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Abstract

Original Article

IntroductIon

Although colorectal polyps are precursors to colorectal cancer, 
it takes several years for these polyps to potentially transform 
into cancer.[1] If colorectal polyps are detected early, they can be 
removed before this transformation occurs. Currently, the most 
common screening test for colorectal polyps is colonoscopy.[2] 
In 2012, the US Multisociety Task Force on Colorectal Cancer 
issued updated guidelines on colorectal cancer surveillance 
after colonoscopy screening – a key principle of which is 
risk assessment and follow-up recommendations based on 
histopathological characterization of the polyps detected 
in the baseline colonoscopy. Therefore, detection and 
histopathological characterization of colorectal polyps are an 
important part of colorectal cancer screening, through which 
high-risk colorectal polyps are distinguished from low-risk 
polyps. The risk of developing subsequent polyps and colorectal 

cancer and the timing of follow-up colonoscopies depend on 
this characterization;[2] however, accurate characterization of 
certain polyp types can be challenging, and there is a large 
degree of variability for how pathologists characterize and 
diagnose these polyps. As an example, sessile serrated polyps 
can potentially develop more aggressively into colorectal 
cancer as compared to other colorectal polyps, because of the 
serrated pathway in tumorigenesis.[3] The serrated pathway is 
associated with mutations in the BRAF or KRAS oncogenes, 
and CpG island methylation, which can lead to the silencing 
of mismatch repair genes (e.g., MLH1) and a more rapid 
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progression to malignancy.[4] Therefore, differentiating sessile 
serrated polyps from other types of polyps is critical for an 
appropriate surveillance.[5] Histopathological characterization 
is the only reliable existing method for diagnosing sessile 
serrated polyps because other screening methods designed to 
detect premalignant lesions (such as fecal blood, fecal DNA, 
or virtual colonoscopy) are not well suited for differentiating 
sessile serrated polyps from other polyps.[6] However, 
differentiation between sessile serrated polyps and innocuous 
hyperplastic polyps is a challenging task for pathologists.[4,7-9] 
This is because sessile serrated polyps, such as hyperplastic 
polyps, often lack the dysplastic nuclear changes that 
characterize conventional adenomatous polyps, and their 
histopathological diagnosis is entirely based on morphological 
features, such as serration, dilatation, and branching. Accurate 
diagnosis of sessile serrated polyps and their differentiation 
from hyperplastic polyps is needed to ensure that patients 
receive appropriate and frequent follow-up surveillance and 
to prevent patients from being over-screened. However, in 
a recent colorectal cancer study, more than 7000 patients 
underwent colonoscopy in 32 centers – ultimately, a sessile 
serrated polyp was not diagnosed in multiple centers despite 
the statistical unlikeliness of this outcome.[10] This indicates 
that there are still considerable gaps in the performance and 
education of pathologists regarding the identification of 
histologic features of colorectal polyps and their diagnostic 
accuracy.[11]

In the past years, computational methods have been developed 
to assist pathologists in the analysis of microscopic images.[12-14] 
These image analysis methods primarily focus on basic 
structural segmentation (e.g., nuclear segmentation)[15-17] and 
feature extraction (e.g., orientation, shape, and texture).[18‑21] In 
some methods, these extracted or hand-constructed features are 
used as an input to a standard machine‑learning classification 
framework, such as a support vector machine[22,23] or a random 
forest,[24] for automated tissue classification and disease 
grading.
In the field of artificial intelligence, deep-learning 
computational models, which are composed of multiple 
processing layers, can learn numerous levels of abstraction 
for data representation.[25] These data abstractions have 
dramatically improved the state-of-the-art computer vision 
and visual object recognition applications, and in some cases, 
even exceed human performance.[26] Currently, deep-learning 
models are successfully utilized in autonomous mobile robots 
and self-driving cars.[27,28] The construction of deep-learning 
models only recently became practical due to large amounts 
of training data becoming available through the World Wide 
Web, public data repositories, and new high-performance 
computational capabilities that are mostly due to the new 
generation of graphics processing units (GPUs) needed to 
optimize these models.[25]

Recent work has proven the deep-learning approach to be 
superior for tasks of classification and segmentation on 
histology whole-slide images, as compared to the previous 

image processing techniques.[29-31] As examples, deep-learning 
models have been developed to detect metastatic breast 
cancer,[32] to find mitotically active cells,[33] to identify 
basal cell carcinoma,[34] and to grade brain gliomas[35] using 
hematoxylin and eosin (H&E)-stained images. Particularly, 
Sirinukunwattana et al.[36] presented a deep-learning approach 
for nucleus detection and classification on H&E‑stained images 
of colorectal cancer. This model was based on a standard 
8‑layer convolutional network[37] to identify the centers of 
nuclei and classify them into four categories of epithelial, 
inflammatory, fibroblastic, and miscellaneous. Janowczyk 
and Madabhushi released a survey of the applications of deep 
learning in pathology, exploring domains such as lymphocyte 
detection, mitosis detection, invasive ductal carcinoma 
detection, and lymphoma classification.[31] All models in the 
survey used the convolutional neural network proposed by 
Krizhevsky et al.[38]

With the recent expansion in the use of whole-slide digital 
scanners, high-throughput tissue banks, and archiving of 
digitized histological studies, the field of digital pathology 
is ripe for the development and application of computational 
models to assist pathologists in the histopathological analysis 
of microscopic images, disease diagnosis, and management 
of patients. Considering these recent advancements in 
computerized image analysis, and the critical need for 
computational tools to help pathologists with histopathological 
characterization and diagnosis of colorectal polyps for more 
efficient and accurate colorectal cancer screening, we propose 
a novel deep-learning-based approach for this task.

SubjectS and MethodS

The whole-slide images required to develop and evaluate our 
method were collected from patients who underwent colorectal 
cancer screening at our academic quaternary care center. Our 
domain expert pathologist collaborators annotated different 
types of colorectal polyps in these images. We used these 
annotations as reference standards for training and testing our 
deep‑learning methods for colorectal polyp classification on 
whole-slide images.

Dataset
The data required for developing and evaluating the proposed 
approach in this project were collected from patients who 
underwent colorectal cancer screening since January 2010 at 
our academic medical center. The Department of Pathology 
and Laboratory Medicine at our medical center has instituted 
routine whole-slide scanning for slide archiving, employing 
three high-throughput Leica Aperio whole-slide scanners. 
These slides are digitized at ×200 magnification. There are 
697 H&E-stained whole-slide images in our dataset. In this 
study, 458 whole‑slide images are used as the training set 
(about 2/3 of the dataset), and 239 whole‑slide images were 
used as the test set (about 1/3 of the dataset). There are no 
overlaps between whole-slide images and each of these slides 
belongs to a different patient/colonoscopy procedure. Our 



Journal of Pathology Informatics 3

J Pathol Inform 2017, 1:30 http://www.jpathinformatics.org/content/8/1/30

histology imaging dataset includes H&E-stained, whole-slide 
images for five types of colorectal polyps: hyperplastic polyp, 
sessile serrated polyp, traditional serrated adenoma, tubular 
adenoma, and tubulovillous/villous adenoma. These five 
classes cover the most common occurrences of colorectal 
polyps and encompass all polyp types that are included in the 
US Multisociety Task Force guidelines for colorectal cancer 
risk assessment and surveillance.[2] In addition, the dataset 
that was used to train and evaluate our deep-learning model 
does include normal samples, which do not contain colorectal 
polyps. Figure 1 shows sample H&E-stained images from all 
colorectal polyp types that were collected in this project.

For this project, 2074 crop images were collected through this 
collaboration with the Department of Pathology and Laboratory 
Medicine at our medical center. Size of the crops varies due 
to the fact that they were generated as the regions of interest 
around the polyps (mean: 811 × 984 pixels, standard deviation: 
118.86 × 148.89 pixels, median 972 × 1094 pixels). The number 
of crop images collected from each colorectal polyp type is 
presented in Table 1. We used 90% of the collected images in 
this dataset for model training and evaluated the performance 
of our method on the remaining 10% of samples that were 
used as the validation set. We made sure that if multiple 
crops were generated from the same whole-slide image, they 
were all placed in a same set (either all in the training or in 
validation sets). In addition to the training and validation sets, 
additional 239 independent whole-slide images were collected 
after the training for final evaluation. The use of these data for 
this project is approved by our Institutional Review Board.

Image annotation
High-resolution histology images for colorectal polyp samples 
are large. Most of the slides encompass normal tissue, and 

only a small part of a whole-slide image is actually related to 
the colorectal polyp. In this study, two collaborators, resident 
pathologists from the Department of Pathology and Laboratory 
Medicine at our medical center, independently reviewed the 
whole-slide images in our training and test data sets to identify 
the type of colorectal polyps in images, as reference standards. 
In addition, to train a classification model on colorectal polyp 
features in these slides, and as a preprocessing step, one of the 
pathologists outlined the regions in which the colorectal polyp 
was present and generated smaller crops focused on colorectal 
polyps. Extracting smaller crops at the same magnification 
level for training deep-learning classifiers has shown 
superior performance in previous histopathology analysis 
applications.[39] A second, highly experienced pathologist also 
reviewed the whole-slide images and their associated, extracted 
crops. The disagreements in classifying and cropping the 
images were resolved through further discussions between the 
annotator pathologists and through consultation with a third, 

Table 1: Our dataset: The distribution of colorectal polyp 
types in crop images used in this work

Colorectal polyp type Acronym Number of image crops
Hyperplastic polyp HP 405
Sessile serrated polyp SSP 612
Traditional serrated adenoma TSA 258
Tubular adenoma TA 360
Tubulovillous/villous adenoma TVA/V 202
Normal - 237
Total - 2074
90% of this dataset was used for training, while the remaining 10% 
was used for validation. HP: Hyperplastic polyp, SSP: Sessile serrated 
polyp, TSA: Traditional serrated adenoma, TA: Tubular adenoma, 
TVA/V: Tubulovillous/villous adenoma

Figure 1: Samples with different colorectal polyps: (a) hyperplastic, (b) sessile serrated, (c) traditional serrated, (d) tubular, (e) tubulovillous/villous, 
and (f) normal, (H&E)
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senior gastrointestinal pathologist collaborator. To ensure the 
accuracy of these manual annotations and resulting image 
crops, when an agreement could not be reached on a polyp 
type or cropping for an image, that image was discarded and 
replaced by a new image.

Training architecture and framework
Deep learning is strongly rooted in previously existing 
artificial neural networks[25] although the construction of 
deep-learning models only recently became practical due 
to the availability of large amounts of training data and new 
high-performance GPU computational capabilities designed to 
optimize these models.[25] In 2012, Krizhevsky et al. developed 
a deep-learning model[38] based on convolutional neural 
networks (ConvNets)[37] that significantly improved the image 
classification results and reduced the error rate about 10%, as 
compared to the performance of the best nondeep-learning 
methods in computer vision at the time. Since then, various 
deep-learning methods have been developed and have 
improved the performance of Krizhevsky’s model even further.

While it has been shown that an increase in depth would 
yield superior results,[40] the state-of-the-art deep-learning 
models were unable to take advantage of this increase beyond 
50 layers.[40,41] This was because of a fundamental problem 
with propagating gradients to optimize networks with a large 
number of layers, which is commonly known as the vanishing 
gradient problem.[42,43] Therein, beyond a moderate number 
of layers, the models experience performance degradation 
according to the degree of increase in the number of layers 
in the previous architectures. In 2015, Microsoft introduced 
residual network architecture (ResNet), which addressed 
the vanishing gradient problem. On its introduction, ResNet 
outperformed previous architectures by significant margins in 
all main tracks of the ImageNet computer vision competition, 
including object detection, classification, and localization,[43] 
and allowed for up to 152 layers before experiencing 
performance degradation. To empirically support our choice of 
architecture, we conducted an ablation study on top performing 
deep-learning network architectures,[44] such as AlexNet,[38] 
VGG,[40] GoogleNet,[41] and different variations of ResNet.[43] 
Results of this comparison can be found in Table 2 and the 
results section.

For our approach, we have adopted a modified version of 
a residual network architecture as this approach yielded 
state-of-the-art performance in both image recognition 
benchmarks, ImageNet,[44] and COCO,[45] as well as in image 
segmentation benchmarks, COCO-segmentation.[45] We 
implemented ResNet, following the original implementation,[43] 
as a standard neural network consisting of 3 × 3 and 
1 × 1 convolution filters and mappings or shortcuts that bypass 
several convolutional layers. Inputs from these additional 
mappings were then added with the output of the previous layer 
to form a residual input to the next layer, such as in Figure 2. 
Introduction of these shortcuts almost eliminated the vanishing 
gradient problem; this, in turn, allowed for greater depth of the 

neural networks, while keeping the computational complexity 
at a manageable level (due to the relatively small convolutional 
filters). In addition to the identity mappings, we experimented 
with projection shortcuts (done by 1 × 1 convolution) when 
dimensions of the shortcuts did not match the dimensions of the 
preceding layer to achieve the best performance in our study.[43]

Training
To verify our choice of network architecture in this work, 
we further separated 10% of the training data as the hold-out 
validation set to run an ablation study on various deep-learning 
network architectures. After finding the optimal architecture 
on this validation set, training was repeated on the entire 
augmented training set. Finally, we evaluated the trained model 
on our test set.

Our deep‑learning classification model is trained for detecting 
colorectal polyps in small patches of H&E-stained, whole-slide 
images. Each crop is processed as follows.

Due to the different sizes of the annotated crops, we 
zero‑padded/rescaled the input images to conform to the median 
of the dimensions along X and Y axes, computed on a random 
subset of crop images (median crop size = 972 × 1094 pixels). 
This random subset was confined to 10% of our training set 
for computational efficiency. This median (i.e., midpoint) size 
maintains a consistent level of magnification and quality for 
training corps. This step is critical due to the design of the 

Figure 2: Residual block: The mechanism of a sample residual block in 
the ResNet architecture[43]

Table 2: Architecture ablation test: Results of ablation test 
on raw image crops (without data augmentation) over 50 
epochs for selecting the best network architecture

Architecture Number 
of layers

Accuracy (%) 95% CI Evaluation 
time (s)

AlexNet[38] 8 71.8 65.4-77.6 2.5
VGG[42] 19 76.4 70.2‑81.8 3.0
GoogleNet[41] 22 88.7 83.8‑92.5 2.4
ResNet‑A[43] 50 81.2 75.4‑86.1 2.2
ResNet‑B[43] 101 82.7 77.1‑87.4 2.6
ResNet‑C[43] 152 87.1 82.0‑91.2 3.1
ResNet‑D[43] 152 89.0 84.1‑92.8 3.1
CI: Confidence interval
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deep‑learning framework, where each layer’s input size is fixed. 
As a result, the whole network relies on fixed‑size input images 
at the data layer. Therefore, if the input image dimensions were 
larger than the median, we performed zero-padding, and if the 
dimensions were smaller than the median, through rescaling, we 
confirmed the input image to this fixed size. While this rescaling 
could slightly affect a crop magnification (on average, about 
15% of the original size, based on the distribution of crop sizes); 
however, as our results show, we found this has minimal effect 
on the performance of our model.

We also normalized each image by subtracting image mean and 
dividing by standard deviation, to neutralize color differences 
caused by inconsistent staining of the slides. We also performed 
color jittering data augmentation on these images. Finally, we 
rotated each image by 90° to enforce rotational invariance 
and flipped a randomly‑selected 50% of the images along the 
horizontal axis.

We trained the optimal model for 200 epochs on the augmented 
training set, with an initial learning rate of 0.1, decreasing it 
0.1 times each 50 epochs, and 0.9 momentum. Overall training 
time for different network architectures took 36 h on a single 
NVIDIA K40c GPU. Figure 3 shows the value of the cross 

entropy loss function on the training and validation sets for 
training a ResNet model with 152 layers and the corresponding 
generalization error. As can be seen in this figure, the model 
converges early in the training process near the 50th epoch.

Inferencing classes for whole‑slide images
As mentioned in the training section, our deep-learning 
classification model is trained for detecting colorectal polyps in 
small patches of H&E-stained, whole-slide images. To identify 
the colorectal polyps and their types on whole-slide images 
using our deep-learning model, we break the whole-slide 
images into smaller, overlapping patches and apply the 
model on these patches. Figure 4 shows the overview of our 
approach for whole‑slide image classification. In this work, 
we use overlapping patches to enforce one-third (i.e., 33%) 
overlap and cover the full image. To extract coherent patches 
with image crops used for training, the size of these patches is 
fixed at the median size of a random 10% subset of the image 
crops from our training set. Our system infers the type of 
colorectal polyp on the whole-slide image based on the most 
common colorectal polyp class among the associated patches 
for a whole-slide image. In addition, to reduce the noise and 
increase the confidence of our results, we only associated a 
class to a whole-slide image if at least a minimum of 5 patches 
were identified as that class, with 70% average confidence. If 
there is no support for any of the colorectal polyp types among 
the patches, the whole‑slide image is classified as normal.

Evaluation
At training time, we evaluated our models using a validation 
set of images cropped as described above. Based on these 
results, we could evaluate the per-crop accuracy to understand 
and address potential pitfalls and interclass confusion. For 
the evaluation of the final model, we applied our proposed 
inference mechanism on whole-slide images in the test set. 
In this evaluation, we measure the standard machine-learning 
evaluation metrics of accuracy, sensitivity (recall), specificity, 
positive predictive value (precision), negative predictive value, 
and F1 score for our method.[46] In addition, we calculate 95% 
confidence intervals for all of the performance metrics in this 
evaluation through the Clopper and Pearson method.[47]

Figure 4: Whole‑slide image classification: Overview of our approach for classification of colorectal polyps on whole‑slide, (H&E)

Figure 3: Model training: Training loss per iteration for 152 layer ResNet 
model on training and validation sets
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reSultS

The results of our experimentation and evaluation are 
summarized in Tables 2-5. Table 2 shows the comparison 
between the performance of different deep-neural-network 
architectures for classification of colorectal polyps on image 
crops without any data augmentation. As it can be seen in this 
table, in addition to using standard network architectures such 
as AlexNet,[38] VGG,[42] and GoogleNet,[41] we experimented 
with different variations of ResNet[43] architecture with 
50–152 computational layers. Among these variations, 
ResNet‑C and‑D both have 152 layers. However, ResNet‑C 
uses identity mappings, while ResNet‑D relies on projection 
mappings in its architecture.

Table 3 shows the results of the best performing 
deep-neural-network architecture among the tested 
architectures, ResNet‑D, for classification of colorectal 
polyps on crop images with data augmentation. Table 3 
includes the accuracy for each polyp type, in addition to 
overall accuracy.

Table 4 shows the performance of our deep-learning-based 
method, using ResNet‑D architecture, for classification of 
colorectal polyps on whole-slide, H&E-stained images. 
Table 4 includes the accuracy, precision, recall, and 
F1 score of our method and their 95% confidence intervals 
for each type of colorectal polyp. Table 5 shows the 
confusion matrix for this evaluation on our test set of 239 
whole-slide images.

dIScuSSIon

In this work, we presented an automated system to facilitate 
the histopathological characterization of colorectal polyps on 
H&E-stained, whole-slide images with high sensitivity and 
specificity. Our evaluation shows that our system can accurately 
differentiate high-risk polyps from both low-risk colorectal 
polyps and normal cases by identifying the corresponding 
colorectal polyp types, such as hyperplastic, sessile serrated, 
traditional serrated, tubular, and tubulovillous/villous, on 
H&E-stained, whole-slide images. These polyp types are the 
focus of major criteria in the US Multisociety Task Force 
guidelines for colorectal cancer surveillance and cover most 
colorectal polyp occurrences.[2] This project is inspired in part 
by the use of image analysis software in Papanicolaou (Pap) 
smear screening[5] for cervical cancer. In the past years, the 
automation of Pap smear screening has dramatically improved 
diagnostic accuracy and screening productivity and helped 
reduce the incidence of cervical cancer and mortality among 
American women.[5] Our proposed system can potentially 
achieve a similar impact on colorectal cancer screening 
as colorectal cancer is the second leading cause of cancer 
death among both men and women in the United States,[48] 
and colorectal polyps are the most common findings during 
colorectal cancer screening.[2] Of note, we are not aware of 
any other existing system for automated whole-slide image 
classification for colorectal polyps.

Our proposed automatic image analysis system can potentially 
reduce the time needed for colorectal cancer screening 
analysis, diagnosis, and prognosis; reduce the manual burden 
on clinicians and pathologists; and significantly reduce the 
potential errors that could arise from the histopathological 
characterization of colorectal polyps during subsequent risk 
assessment and follow-up recommendations. By combining 
the outcomes of our proposed system with pathologists’ 
interpretations, this technology will be able to significantly 
improve the accuracy of diagnoses and prognoses, and 
therefore advance precision medicine. Along these lines, this 
project will improve clinical training by providing a platform 
for improved quality assurance of colorectal cancer screening 
and deeper understanding of common error patterns in the 
histopathological characterization of colorectal polyps. In 
the clinical setting, the implementation of our approach will 
enhance the accuracy of colorectal cancer screening, reduce 
the cognitive burden on pathologists, positively impact patient 

Table 3: Crop classification results: Results of our best 
model (ResNet‑D) for classification of colorectal polyps 
on cropped images

Colorectal 
polyp type

Number of crops 
in the test set

Accuracy (%) 95% CI

HP 34 86.9 81.5‑91.3
SSP 33 87.4 82.0‑91.7
TSA 38 91.5 86.7‑94.9
TA 35 94.5 90.4-97.2
TVA/V 29 91.5 86.7‑94.9
Normal 30 96.0 92.3‑98.2
Total 199 91.3 86.5‑94.8
CI: Confidence interval, HP: Hyperplastic polyp, SSP: Sessile serrated 
polyp, TSA: Traditional serrated adenoma, TA: Tubular adenoma, 
TVA/V: Tubulovillous/villous adenoma

Table 4: Whole‑slide classification results: Results of our final model for classification of colorectal polyps on 239 
whole‑slide images in our test set

HP 
(n=37) (%)

SSP 
(n=39) (%)

TSA 
(n=38) (%)

TA 
(n=39) (%)

TVA/V 
(n=38) (%)

Normal 
(n=48) (%)

Total 
(n=239) (%)

Accuracy 89.8 (85.3‑93.3) 89.5 (85.0‑93.1) 94.7 (91.1-97.2) 93.1 (89.2‑96.0) 95.8 (92.5‑97.9) 95.0 (91.5-97.4) 93.0 (89.0‑95.9)
Precision 90.9 (86.6‑94.2) 86.11 (81.1‑90.2) 100.0 (98.5‑100) 83.3 (78.0‑87.8) 97.2 (94.3‑98.9) 80.7 (75.1‑85.5) 89.7 (85.2‑93.2)
Recall 81.1 (75.5‑85.8) 81.6 (76.1‑86.3) 89.5 (84.9‑93.0) 89.7 (85.2‑93.3) 92.1 (88.0‑95.2) 95.8 (92.5‑98.0) 88.3 (83.6‑92.1)
F1 score 85.7 (80.6‑89.9) 83.8 (78.5‑88.2) 94.4 (90.8‑97.0) 86.4 (81.4‑90.5) 94.6 (90.9-97.1) 87.6 (82.8‑91.5) 88.8 (84.1‑92.5)
HP: Hyperplastic polyp, SSP: Sessile serrated polyp, TSA: Traditional serrated adenoma, TA: Tubular adenoma, TVA/V: Tubulovillous/villous adenoma
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health outcomes, and reduce colorectal cancer mortality by 
fostering early preventive measures. Improvement in the 
efficiency of colorectal cancer screening will result in a 
reduction in screening costs, an increase in the coverage of 
screening programs, and an overall improvement in public 
health.

This project leverages ResNet architecture, [43] a new 
deep-learning paradigm, to address the vanishing gradient 
problem that arises in training deep-learning models. This 
network architecture enables the development of ultra-deep 
models with superior accuracy for characterization of 
histology images in comparison to existing approaches. Our 
ablation test results confirm [Table 2] the superiority of the 
ResNet deep‑neural‑network architecture with 152 layers and 
projection mappings for our classification task in comparison 
to other common network architectures such as AlexNet,[38] 
VGG,[42] and GoogleNet.[41] Although this best-performing 
ResNet model has significantly more layers than other 
network architectures in this comparison, its evaluation 
time (3.1 s) is close to the other models in a practical range. 
This small evaluation time difference is due to relatively 
simple computational layers in the ResNet architecture. Our 
ablation test was performed on image crops without any 
data augmentation. Table 3 shows the performance of the 
best‑performing ResNet model on a dataset with augmentation. 
As can be seen in this table, data augmentation had a positive 
impact on the results and increased the overall accuracy of 
our classification to 91.3%, which is higher than the original 
89.0% presented in Table 2. 

We evaluated our ResNet‑based, whole‑slide inference 
model for colorectal polyp classification on 239 independent 
whole-slide, H&E-stained images. These results are presented 
in Tables 4 and 5. As we can see in these tables, our whole-slide 
inferencing approach demonstrates a strong performance 
across different classes, with an overall accuracy of 93.0%, 
an overall precision of 89.7%, an overall recall of 88.3%, and 
an overall F1 score of 88.8%. As can be seen in the presented 
confusion matrix [Table 5], in this evaluation, we observed a 
tendency to classify low‑confidence examples as normal. This 
may be due to the diversity of whole-slide images that are 

considered to be normal in our training set. Furthermore, we 
can see that differentiation between hyperplastic polyps and 
sessile serrated polyps is another major source of errors for our 
model, which is aligned with the experience of gastrointestinal 
pathologists in this task.[4,8,9]

Although our proposed histopathology characterization system 
is based on strong deep-learning methodology and achieved a 
strong performance in our evaluation on the test set collected 
at our organization, we still plan to take additional steps to 
improve our evaluation and results. One possible improvement 
could be a further increase in the number of layers in our 
network architecture, which requires collecting a larger training 
set. To this end, through a collaboration with our state’s 
colonoscopy registry, we are planning to apply and evaluate 
the proposed method on an additional dataset from patients 
across our state for the external validation of our approach.

One shortcoming of our system for histopathological 
characterization, and deep-learning models in general, is the 
black box approach to the outcomes. These image analysis 
methods are mostly focused on the efficacy of the final 
results and rarely provide sufficient evidence and details on 
factors that contribute to their outcomes. As future work, 
we aim to leverage visualization methods for deep-learning 
models to tackle this problem. These visualization methods 
will provide insight about influential regions and features of 
a whole-slide image that contribute to the histopathological 
characterization results. This work will help pathologists verify 
the characterization results of our method and understand the 
underlying reasoning for a specific classification.

Our proposed method to characterize colorectal polyps on 
whole-slide images can be extended to other histopathology 
analyses and prognosis assessment problems outside of 
colorectal cancer screening. The proposed method for 
whole-slide, H&E-stained histopathology analysis builds 
an illustrative showcase for colorectal cancer screening. 
As future work, we plan to build training sets for other 
challenging histopathology characterization problems and 
extend the developed deep-learning image analysis framework 
to histopathology image analysis and assessment in other 
types of cancer, such as melanoma, glioma/glioblastoma, and 
breast carcinoma. Finally, we plan to conduct a clinical trial 
to validate the efficacy of our system in clinical practice, to 
pave the road for the integration of the proposed method into 
the current colorectal cancer screening workflow.

concluSIonS

In this paper, we presented an image analysis system to assist 
pathologists in the characterization of colorectal polyps 
on H&E-stained, whole-slide images. This system was 
based on state-of-the-art, deep-neural-network architecture 
to identify the types of colorectal polyps on whole-slide, 
H&E-stained images. We evaluated our developed system on 
239 H&E‑stained, whole‑slide images for detection of five 
colorectal polyp classes outlined by the US Multisociety Task 

Table 5: Confusion matrix: Confusion matrix of our final 
model for classification of colorectal polyps on 239 
whole‑slide images in our test set

Prediction Reference

HP SSP TSA TA TVA/V Normal
HP 30 3 0 0 0 0
SSP 5 31 0 0 0 0
TSA 0 0 34 0 0 0
TA 0 0 2 35 3 2
TVA/V 0 0 0 1 35 0
Normal 2 4 2 3 0 46
HP: Hyperplastic polyp, SSP: Sessile serrated polyp, TSA: Traditional 
serrated adenoma, TA: Tubular adenoma, TVA/V: Tubulovillous/villous 
adenoma
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Force guidelines for colorectal cancer risk assessment and 
surveillance. Our results (accuracy: 93.0%; precision: 89.7%; 
recall: 88.3%; F1 score: 88.8%) show the efficacy of our 
approach for this task. The technology that was developed and 
tested in this work has a great potential to be highly impactful 
by serving as a low‑burden, efficient, and accurate diagnosis 
and assessment tool for colorectal polyps. Therefore, the 
outcomes of this project can potentially increase the coverage 
and accuracy of colorectal cancer screening programs and 
overall reduce colorectal cancer mortality.
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