differentially coexpressed genes (51.2%). This indicated
that the abnormality of colon cell proliferation is because
of the abnormal expression of related genes, but there were
differentially expressed genes independent of experimental
factors. To elucidate the mechanism of gene regulation,
a functional relationship in enriched GO terms can be
discovered bymeasuring their functional semantic similarity.
Although we chose a relatively lenient cluster number by
default, we still discovered enriched GO terms consistent
with previous studies, such as “ectoderm development,”
“collagen catabolic process,” and “cell migration” [24, 25].

Some functional modules were identified for specific
categories, such as functions related to “development,”
“metabolic process,” and “migration” (Figure 4). For
example, the significant GO terms in the biological process
category in C1 can be classified into 5 functional modules
by the GO semantic similarity method and summarized by
keywords; the “development” subtype, including “ectoderm
development,” “epidermis development,” “vasculature
development,” “blood vessel development,” and “skeletal
system development,” is relevant to cancer development
(Figure 4) [26–28]. Therefore, causative agents of cellular
state can be deduced from the subset of differentially
coexpressed genes.

3.4. Comparisons of Methods and Performance Evaluations

3.4.1. The Results Obtained from the above Analysis Were
Compared by a Pairwise Differential Analysis Method. Wu et
al. used Cuffdiff to identify the differentially expressed genes
(DEGs) of the dataset described above (GSE33782) [14]. In
total, 1660, 1528, and 941 genes were extracted as significantly
DE between the C-P tissue pairs, the C-N tissue pairs, and the
P-N tissue pairs, respectively. Each of these groups contains
upregulated and downregulated genes, thus making subse-
quent functional analysismore complicated. In our approach,
genes were classified into 16 categories according to their
expression patterns and further stratified based ondifferences
(Figure 2(a)). Finally, the results of the FEA of the two
methods were compared (Table S3). According to Wu et al.,
31 GO terms in the biological process category were enriched.
In total, 17 of 31 GO terms were significantly enriched in our
method (FDR ≤ 5.0, Table S3), which were highly relevant
to cancer development, such as “collagen metabolic process,”
“cell migration,” and “ectoderm development” [29–31]. Little
direct evidence was present linking the other categories to
cancer; these categories included “heart development,” “reg-
ulation of system process,” and “muscle organ development,”
which were not significantly enriched in our results (FDR
> 5.0, Table S3). Additionally, we discovered some extra
categories significantly related to cancer development, such
as “blood vessel development,” “collagen metabolic process,”
and “cell adhesion” (Figure 4) [32, 33]. The COGOmethod is
based on specifying coexpression patterns to identify func-
tion and disease relationships. Therefore, our approach may
correctly identify more biological functions than approaches
based on pairwise DE methods.

3.4.2. A Comparison with the Direct Clustering Method. A
comparative study was performed to evaluate with a direct
clustering method using the colon cancer dataset. We first
log-transformed (base 2) the gene expression values [34].
A hierarchical cluster analysis with identical settings to the
method we developed was applied, and the genes were
clustered into 16 categories using the default cluster num-
ber formula described above (see Section 2). Our approach
displayed a better mining of the coexpression patterns of
the transcriptome by reporting a smaller average variable
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coefficient (CV = 0.24) compared to direct cluster method
(CV = 2.10) (Figure S1 and S5).

3.4.3. Comparisonwith STEM. Simultaneously, we compared
our results with the STEM method [35]. The STEM method
was developed for short time series microarray datasets and
is widely used. The colon dataset was applied under standard
procedures of STEM. Notably, genes were also clustered
into 16 categories (SC0–SC15, Figure S4), and the average
CV of the relative expression of patterns had no significant
difference from our method (COGO: 0.24 versus STEM:
0.21) (Figure S5). However, our method provided clearer and
more specific coexpression patterns for downstream analysis
(Figure S4).

3.4.4. A Time Series Dataset. To further illustrate the perfor-
mance and the application of our method, a rat pineal gland
RNA-Seq dataset with 6 sampling time points was analyzed
(GSE46069) [36]. In total, 8,250 genes were obtained after
preprocessing, and 27 coexpression patterns were identified
by COGO using default settings. A comparative study was
provided to compare our method to the direct clustering
method. The chart in Figure S6 shows that our results
described the data better than the direct clustering method
(COGO: CV = 0.27 versus direct clustering: CV = 1.92).
One category containing the timekeeping AANAT gene was
mainly enriched in the two-function model (Figure S7).
One of the functions was related to “cytokine response,”
including “response to hormone stimulus” and “response
to inorganic substance,” and the other function was related

to “neuron function,” including “neuron development” and
“axonogenesis.” Both of these functions are associated with
the circadian clock, and the findings are consistent with
previous studies [37–39].

4. Discussion and Conclusions

The transcriptome reveals the status and functional mecha-
nism of the cell as the cell responds to external stimuli. In
the presence of various confounders, such as the technical
deviation between runs and biological variability, one of the
challenges in RNA-Seq data analysis is to extract real bio-
logical responses from substantial amounts of transcriptomic
expression data. Most of the RNA-Seq data analysis methods
have been developed to determine the lists of genes with sig-
nificant differential expression [40]. In addition, evidence has
shown that geneswith similar expression patterns are likely to
be regulated through similar mechanisms [3]. Alterations in
the biological function can be detected by identifying gene
expression patterns among a series of RNA-Seq data.

In general, analyses of the transcriptome should be
performedon three levels: probe the tendency ofmacroscopic
expression changes, such as in a functional enrichment anal-
ysis; analyze captured genes with fluctuations among condi-
tions; and state information based hypotheses and confirm
with biological experiments or literature.This research design
is a continuously exploring process that cyclically considers
the entire dataset to individual members. In this study, all
of the detectable genes are stratified into categories accord-
ing to their expression pattern. A GO enrichment analysis
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was then performed on each category. We downplayed the
importance of DE genes and rediscovered significant gene
sets at the integral level. Therefore, the map reflecting bio-
logical functional changes is objectively structured on total
detectable genes. Genes with different expression patterns
exhibit different functional orientations.Therefore, GO terms
enriched from categories with large gene-expression differ-
ences among conditions may reflect biological dysfunction,
and GO terms enriched from categories with little gene-
expression differences among conditions may also provide
important biological information and may be important for
cell survival. Therefore, all of the enriched functional results
promote a comprehensive understanding of the molecular
mechanisms involved in a specific biological process or
disease.

Furthermore, not every category displayed enriched GO
terms. Confounding genes may display similar expression
patterns and lead to an indeterminate functional orientation
or a strong relationship between genes and experimental
factors is absent. Our research strategy removes distractions
to focus on the notable genes and biological functions.
However, meaningful genes can be retrieved through an
analysis of significant biological functions or pathways, even
in the presence of the unannotated genes.

In this study, we provide an integrated global strategy for
coexpression pattern stratification and GO functional anal-
ysis for a RNA-Seq data series. We globally clustered genes
in RNA-Seq data according to their expression patterns and
gene expression differences. The results showed that genes
with similar expression patterns clustered into categories
in multiple characteristic attribute strategies. This creates
opportunities for integrated genomic analyses of unprece-
dented scope and scale. Global functional analyses can be
conducted, and the resulting functional modules provide a
diverse repertoire of biological states of different cell types
that cannot be captured by analyzing differentially expressed
genes alone. Additionally, genes of a specific function can be
clustered into categories to explore the expression patterns
and regulatory relationships of the functional unit, providing
insights into the response of functional mechanisms.

We believe that our method provides a new perspective
that downplays the importance of DE genes and rediscovers
significant gene sets at an integral level. We provide more
useful scenarios for biologists to further explore mechanisms
of biological functions and gene regulation.
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