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Abstract

Background: Debates over the evolution of hominin bipedalism, a defining human characteristic, revolve around whether
early bipeds walked more like humans, with energetically efficient extended hind limbs, or more like apes with flexed hind
limbs. The 3.6 million year old hominin footprints at Laetoli, Tanzania represent the earliest direct evidence of hominin
bipedalism. Determining the kinematics of Laetoli hominins will allow us to understand whether selection acted to decrease
energy costs of bipedalism by 3.6 Ma.

Methodology/Principal Findings: Using an experimental design, we show that the Laetoli hominins walked with weight
transfer most similar to the economical extended limb bipedalism of humans. Humans walked through a sand trackway
using both extended limb bipedalism, and more flexed limb bipedalism. Footprint morphology from extended limb trials
matches weight distribution patterns found in the Laetoli footprints.

Conclusions: These results provide us with the earliest direct evidence of kinematically human-like bipedalism currently
known, and show that extended limb bipedalism evolved long before the appearance of the genus Homo. Since extended-
limb bipedalism is more energetically economical than ape-like bipedalism, energy expenditure was likely an important
selection pressure on hominin bipeds by 3.6 Ma.
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Introduction

Ever since Darwin [1], bipedal walking has been considered the

defining feature of the human lineage. However, how and why this

unique form of locomotion evolved remains the subject of

considerable debate. In particular, debates over the origins and

evolution of bipedalism revolve around whether early bipeds

walked with energetically economical human-like extended limb

biomechanics, or with more costly ape-like bent-knee, bent-hip

(BKBH) kinematics [2]. If early hominins used a BKBH gait, then

we must account for the persistence of an energetically costly form

of bipedal walking until the evolution of the genus Homo. The

Laetoli footprints may help resolve this debate, since they record

the footsteps of at least two, and possibly three individuals who

walked bipedally across wet ashfall approximately 3.6 million years

ago [3,4]. These prints represent the earliest direct evidence of

bipedalism in the fossil record, yet no study to date has

demonstrated exactly how these hominins walked.

For decades, researchers have argued over whether the Laetoli

hominins walked with a modern human-like extended limb gait

[3,5–10], or a more ape-like form of bipedalism [11–14]. Most

recently, the discovery of 1.5 Ma footprints from Kenya provides

new evidence that the Laetoli prints were not completely modern

in weight transfer and morphology [15]. If true, then an

energetically costly form of bipedalism evolved and persisted in

early hominins until the evolution of the genus Homo [16].

Alternatively, if the Laetoli prints were made by extended-limb

bipeds, then, by 3.6 Ma, selection acted to reduce energy costs of

locomotion in hominins.

Most previous studies of the Laetoli prints, however, were

qualitative and did not test specific biomechanical hypotheses

about early hominin gait. Kullmer et al. [17] performed a

quantitative comparison of one Laetoli footprint (G1-36) with

three footprints made by a single human subject walking with

different postures. Their results suggest that Laetoli hominins did

not walk like modern humans, however their sample size was very

small (one human print for each posture studied) and there is not

enough kinematic information to generalize their results to the

Laetoli trackways. More recent quantitative work using geometric

morphometrics techniques [15,18] may conflate differences in foot

anatomy and shape with differences in locomotor biomechanics.

Without using experimental analyses, it is difficult to determine

which landmark differences between Laetoli and more recent fossil

footprints are due simply to differences in foot morphology, and
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which are, in fact, due to differences in kinematics. Thus, a

thorough experimental-based analysis of the Laetoli prints may

resolve the debate over hominin biomechanics, and therefore help

clarify the importance of selection for reduced energy costs of

locomotion prior to the evolution of the genus Homo.

Here, we present the results of the first experimental analysis of

footprints in a sample of humans walking with different gaits and

compare our results to the Laetoli prints. Eight human subjects

(mean body mass [SD] = 65.6 [6.1] kg) walked through a 5 m

trackway filled with 15 cm of fine grained sand (0.075 mm–

0.70 mm diameter). Although our subjects are likely heavier than

the earlier hominins that generated the Laetoli prints, body mass

does not appear to have an effect on footprint morphology [19].

We compared footprints made by subjects walking with a normal,

extended limb gait, and with a bent-knee, bent-hip (BKBH) ape-

like gait at their preferred speeds with sand water content of 6–8%

(see supplementary materials Text S1 for hind limb kinematic data

from these experiments). These substrate conditions match those

of Laetoli, which are described as similar to damp, fine to medium

grained sand [20]. We also examined the effects of increased speed

and increased substrate moisture (10–12% water) on footprint

morphology. We tested the hypothesis that a BKBH gait alters

body weight transfer and produces significantly different footprint

morphology than an extended limb gait. We predicted that Laetoli

footprint morphology would match humans walking with one of

these gaits. To test this prediction, we scanned each human print

using a 3D laser scanner (MicrosribeH MLX 6DOF digitizer with

attached Microscan laser sensor system), and compared the

maximum depths of the fore- (toe) and aft- (heel) sections of the

prints. These values were calculated after leveling each print, since

prints were made over a substrate that had a very small grade

(mean grade = 1.49%60.16%). We compared our experimental

data with Laetoli footprint depths calculated from contour maps of

the footprint trails [21] (Table S1). Additionally, we captured

kinematic and kinetic data to determine how walking biomechan-

ics influence footprint morphology (see supplementary materials

Text S1).

Results and Discussion

There is a significant difference in the relative depth of the toes

in BKBH compared to extended limb prints (Figs. 1 and 2;

Table 1). BKBH footprints from humans walking at preferred

speeds have toe depressions that are 76.69%68.35% lower than

the heel (calculated as toe depth as a percentage of heel depth;

Table 1). When walking with an extended hind limb at preferred

speeds, toe depressions are, on average, 22.36%64.28% below the

heel. Thus, BKBH gaits generate significantly greater toe relative

to heel depths compared to extended limb gaits. Speed influences

print morphology, with faster speeds leading to deeper toe

depressions in both gaits, however between-gait differences are

not significant (Table 1). Substrate moisture content also alters

footprint morphology (Table 1). Wetter substrates lead to greater

toe depths, regardless of gait, however, BKBH gaits have toe

depths that are significantly greater than extended limb postures

(Table 1).

The difference in print morphology is related to a fundamental

difference in body weight transfer between extended limb and

BKBH gaits. The center of pressure (COP) is the point of ground

reaction force application under the foot. As the COP travels from

the heel to the toe during stance phase, its path, and the

magnitude of ground force at any given moment, determines the

amount of substrate displacement at a given position under the

foot. During walking, as the COP shifts anterior to the metatarsal

heads, the metatarso-phalangeal joint flexes, and because of the

stiff longitudinal arch, the entire foot posterior to the metatarsal

heads lifts off the ground [22]. In a BKBH gait, the COP passes

the metatarsal heads significantly earlier in the step (i.e., closer to

heel-strike; Paired t-test p,0.001), and the ground reaction force

impulse after the COP passes the metatarsal heads is significantly

greater compared to extended limb gaits (Fig. 3; Paired t-test

p,0.001). The larger impulse when the body is supported by the

forefoot explains the increased toe-depth in BKBH footprints.

Since most researchers agree that the Laetoli prints exhibit

evidence of a longitudinal arch [5,6,8,10,23–26] (but see [13–15]

and supplementary materials Text S1; Figs. S1, S2), an analysis of

relative toe depths should provide unequivocal evidence of limb

posture in these early hominins.

The Laetoli prints have toe depths that are generally shallower

than heel depths, however, the trackways were made on a very

slight grade (3.12%60.94%; see supplementary materials Text

S1). After adjusting for this grade with the same procedures used

for the experimental footprints (see supplementary materials Text

S1 and above), mean toe depths for the G1 set of prints are

generally equal to mean heel depths (0.11%61.61% shallower

than heels [0.00 mm60.02 mm]), resembling weight transfer in a

modern human-like extended limb gait more than a BKBH gait

(Figs. 1 and 2; Supporting Table S1). In fact, while Laetoli

proportional toe depths fall within the range of normal human

patterns, Laetoli data fall outside of the range of human

proportional toe depths made during BKBH trials (Fig. 2). We

did not analyze the G2/3 set of footprints, since they were likely

made by two individuals walking one behind the other, rendering

their morphology less suitable for biomechanical determinations

[9,11,27]. There are two other caveats that must be considered in

this analysis. First, bioturbation is evident in some of the Laetoli

G1 prints [23], and could impact our results. However, much of

the bioturbation occurred on the rims of the prints and does not

greatly impact the internal morphology of most prints [23,24].

Second, the thickness of the substrate at Laetoli varies along the

print trail [28], which may have an effect on footprint depths [19].

However, the similarity of proportional depths across the G1 trail

(Table S1) suggests that differences in substrate thickness did not

impact our analysis. Finally, the Laetoli prints offer no evidence

that these individuals were walking at fast speeds, since high speed

walking also produces prints with much larger toe compared to

heel depths for both gaits (see Table 1). Therefore, we conclude

that the Laetoli hominins walked with an extended limb gait at

speeds consistent with previous predictions (i.e., preferred or slow

speeds) [8–10,26,29–32]. The relative toe depths of the Laetoli

prints show that, by 3.6 Ma, fully extended limb bipedal gait had

evolved. Thus, our results provide the earliest unequivocal

evidence of human-like bipedalism in the fossil record.

Hypotheses for the origins of bipedalism often focus on selection

for energy economy in early hominins [16,33]. Energetic

hypotheses are based on the reduced locomotor costs of humans

compared to apes walking with BKBH gaits, and therefore,

compared to ape-like pre-hominin ancestors [16]. Human walking

is inexpensive primarily because extended hind limb joints reduce

external moments acting at the joints, and therefore, reduce the

amount of muscle force required to support body weight [16,34].

In addition, extended-limb walking reduces joint reaction forces

[35] and reduces total body heat loads compared to BKBH

walking [36]. By 3.6 Ma, hominins at Laetoli, Tanzania walked

with modern human-like hind limb biomechanics, suggesting that

selection for energetically economical bipedalism occurred prior to

the evolution of the genus Homo. It is likely that reduced energy

costs associated with extended limb bipedalism allowed early

Laetoli Hominin Biomechanics
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hominins to increase ranging distances during times of forest

fragmentation [37] without enduring greatly increased energy

costs.

While our results show that Laetoli hominins walked with

human-like kinematics, we still cannot be sure of which hominin

taxon made the footprints. Many researchers suggest that

Australopithecus afarensis made the footprint trails [6,7,11], although

this hypothesis is disputed by others based on differences between

print morphology and fossilized foot remains [10,38]. If Au.

afarensis did make the Laetoli footprints, then our results support

the hypothesis that this species walked with relatively human-like

hip and knee extension [39,40], and that kinematically human-like

bipedalism is compatible with adaptations for arboreality found

throughout the australopith skeleton [2]. Thus, settling the dispute

over the taxonomic identification of the makers of the Laetoli

prints will clarify debates surrounding fossil hominin post-cranial

material and locomotor behavior [11,39].

Finally, although our results clearly demonstrate that human-

like bipedal kinematics had evolved by 3.6 Ma, the Laetoli prints

cannot provide detailed information regarding the locomotor

mechanics of earlier hominins. The recently published skeletal

material attributed to Ardipithecus ramidus raises the hypothesis that,

prior to 4.4 Ma, at least one lineage of hominins walked with

kinematics that differed greatly from those of modern humans and

other later hominins [41]. However, until further functional

morphological analyses are performed, it is difficult to assess the

Figure 1. Three dimensional scans of experimental footprints and a Laetoli footprint. Contours are 1 mm. A) Contour map of modern
human footprint (Subject 6) walking with a normal, extended limb gait and side view of normal, extended limb footprint. B) Contour map of modern
human footprint (Subject 6) walking with a BKBH gait and side view of BKBH print. C) Contour map of Laetoli footprint (G1-37) and side view of
Laetoli footprint (G1-37). Note the difference in heel and toe depths between modern humans walking with extended and BKBH gaits. Laetoli has
similar toe relative to heel depths as the modern human extended limb print.
doi:10.1371/journal.pone.0009769.g001
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likely biomechanics of Ar. ramidus. Thus, based on the results of this

study, kinematically human-like bipedalism clearly evolved within

the first three to four million years of hominin evolution. However,

we are left with two possible scenarios for the origins and evolution

of bipedalism. First, if a detailed functional analysis supports the

hypothesis that Ar. ramidus was a habitual bipedal hominin that

walked with flexed lower limbs, then energetic selection pressures

likely became strongest after the origins of bipedalism, but prior to

3.6 Ma. This finding would not necessarily rule out the energy

hypothesis for the origins of bipedalism [34], but would suggest

that early bipeds were less energetically economical than modern

humans. Second, if Ar. ramidus was not a bipedal hominin, then the

earliest bipeds may have walked with extended limb joints,

suggesting that early bipedalism was as energetically economical as

that of later hominins, including those that made the Laetoli

footprints. Testing these hypotheses requires more detailed fossil

evidence from the earliest hominins. However, our analysis of the

Laetoli prints refines the timing of the evolution of human-like

bipedal mechanics in the fossil record. Future analyses of fossil

remains, and future fossil discoveries, will no doubt improve our

understanding of just how early human-like bipedal mechanics

evolved, and therefore, help us determine the importance of

selection for energy economy during the early evolution of bipedal

walking.

Methods

Eight subjects participated in this study (see Table S2). All

methods were approved by the University of Arizona Human

Subjects Committee and subjects gave their written informed

consent prior to participation.

All subjects were asked to walk at their preferred walking

speed through a sand trackway (see Table S3). After making two

passes down the walkway at their preferred speed, subjects were

asked to walk with a bent-knee, bent-hip (BKBH) gait at their

preferred speed. Subjects also repeated the BKBH trial twice.

The trackway was 15 cm deep and 5 m long. It was filled with

mostly fine sand, with coarser grained sand confined to the

beginning and end of the trackway. Grain sizes ranged from

,0.074 mm to 0.7 mm in diameter. After walking at their

preferred speeds, a subset of the sample was asked to walk at a

fast speed using both gaits. A different subset of the sample was

asked to walk in both gaits at their preferred speeds after the

moisture content of the sand was increased by ,4%. Moisture

content of sand was measured using a HydroSense (Campbell

Scientific CD 620) soil moisture system. For low moisture trials,

moisture content was 6–8%. For high moisture trials, moisture

content was 10–12%. To determine moisture content, the

moisture probe was inserted into the footprint after each scan

was taken.

Prior to trackway trials, reflective markers were affixed to the

hip, knee, ankle, heel, hallux, 1st metatarsal head, and shoulder.

Subjects were filmed walking through the trackway using a six-

camera Vicon motion analysis system (200 Hz). Maximum,

minimum, and average joint angles were calculated for the hip

and knee during all trials (Table S4).

After each pass through the trackway, footprints were digitized

using a 3-dimensional laser scanner (Microscribe MLX 6DOF

digitizer with attached Micorscan laser sensor system). At least two

prints (left and right) for each trial were scanned. For each scanned

print, four points were selected from the sand around the print:

two points medial and lateral to the toes, and two points medial

and lateral to the heel. A plane representing the sand substrate was

generated based on those four points using a least-squares fit in

Microscan Tools. The 3D coordinates of the print and plane were

then imported into R where the plane and print were reoriented

such that the plane was level. Finally, the depths of the deepest

point in the heel and in the toe were extracted from the leveled

print, and proportional toe depth was calculated as a fraction of

the depth of the heel.

A second sample of subjects (n = 6) were recruited to determine

the kinetics of BKBH walking. Subjects walked over a forceplate

(AMTI; 4000 Hz) and were simultaneously filmed with a six-

camera Vicon motion analysis system (200 Hz). Prior to walking

trials, reflective markers were affixed to the hip, knee, ankle, heel,

hallux, 1st metatarsal head and shoulder. Subjects walked at

preferred speeds using normal extended limb bipedalism as well as

two BKBH trials (one with light and one with deep knee and hip

flexion; Table S5).

Center of pressure data were collected from force plate

recordings for each trial. Combing kinematic and kinetic data,

we calculated the time of heel strike (touchdown) and the time

(relative to heel strike) that the COP passed anterior to the

metatarsal heads. We also calculated the total impulse of

the ground reaction force from the time the COP passed the

metatarsal heads to toe-off. These values provide a biome-

chanical measure of how toe depths are generated. For

more information on methods see supplementary materials

Text S1.

Figure 2. Toe depths as a fraction of heel depth for BKBH,
normal walking and Laetoli prints. Laetoli values were calculated
using values from topographic maps. Note that the values for Laetoli
fall within the range of human normal prints but outside of the range of
human BKBH prints.
doi:10.1371/journal.pone.0009769.g002

Table 1. Proportional toe depths of human footprints.

Side Speed Moisture Normal SEM BKBH SEM p-value

Right p d 0.27 0.04 0.77 0.12 ,0.001

Left p d 0.19 0.06 0.76 0.12 ,0.001

Both p w 0.48 0.11 0.81 0.12 ,0.05

Right f d 0.98 0.33 0.51 0.12 0.12

Left f d 0.38 0.08 0.67 0.16 0.07

p is preferred walk; f is fast walk; d is dry (6–8% water); w is wet (10–12% water).
Values are toe depths as a fraction of heel depth. P-values are for T-Tests
comparing BKBH and extended (normal) datasets.
doi:10.1371/journal.pone.0009769.t001
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Supporting Information

Text S1 Supporting Text

Found at: doi:10.1371/journal.pone.0009769.s001 (0.02 MB

PDF)

Table S1 Laetoli footprint data

Found at: doi:10.1371/journal.pone.0009769.s002 (0.03 MB

DOC)

Table S2 Subject information

Found at: doi:10.1371/journal.pone.0009769.s003 (0.03 MB

DOC)

Table S3 Sample size information for footprint analyses

Found at: doi:10.1371/journal.pone.0009769.s004 (0.03 MB

DOC)

Table S4 Speed and joint angles for trackway trials. Values are

means (SEM) for all subjects.

Found at: doi:10.1371/journal.pone.0009769.s005 (0.03 MB

DOC)

Table S5 Hip and knee angles for force plate trials.

Found at: doi:10.1371/journal.pone.0009769.s006 (0.03 MB

DOC)

Figure S1 Proximal pressure ridge in a normal human footprint.

Found at: doi:10.1371/journal.pone.0009769.s007 (3.70 MB TIF)

Figure S2 Contour map of a footprint from a normal extended

limb step showing lack of discernable arch (compare with Fig. 1).

Found at: doi:10.1371/journal.pone.0009769.s008 (0.61 MB TIF)
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