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ABSTRACT 
 
Dysregulation of lipid metabolism is common in cancer. Lysophosphatidylcholine acyltransferase 1 (LPCAT1) has 
been implicated with various cancer types. Here we analyzed by immunohistochemistry its expression in 2,197 
breast cancers. LPCAT1 staining was found in 97.8% of 1,774 interpretable tumors, including 48.1% with weak, 
28.7% with moderate, and 14.4% with strong expression. The frequency of LPCAT1 positivity depended on the 
histological tumor type. Moderate or strong LPCAT1 positivity was more common in cancers of no special type 
(NST) (46.2%) than in lobular carcinomas (25.9%; p<0.0001). Strong LPCAT1 was associated with BRE grade, tumor 
cell proliferation and overall survival in all cancers and in the subgroup of NST cancers (p<0.0001, each). In the 
subset of NST cancers the prognostic effect of LPCAT1 expression was independent of pT, and BRE grade (p<0.0001 
each). A comparison with molecular features showed that LPCAT1 was strongly associated with estrogen receptor 
negativity (p<0.0001), progesterone receptor negativity (p<0,0001), amplification of HER2 (p<0.0001) and MYC 
(p=0.0066), as well as deletions of PTEN (p<0.0001) and CDKNA2 (p=0.0151). It is concluded that LPCAT1 
overexpression is linked to adverse tumor features and poor prognosis in breast cancer. These data also highlight 
the important role of lipid metabolism in breast cancer biology. 
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INTRODUCTION 
 
Breast cancer is the most common cancer in females 
worldwide and is also the leading cause of cancer-
related deaths in the female population [1]. Surgical 
removal of the cancer is the standard therapy. Whether 
adjuvant systemic treatment is performed or not 
depends on the individual risk situation. The histo-
logical grade, tumor size and presence of lymph node 
metastasis are basic parameters to assess the prognosis 
of individual patients. Additional molecular analyses 
are increasingly employed but still not sufficient to 
reliably determine tumor aggressiveness [2, 3]. 
The analysis of further molecular properties could 
eventually improve the reliability of prediction of tumor 
aggressiveness.  
 
Previous studies have described activation of lipid 
biosynthesis and lipid remodeling to occur commonly in 
cancer cells [4]. The phospholipid biosynthesis/ 
remodeling enzyme lysophosphatidylcholine acyl-
transferase 1 (LPCAT1) is a key enzyme in the lipid-
remodeling pathway known as Lands cycle [5]. 
LPCAT1 has a physiological role in the lung where it 
generates the dipalmitoyl phosphatidylcholine com-
ponent of pulmonary surfactant [6, 7], in non-
inflammatory platelet-activation factor remodeling 
pathway [8] and in retinal photoreceptor homeostasis [9]. 
Overexpression of LPCAT1 was recently described in 
colorectal cancer [10], prostate cancer [11], lung cancer 
[12] and clear cell renal cell carcinomas [13]. LPCAT1 
overexpression led to a significant growth advantage in 
cultured colorectal cancer cells [10].  
 
A recent study on a cohort of 80 patients has 
suggested that up-regulation of LPCAT1 in breast 
cancer may contribute to tumor progression and 
predict early tumor recurrence [14]. To broaden our 
knowledge on LPCAT1 as a biomarker in breast 
cancer we tested 2,197 breast cancer samples for 
LPCAT1 expression and analyzed associations with 
histologically and molecularly defined cancer 
subgroups as well as follow-up information. Our data 
identify and validate high LPCAT1 expression as a 
strong prognostic biomarker for early tumor 
recurrence in breast cancer. 
 
RESULTS 
 
Technical issues 
 
A total of 1,774 (80.7%) of 2,197 tumor samples were 
interpretable in our TMA analysis. Non-informative 
cases (473 spots; 19.3%) were due to missing tissue 
samples or the absence of unequivocal cancer tissue in 
the TMA spot. 

LPCAT1 expression in normal breast tissue and 
breast cancer 
 
Normal breast tissues showed moderate to strong 
LPCAT1 expression in luminal cells under the selected 
experimental conditions. In cancer, detectable LPCAT1 
immunostaining was seen in 1,619 of our 1,774 (91.3%) 
tumors and was considered weak in 48.1%, moderate in 
28.7% and strong in 14.4% of tumors. A fraction of 8.7% 
showed no detectable LPCAT1 staining and was 
classified as negative. Representative images of LPCAT1 
immunostainings are shown in Figure 1. LPCAT1 
expression varied between histological breast cancer 
subtypes (Table 1). Strong LPCAT staining was for 
example more often seen in papillary (18.5%) and NST 
(16.2%) than in lobular carcinomas (5.7%; p<0.0001 for 
lobular vs. NST cancers). Strong LPCAT staining was 
also seen in some rare breast cancer subtypes including 
carcinoma with apocrine differentiation (5 of 12 strongly 
positive), carcinoma with medullary features (11 of 60) 
and glycogen-rich clear cell type (3 of 13). 
 
Association with tumor phenotype and molecular 
features  
 
High levels of LPCAT1 immunostaining were 
significantly linked to unfavorable tumor features 
including high pT stage, high BRE grade, estrogen and 
progesterone receptor negativity, and HER2 amplification 
(p<0.0001 each). This was also seen for the subgroup of 
NST carcinomas (Table 1). The comparison of LPCAT1 
expression with previously described other genomic 
alterations such as c-MYC- amplification [15] as well  
as deletions of PTEN [16–18] and CDKNA2 [19, 20] 
 

 
 

Figure 1. LPCAT1 staining in breast cancer with (A) negative, (B) 
weak, (C) moderate and (D) strong staining. 
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Table 1. LPCAT1 immunostaining and breast cancer phenotype. 

    LPCAT1 IHC result (%)   
  N Negative  Weak Moderate Strong P 
All cancers 1774 8.7 48.1 28.7 14.4  

Histology      <0.0001 
No special type (NST) 1277 7.8 46.0 30.0 16.2  

Lobular carcinoma 228 11.4 62.7 20.2 5.7  

Medullary carcinoma 60 6.7 35.0 40.0 18.3  

Cribriform carcinoma 53 22.6 50.9 18.9 7.5  

Tubular carcinoma 38 18.4 57.9 23.7 0.0  

Papillary carcinoma 27 11.1 37.0 33.3 18.5  

Mucinous carcinoma 50 2.0 54.0 34.0 10.0  

Other and rare types* 41 4.9 39.0 29.3 26.8  

Tumor stage       0.0176 
pT1 638 9.2 52.2 27.9 10.7  

pT2 856 7.9 46.6 28.6 16.8  

pT3 101 10.9 47.5 22.8 18.8  

pT4 202 8.4 42.6 34.2 14.9  

Nodal status      0.2865 
pN0 768 9.0 50.0 28.0 13.0  

pN1 656 8.2 47.7 29.3 14.8  

pN2 102 9.8 37.3 33.3 19.6  

BRE grade      <0.0001 
1 415 14.5 59.8 22.2 3.6  

2 668 7.8 54.2 27.4 10.6  

3 570 4.7 35.4 34.4 25.4  

ER status      <0.0001 
Negative 406 5.9 32.0 33.3 28.8  

Positive 1289 9.7 52.8 27.2 10.3  

PR status      <0.0001 
Negative 1056 8.7 45.9 27.7 17.7  

Positive 567 9.2 52.2 29.5 9.2  

HER2 status      <0.0001 
Normal 1153 9.1 51.2 28.4 11.3  

Amplified 245 5.7 31.4 29.0 33.9   

*including carcinoma with apocrine differentiation and metaplastic carcinoma of no special type. 
 

revealed significant associations with LPCAT1 up-
regulation (p<0.02; Table 2). LPCAT1 expression was 
unrelated to MDM2 amplifications (p=0.67). 
 
Association with tumor cell proliferation 
Data on tumor cell proliferation as evaluated by KI67 
immunohistochemistry were available from a previous 

study [19]. These were correlated with the present 
LPCAT1 staining. The mean Ki67LI increased from 23.5 
±1.2 for LPCAT1 negative cancers to 37.3 ±1.0 for 
cancers with strong LPCAT1 expression (p<0.0001; 
Table 3). This association was also seen in all tumor 
subsets with identical pT stage, nodal, ER, PR and HER2 
status, BRE grade (only in grade 2 and 3). 
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Table 2. LPCAT1 staining and genomic alterations. 

  LPCAT1 IHC (%)  
  Negative Weak Moderate Strong P 

PTEN  Normal (n=906) 9.1 49.6 28.8 12.6  
Deleted (n=220) 5.9 35.5 29.1 29.5 ≤0.0001 

c-MYC 
Normal (n=992) 9.9 48.4 28.7 13.0  

Gain (n=258) 6.6 42.2 31.0 20.2  
Amplification (n=64) 3.1 42.2 31.3 23.4 0.0066 

CDKN2A Normal (n=832) 8.8 47.1 29.1 15.0  
Deleted (n=151) 7.3 37.1 30.5 25.2 0.0151 

MDM2 Normal (n=1469) 8.5 47.9 28.9 14.8  
Amplified (n=94) 9.6 43.6 27.7 19.1 0.6727 

 

Table 3. LPCAT1 expression and Ki67-labeling index. 

  LPCAT1 N Ki67LI    LPCAT1 N Ki67LI 

All 
cancers 
p<0.0001 

Negative 135 23.5 ± 1.2  

BRE grade 2 
p<0.0001 

Negative 46 22.7 ± 1.1 
Weak 717 24.7 ± 0.5  Weak 304 23.1 ± 0.7 

Moderate 432 30.0 ± 0.7  Moderate 157 24.6 ± 0.8 
Strong 219 37.3 ± 1.0  Strong 61 30.6 ± 0.8 

pT1 
p<0.0001 

Negative 50 20.7 ± 1.8  

BRE grade 3 
p<0.0001 

Negative 25 35.2 ± 2.9 
Weak 258 21.1 ± 0.8  Weak 170 34.8 ± 1.1 

Moderate 148 25.9 ± 1.1  Moderate 158 40.2 ± 1.2 
Strong 56 34.9 ± 1.7  Strong 124 42.6 ± 1.3 

pT2 
p<0.0001 

Negative 57 23.8 ± 2.0  

ER neg. 
p<0.0001 

Negative 22 34.0 ± 3.4 
Weak 340 27.1 ± 0.8  Weak 116 32.1 ± 1.5 

Moderate 200 32.8 ± 1.1  Moderate 115 38.8 ± 1.5 
Strong 120 38.4 ± 1.4  Strong 103 43.3 ± 1.6 

pT3 
p=0.0253 

Negative 10 23.1 ± 5.2  

ER pos. 
p<0.0001 

Negative 110 21.7 ± 1.2 
Weak 41 27.1 ± 2.5  Weak 568 23.6 ± 0.5 

Moderate 19 33.7 ± 3.7  Moderate 303 26.7 ± 0.7 
Strong 18 39.3 ± 3.8  Strong 110 31.7 ± 1.2 

pT4 
p=0.0035 

Negative 17 30.2 ± 3.2  

PR neg. 
p<0.0001 

Negative 82 24.2 ± 1.6 
Weak 76 25.2 ± 1.5  Weak 431 25.2 ± 0.7 

Moderate 60 29.7 ± 1.7  Moderate 252 32.2 ± 0.9 
Strong 25 36.4 ± 2.7  Strong 168 39.9 ± 1.2 

pN0 
p<0.0001 

Negative 56 20.6 ± 1.9  

PR pos. 
p=0.0435 

Negative 48 22.4 ± 1.9 
Weak 311 23.9 ± 0.8  Weak 243 24.4 ± 0.8 

Moderate 183 29.5 ± 1.1  Moderate 152 27.5 ± 1.0 
Strong 88 37.6 ± 1.5  Strong 41 27.9 ± 2.0 

pN+ 
p<0.0001 

Negative 58 24.6 ± 1.9  

HER2 norm. 
p<0.0001 

Negative 89 24.2 ± 1.5 
Weak 297 25.8 ± 0.8  Weak 497 24.6 ± 0.6 

Moderate 186 30.9 ± 1.1  Moderate 277 29.5 ± 0.9 
Strong 97 37.0 ± 1.5  Strong 110 36.8 ± 1.4 
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BRE  
Grade 1 
p=0.1291 

Negative 50 18.5 ± 1.5  

HER2 amp. 
p=0.0072 

Negative 14 30.4 ± 3.6 
Weak 201 17.8 ± 0.7  Weak 63 33.1 ± 1.7 

Moderate 78 20.7 ± 1.2  Moderate 61 36.2 ± 1.7 
Strong 12 22.2 ± 3.0  Strong 73 40.1 ± 1.6 

 

Prognostic significance of LPCAT1 expression 
 
Raw survival data were available for 1,774 cancers with 
interpretable IHC results. Strong LPCAT1 expression 
was closely associated with shortened overall survival 
(p=0.0043; Figure 2A). The association between strong 
LPCAT1 expression and poor prognosis was even more 
pronounced in the subgroup of NST cancers (p=0.0006; 
Figure 2B) and in the nodal positive subset (p=0.0022; 
Figure 2C) but was not seen in nodal negative cancers 
(p=0.1716; Figure 2D). Multivariate analysis for NST 
cancers including pT stage, nodal status, BRE grade and 
hormone receptors did not identify LPCAT1 expression 
as an independent prognosticator of survival (Table 4). 
 
DISCUSSION 
 
Our immunohistochemical analysis showed positive 
LPCAT1 staining in 91.2% of tumors, including 14.4% 
with strong staining and 76.8% with weak to moderate 

staining. Since the staining intensity of LPCAT1 in 
normal breast glands was usually moderate, these data 
suggest that LPCAT1 is overexpressed in about 15% of 
breast cancers. Our data are consistent with a previous 
study by Abdelzaher and Mostafa comparing LPCAT1 
expression in 80 breast cancers of NST and 30 non-
neoplastic epithelial breast tissues [14]. In this study, 
LPCAT1 immunostaining was found to be higher in 
tumor tissue than in non-neoplastic epithelial breast 
tissue.  
 
Significant differences between the individual breast 
cancer subtypes fit well with the recognized biological 
differences between tumor entities. However, the most 
striking result of our study is the strong association of 
LPCAT1 expression with an unfavorable histological 
phenotype and clinical outcome. These data are also 
confirmed by the results of Abdelzaher and Mostafa [14], 
which describe links between LPCAT1 immunostaining 
and high-grade, advanced TNM stage, T stage and lymph 

 

 
 

Figure 2. LPCAT1 staining and overall survival in (A) all cancers, (B) the no special type (NST) cancer subset, (C) nodal positive, and (D) nodal 
negative cancers. 
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Table 4. Cox proportional hazards for survival of established prognostic parameter in breast cancers of no special 
type. 

Variable  Subset N HR (95% CI) P 
ER Negative vs. positive 1998 1.5 (1.2-2.0) ≤0.0001 
PR Negative vs. positive 1907 1.2 (1.0-1.6) 0.1158 
HER2 IHC 3 vs. 0 1984 1.2 (0.8-1.5) 0.4753  
BRE grade 3 vs. 1 2008 2.1 (1.5-2-9) ≤0.0001 
pT stage 4 vs. 1 2161 2.3 (1.7-3.3) ≤0.0001 
pN stage 2 vs. 0 1820 5.6 (3.9-8.0) ≤0.0001 
LPCAT1 expression Strong vs. neg./weak/mod. 1772 1.2 (0.8-1.4) 0.7550 

“N” gives the total number of all cases with survival data in each category. Hazard ratios (HR), confidence intervals (CI) and P-
values correspond to the indicated subsets. 
ER (estrogen receptor); PR (progesterone receptor); HR (hazard ratio); CI (confidence interval). 
 

node stage in their series of 80 breast cancer patients. It is 
noteworthy that the 12% of cancers classified as “strong 
LPCAT1 expressers” behaved significantly worse than 
the other cancers, especially when the clinical outcome 
(overall survival) was taken into account. A striking 
correlation between strong LPCAT1 expression and 
unfavorable clinical outcome was also found in more 
homogeneous cancer subtypes, such as 1,277 cancers of 
no special type and 758 nodal-positive cancers, 
suggesting possible clinical applicability of LPCAT1 
measurement for prognostic evaluation. That LPCAT1 
overexpression is also observed in aggressive forms of a 
broad variety of other cancer types [21–23] suggests a 
general role of this protein during tumor progression. 
Based on its molecular function as a key enzyme of lipid 
synthesis in the Land’s cycle it is believed that LPCAT1 
up-regulation reflects a consequence of the increased 
demand for lipid-depending cellular structures such as 
membranes and fatty acids in rapidly proliferating tumor 
cells (reviewed in [24]). This is also supported by work 
demonstrating that inhibition of enzymes of the Land’s 
cycle limits the growth of cancer cells and reduces 
tumorigenesis in various tumor cell models [25]. 
 
The molecular database attached to our TMA enabled 
us to study the relationship of LPCAT1 expression with 
molecular features that had earlier been analyzed on the 
same TMA. According to our study, expression levels 
of LPCAT1 were strongly associated with 
amplifications of HER2 and MYC, negative ER and PR 
status and PTEN deletions, which are all linked to 
adverse tumor features and poor patient outcome. 
Virtually all of these molecules are implicated in the 
regulation of processes depending on sufficient supply 
of lipids and fatty acids, such as cell growth and 
proliferation, and some of them are known to directly 
contribute to rate limiting steps of lipid metabolism. For 
example, there is emerging evidence that PTEN controls 
lipid biosynthesis via its downstream target Maf1 [26]. 

MYC has been shown to cooperate with sterol 
regulatory element-binding protein 1 (SREBP1), a 
transcription factor involved in regulating lipid 
homeostasis that was shown to promote epithelial-
mesenchymal transition in colon cancers [27] and ER 
regulates expression of at least 20 genes involved in 
fatty acid metabolism in breast cancer [28].  
 
Activation of lipid metabolism in tumor cell 
proliferation is widely accepted. This fits well with the 
strong correlation of Ki67 expression level with high 
LPCAT1 expression seen in this study. That this 
relationship retained high statistical significance in 
various analyzed cancer subgroups defined by an 
identical status of morphologic or molecular parameters 
argues for a particular strong role of LPCAT1 for tumor 
growth. Apart from the need of producing lipids for 
dividing cells, LPCAT1 expression could also impact 
tumor cell proliferation by the production of metabolic 
intermediates for synthesis of cellular signaling 
molecules [29]. Moreover, Lipid metabolism has been 
associated with cellular proliferation and energy storage 
(reviewed in [30], similar to the prominent Warburg 
effect [29]. It has been suggested that increased lipid 
metabolism is either needed to support the growth of 
rapidly dividing cells, or to maintain elevated glycolysis 
(the Warburg effect). Various tumors undergo 
exacerbated endogenous lipid metabolism irrespective 
of the levels of extracellular lipids [31]. 
 
It is a limitation of our study that no data on therapy are 
available. The rate of LPCAT1 positivity may be higher 
in case of heterogeneity since we had only one 0.6 mm 
spot per cancer analyzed. Many data were taken from 
previous analyses of the same TMA, some of which 
have been performed more than 10 years ago. This 
study is an excellent example for how the TMA 
technology facilitates the development of molecular 
databases that can be used for every new study. 
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In summary, our data identify LPCAT1 expression as a 
prognostic biomarker with potential clinical utility in 
breast cancer. It appears well possible, that LPCAT1 
measurement, either alone or in combination, may be 
utilized for better clinical decision-making in the future. 
The findings also highlight the potentially important 
role of lipid metabolism in breast cancer as a parameter 
for tumor aggressiveness. 
 
MATERIALS AND METHODS 
 
Patients  
 
A preexisting tissue microarray (TMA) with 2,197 
human breast cancer samples from paraffin-embedded 
tissue specimens fixed in 4% neutral buffered formalin 
was used [19]. The samples were consecutively 
collected between 1984 and 2000. The median patient’s 
age was 63 years (range 25–101). Raw survival data 
were available from 1,982 patients. The mean follow-up 
time was 63 months (range 1–176). The TMA was 
produced as describe earlier in detail [32]. In short, one 
0.6 mm core was taken from a representative cancer 
tissue block from each patient. The samples were 
distributed across 6 TMA blocks. A control area 
containing 20 samples of normal breast tissue was 
present on each TMA block. Four μm sections of the 
TMA blocks were transferred to an adhesive coated 
slide system (Instrumedics Inc., Hackensack, New 
Jersey) for IHC analysis. The TMA was annotated with 
data from previous FISH studies for HER2, MYC, 
CCND1, p53, PTEN, CDKN2A and MDM2 as well as 
IHC studies on estrogen receptor (ER), progesterone 
receptor (PR) expression and Ki67-labeling index 
(Ki67LI) [19, 20, 33, 34].  
 
Immunohistochemistry 
 
Freshly cut TMA sections were immunostained in a 
single experiment. Slides were deparaffinized and 
exposed to heat-induced antigen retrieval (5 min, 121°C 
in Tris-EDTA-citrate buffer at pH 7.8). Primary 
antibody specific for LPCAT1 (rabbit, Protein Tech; at 
1/1350 dilution was applied at 37°C for 60 minutes. 
Bound antibody was then visualized using the EnVision 
Kit (Dako, Glostrup, Denmark) according to the 
manufacturer´s directions. LPCAT1 staining was found 
on the membrane and in the cytoplasm of positive cells. 
Evaluation of the immunohistochemical staining was 
performed as previously described [35]. In brief, tumors 
with complete absence of staining were scored as 
“negative”. Cancers with a staining intensity of 1+ in up 
to 70 %, or 2+ in ≤ 30 % of the tumor cells were scored 
as “weak”. A “moderate” score was given to cancers 
with a staining intensity of 1+ > 70 %, 2+ in up to 70 %, 
or 3+ in ≤30 % of tumor cells. The score was 

considered “strong” if staining intensity was 2+ in 
>70 % of tumor cells or 3+ in > 30 % of tumor cells. 
 
Statistics 
 
Contingency tables and chi-square test were calculated 
to find associations between LPCAT1 expression and 
clinico-pathological variables. Anova and F-test was 
applied for associations between LPCAT1 expression 
and Ki67LI. Kaplan-Meier curves and the log-rank tests 
were applied to test for differences between stratified 
survival functions. Cox proportional hazards regression 
analysis was performed to test for independence and 
significance between pathological and molecular 
variables. JMP 12.0 software (SAS Institute Inc., NC, 
USA) was used. 
 
Ethics approval 
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