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Malaria is a serious and lethal disease that has been reported by the World

Health Organization (WHO), with an estimated 219 million new cases and

435,000 deaths globally. The most frequent malaria detection method relies

mainly on the specialists who examine the samples under a microscope.

Therefore, a computerized malaria diagnosis system is required. In this article,

malaria cell segmentation and classification methods are proposed. The

malaria cells are segmented using a color-based k-mean clustering approach

on the selected number of clusters. After segmentation, deep features are

extracted using pre-trained models such as e�cient-net-b0 and shu	e-net,

and the best features are selected using the Manta-Ray Foraging Optimization

(MRFO) method. Two experiments are performed for classification using 10-

fold cross-validation, the first experiment is based on the best features selected

from the pre-trained models individually, while the second experiment is

performed based on the selection of best features from the fusion of extracted

features using both pre-trained models. The proposed method provided an

accuracy of 99.2% for classification using the linear kernel of the SVM classifier.

An empirical study demonstrates that the fused features vector results are

better as compared to the individual best-selected features vector and the

existing latest methods published so far.

KEYWORDS

clusters, malaria, K-mean, MRFO, features

Introduction

Approximately 200 million people die from the mosquito-borne disease malaria

every year. It claimed the lives of 405,000 people in 2018, accounting for almost

67% of all children under the age of five (1). It is carried on by the Plasmodium
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virus, which has four distinct species that can infect people.

The disease has been labeled endemic across 38 different

parts of the globe. Initial malaria symptoms are fever, chills,

vomiting/headache might be potentially moderate and hard

to diagnose. The non-treatment of malaria produces sickness

and leads to death (2). Malaria is generally linked to poverty,

and it is the most common disease in developing countries.

The gold standard for malaria diagnosis is microscopic sliding

inspection; however, an alternative is a polymerase chain

reaction (PCR) test (3). The examination through the sliding

microscope method is commonly used for malaria diagnosis.

The sensitivity of this method has relied on the pathologist’s

expertise. The manual slides examination is a tedious and time-

consuming task that leads to misdiagnosis. This problem is

tackled through a low-cost computer-aided diagnosis system

(4). The red blood cells are segmented by a neural network

that provides an accuracy of 93.72% (5). The convolutional

neural network has been used for malaria detection with an

accuracy of 75.39% (6). The deep learning algorithm has been

embedded on mobile devices that might be utilized as an

application for online malaria cell detection. The proposed

technique consists of two steps, where the minimum global

screeningmethod is employed for the screening of malaria slides

that are subsequently used with CNN with scratch for infected

cell classification which provided prediction accuracy of 93.46%

(7). The supervised/unsupervised learning models are widely

used for the analysis of malaria cells. Several techniques have

been developed to detect malaria, but there is still a void in

this field, in which larger variation appears among the malaria

cells. Furthermore, pertinent feature extraction, as well as the

selection, is a challenge for accurate malaria cell segmentation

and classification (8). The microscopic images of malaria have

noise, poor contrast, illumination, stain, low quality, variations

in intensity, size, and irregularity within the region of interest.

That’s why accurate detection of malaria is a challenging task

(9). Therefore, the microscopic malaria images are preprocessed

to improve their quality for accurate detection of malaria. After

that, hand-crafted features are fused with the deep features and

the best features are selected by using the MRFOmethod, which

provides good malaria classification results. Therefore, in this

research, a novel model has been proposed for segmentation and

malaria cell classification. The foremost contribution steps are

described as:

1. Color-based K-mean clustering is applied to three selected

clusters to segment the malaria cells

2. Deep extracted features from segmented

images are serially fused and then selected

active features using MRFO for malaria

cell classification.

Article organization is defined as Section Related

works discusses the related work; Section Proposed

methodology elaborates on the proposed method steps

and results are manifested in Section Results and

discussion and finally, the conclusion is written in

Section Conclusion.

Related works

In the literature, several optimizations, clustering, and

classification techniques are widely used for the analysis of

malaria cells, some of which are discussed in this section (8,

10–14). The classification techniques used for the diagnosis

of the malaria cells, in which AdaBoost (15), Naïve Bayes

Tree (16), SVM (17), DT (18), and Linear Discriminant (19),

classifiers are involved. Custom convolutional neural models

are widely used for the analysis of malaria cells and provide

an accuracy of 97.37%. Furthermore, transfer learning models

are also commonly utilized for malaria cell classification such

as VGG16, AlexNet, DenseNet121, ResNet50, and Xception

with an accuracy of 91.50–95.9%. In these transfer learning

models, VGG16 and ResNet50 provided competent results

compared to the others. Custom CNN models provided

improved results compared to transfer learning and they gives

an accuracy of 97.37% (20). The Dense Attentive Circular

Network is used for malaria cell detection and achieved results

are compared to the transfer learning models such as DPN92

and DenseNet121.This method provided an accuracy of 97.47

and 87.88% on DenseNet121 and DPN-92, respectively (21).

The pre-trained networks such as ResNet50, AlexNet, and

VGG19 are used for malaria classification and provide an

accuracy of 93.88, 96.33, and 93.72%, respectively. Features

are extracted from pre-trained VGG-16 and input to SVM

for discrimination between infected/uninfected cells of malaria

with 93.1% accuracy (22). Custom CNN (23–31) and pre-

trained efficientnet-b0 model are used for features extraction

and they provided accuracy of 97.74 and 98.82%, respectively

(20). DCNN model is used for the classification of blood

smear images with a 94.79% classification accuracy (32). The

original malaria cell images are preprocessed based on the

L∗a∗b∗ and then extracted for deep features throughDense-Net-
169 and Dense-Net 53 for deep feature analysis. Furthermore,

the best features are selected using the whale optimization

method for malaria cell classification with 99.67% accuracy

(33). Malaria cells are classified using deep-sweep software with

>0.95 ROC (34). Features are extracted from transfer learning

models which are dense-net-201, dense-net-121, Resnet-101,

Resnet-50, VGG-16, and VGG-19 for features extraction and

input to SVM, NB, and KNN classifiers for malaria cell

classification (35). LeNet, GoogLeNet, and AlexNet models

are used for feature extraction with 94% accuracy for malaria

cell classification (36). Mask-RCNN is used for malaria cell

segmentation with a 94.57 correct rate (37). The faster-RCNN

is used for model training with a single multi-shot detector
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FIGURE 1

Proposed architecture for malaria classification.

SSD for localization of the malaria cells with a 0.94 prediction

rate (38).

Proposed methodology

In this research, a method is proposed for the segmentation

and classification of malaria cells. The three-dimensional

segmentation of the malaria cells is performed using K-mean

clustering. After segmentation, the segmented images are fed

to the proposed classification model. In this model, features

are extracted from pre-trained models such as efficient-net-

b0 and shuffle-net (39) with a dimension of N × 1,000.

In which best N × 454 features from the shuffle-net model

and N × 460 features from efficient-net-b0 (40) model.

Furthermore, extracted features from both models are fused

serially to create a fused feature vector (FV) with a length

of N × 2,000. The best N × 1,068 features are selected out

of N × 2,000 using the proposed MRFO method and passed

to benchmark classifiers to classify the infected and un-

infected malaria cells. The proposed method steps are illustrated

in Figure 1, a normal image is black because it has no

infected region.

Segmentation of the malaria cells using
K-mean clustering

The RGB input images ϕ are converted

into the L
∗
a
∗
b
∗

color space for contrast

adjustment. The mathematical representation is

defined as:

ϕL
∗
= 116 h

(

Y

Y∂

)

− 16
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∗
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(

X

X∂

)

− h
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FIGURE 2

Segmentation results (A) input image (B) luminance channel (C) a and b channel (D) cluster-1 (E) cluster-2 and (F) cluster-3.

Here X∂ , Y∂ , Z∂ denotes the white-tristimulus

h
(

f
)

=

{

3
√
f f > 0.008

7.7f + 16
116 f ≤ 0.008

The K-mean clustering is applied to the luminance channel

for segmentation. In K-mean clustering, we uniformly selected

the observation centroid c1 from the input data X (41). The

distance is computed to the observation to the c1 that is

represented d(xm, cj). Then centroid c2 is selected randomly

from the X data point with the probability is defined as follows:

d2(xm, c1)
∑n

j=1 d
2(xj, c1)

(2)

The distance from each observation to the centroid is

computed and allocated observation to the nearest centroid is

mathematically expressed as:

d2(xm, c1)
∑

{h;xh εcp} d
2(xm, c1)

(3)

where cp denotes the closet centroid across each observation

and xm relate to the cp. In the proposedmethodmalaria-infected

region is segmented on the selected k = 3 values. The proposed

segmentation results are shown in Figure 2.

Malaria cells classification

The malaria cells are classified using the proposed

convolutional neural network-based transfer learning model

such as efficientnet-b0 and shuffle-net. The pre-trained

efficientnet-b0 consists of 290 layers such as convolutional

(65), batch-normalization (49), sigmoid (65), element-wise

multiplication (65), convolution group (15), average global

pooling (16), addition (9), fully connected (FC), addition (15),

classification, softmax, and global average pool (16). The shuffle-

net consists of 172 layers such as input (1), convolution (49),

(49) batch-normalization, ReLU (33), max-pooling (01), average

pooling (02), 16 shuffling channels, 1 fully connected (FC), 1

softmax, 1 classification, 15 addition, 01 average global pool, and

2 depth concatenation. This research extracted features from

the MatMul FC layer of efficient-netb0 and node-202 FC layer

of shuffle-net. The extracted features are fused serially and fed

to the MRFOmethod for the selection of optimum features. The

proposed feature extraction and selection process are presented

in Figure 3.

Best features selection using MRFO method

Manta Ray Foraging Optimization (MRFO) method is used

for best feature selection. MRFO consists of three main steps
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FIGURE 3

Best features extraction and selection process for malaria cell classification.

TABLE 1 Selection of the best features using MRFO.

Lower bound Upper bound Threshold Somersault Total iterations Total solutions Classification error rate

0 1 0.5 2 100 10 0.008

0.6 3 12 0.009

0.4 1 09 0.020

0.7 4 11 0.031

0.3 5 08 0.091

such as chain fore-aging, cyclone fore-aging, and somersault

fore-aging (42–44).

Chain fore-aging

Manta rays might see the direction of the plankton inMRFO

and move toward it. The better the position is, the greater

will be the concentration of plankton. Although the optimal

answer is unknown, MRFO believes that the optimal solution

discovered so far has been the plankton that comprises a greater

concentration of manta rays that desire to reach and consume

it. Manta rays construct a foraging chain by queuing up head to

toe. Everyone else moves toward the meal and the individuals

in front of it, except for first. So that, everyone gets updated

by optimal answers found thus far and explanations ahead of it

in each iteration. The mathematical representation of the chain

foraging is defined as:

xi
d (ω + 1)

=







xi
d (ω) + ∂ .

(

xdBest (ω) − xi
d (ω)

)

+ α.(xdBest (ω) − xi
d (ω)) i = 1

xi
d (ω) + ∂ .

(

xd i−1 (ω) − xi
d (ω)

)

+ α.
(

xdBest (ω) − xi
d (ω)

)

i = 2, . . .N
(4)

α = 2.∂ .
√

∣

∣log (∂)
∣

∣

Here ∂ is a random value in the range of [ 0 1], α represents

the learning rate, d denotes the dimension and xi
d (ω) is the i

individual at t time.

Cyclone foraging

When a group of the manta rays spots plankton in the

intense water, they form an extensive foraging chain and travel

in a spiral toward the meal. WOA uses a spiral foraging method

that is comparable to this. According to the foraging technique

of manta ray swarms, every manta ray moves toward the one

ahead of it as well as spiraling toward the meal. The best answer

identified through the cyclone foraging technique has better

exploitation of the area because all individuals do the search

at random with the food to their reference place. This trend is

also employed to significantly enhance research. By allocating an

unplanned place in the whole research area to the source point,

we may need every participant to seek a different place.

xi
d (ω + 1)

=







xi
d (ω) + ∂ .

(

xdBest (ω) − xi
d (ω)

)

+ β .(xdBest (ω) − xi
d (ω)) i = 1

xi
d (ω) + ∂ .

(

xd i−1 (ω) − xi
d (ω)

)

+ β .
(

xdBest (ω) − xi
d (ω)

)

i = 2, . . .N
(5)

β = 2e∂1
T−t+1

T . sin(2πr1) where β represents the

coefficient of weights and T is the total iterations.

Somersault fore-aging

This technique is mainly involved with research and permits

MRFO to organize global research. The meal position is

considered a hinge in these behaviors. Every person moves to

and fro around the hinge, somersaulting to the given assignment.

Consequently, they always adjust their placements to the greatest
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possible position found until now.

xi
d (ω + 1) = xi

d (ω) + S .
(

∂2 . x
d
Best − ∂3 . xi

d (ω)

)

,

i = 1 . . . ..N (6)

Here’s denote the range of the somersault factor, S = 2, ∂2,

∂3 are random two numbers in [ 0.1] range. In this research

parameters of MRFO are selected for best features selection as

presented in Table 1.

Table 1 describes the parameters of MRFO, in which 0.5

threshold,two Somersault, and 100 iterations with 10 total

solutions are used for model training due to less error rate these

are selected for further processing. This experimental model is

converge after the 60 epochs on a 0.128 fitness value as presented

in Figure 4.

This method is applied to individual feature vector and the

fusion of both feature vectors. In this experiment, we achieve

the dimension of N × 454 features from shuffle net and N

FIGURE 4

Graphical representation of the MRFO method.

× 460 features from efficient-net-b0 features. Finally, achieved

N×1,068 best-selected features after the fusion of both feature

vectors. The selected feature vectors are fed to the ensemble and

SVM classifiers for malaria cell classification.

Results and discussion

The proposed method results are evaluated on a publically

available malaria benchmark dataset. This dataset contains

2,750 of two classes in which 1,375 infected and 1,375 un-

infected images are included (45). The proposed method

of experimentation is implemented on the Core-i7 window

operating system, Nvidia 2070-RTX GPU.

Experiment#1: Malaria classification

The input microscopic malaria cells are segmented using

color-based k-mean clustering. In this experiment malaria, cells

are classified into two classes using precision (Pi), accuracy

(Accy), recall (Rec), and F1-score (F1e) as presented in Tables 2,

3. The proposedmethod classification results using efficient-net-

b0 are shown in Table 2.

In Table 2, features are extracted from the efficientnet-

b0 and the best features are selected using MRFO that are

fed to the SVM and ensemble classifiers. In this experiment,

we achieved a maximum accuracy of 94.68% using a linear

classifier as compared to others. Ten-fold cross-validation is

used to calculate the categorization results using the best-

selected features vector dimension of N ×454 from the shuffle-

net as presented in Table 3.

Mean predicted scores are also computed to authenticate the

proposed method performance as shown in Table 4; Figure 5.

In Table 3, a significant test is performed in which the

ROC–AUC value is computed on bagged, boosted, linear, cubic

TABLE 2 Classification of malaria cells using e�cient-net-b0 features.

Classifier Infected Un-infected Accy Pi Rec F1e

Linear X 94.68% 0.95 0.95 0.95

X 94.68% 0.95 0.95 0.95

Quadratic X 93.87% 0.93 0.94 0.94

X 93.87% 0.94 0.93 0.94

Cubic X 92.22% 0.92 0.92 0.92

X 92.22% 0.92 0.92 0.92

Boosted X 91.52% 0.92 0.92 0.92

X 91.52% 0.90 0.91 0.91

Bagged X 91.31% 0.93 0.92 0.92

X 91.31% 0.90 0.91 0.90

Subspace discriminant X 92.62% 0.95 0.94 0.94

X 92.62% 0.90 0.91 0.90
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TABLE 3 ROC-AUC values on benchmark classifiers using e�cient-net-b0.

Boosted Bagged Subspace discriminant

+ boosted

Subspace discriminant

+ bagged

Linear Cubic Quadratic

+ linear

Quadratic

+ cubic

ROC-AUC

X 0.737

X 0.729

X 0.726

X 0.727

X 0.738

X 0.726

X 0.758

X 0.760

TABLE 4 Classification results using shu	e-net.

Classifier Infected Un-infected Accy Pi Rec F1e

Linear X 93.67% 0.95 0.93 0.94

X 93.67% 0.92 0.94 0.93

Quadratic X 94.87% 0.96 0.95 0.96

X 94.87% 0.93 0.95 0.94

Cubic X 95.16% 0.96 0.95 0.96

X 95.16% 0.94 0.95 0.94

Boosted X 93.68% 0.94 0.95 0.95

X 93.68% 0.93 0.92 0.93

Bagged X 94.63% 0.95 0.96 0.95

X 94.63% 0.94 0.93 0.93

Subspace discriminant X 94.76% 0.94 0.97 0.96

X 94.76% 0.95 0.92 0.93

classifiers, and fusion of subspace discriminant + boosted,

subspace discriminant + bagged, quadratic + linear, quadratic

+ cubic classifiers. This experiment achieved the highest ROC-

AUC of 0.760 using the fusion of quadratic + cubic classifiers.

The classification results based on shuffle-net features are

presented in Table 4.

The classification results are mentioned in Table 4, in

which we achieved 95.16 accuracies on the SVM cubic

classifier, which is far better compared to others. Furthermore,

classification results are also computed in terms of ROC–

AUC, in which classifiers are used individually as well

as the fusion of the boosted, bagged, linear, and cubic

kernels with the subspace discriminant and quadratic,

respectively. The quantitative analysis of the features vector

obtained from the shuffle net is presented in Figure 6;

Table 5.

Figure 6 shows the mean predicted scores on the benchmark

classifiers. The quantitative computed results are mentioned in

Table 5.

In the classification of malaria cells, we achieved a ROC–

AUC of 0.865 using a bagged and subspace discriminant +

bagged classifier. The classification results are computed using

the fused features vector as presented in Table 6.

In the results in Table 6, after applying the fused features

vector, we obtained an accuracy of 99.2% on the linear classifier

and 97.64% on the quadratic kernel. The fused features vector

provides excellent results compared to the individual features

vector that authenticates the proposed method novelty. The

mean of the correct prediction scores on the fused features

vector is presented in Table 7.

Mean values of the correct prediction scores are presented in

Table 7, in which the highest ROC-AUC of 0.952 using bagged

and subspace discriminant + bagged classifier as compared

to others. In Figure 7, a combination of the ROC curve of

the selected classifier is plotted as well as the mean predicted

probability of the benchmark kernels such as linear, cubic,

quadratic, boosted, bagged, and discriminant is plotted.

Figure 7 shows the computed classification results of the

individual and fusion of the bags with discriminate, linear with

quadratic, and quadratic with cubic. The proposed method

results are compared to the current existing methods as

presented in Table 8.
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FIGURE 5

Mean predicted scores on the benchmark classifiers (A) ensemble (B) SVM. The ROC-AUC values are computed on benchmark classifiers as

presented in Table 3.

FIGURE 6

Mean predicted scores using shu	e-net features vector (A) ensemble and (B) SVM.

In Table 8, the proposed classification method results are

contrasted with the most recent works published on the

same benchmark dataset. In which the pre-trained ResNet-18

model is used for malaria classification it gives an accuracy

of 98.68% (46). The classifiers SVM, neural network, and XG-

boost are used for malaria classification with the accuracy of

94, 90, and 80%, respectively (47). The DAG–CNN model

is used for parasite malaria classification and it gives an
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TABLE 5 Quantitative results for malaria classification using shu	e-net features.

Boosted Bagged Subspace discriminant

+ boosted

Subspace discriminant

+ bagged

Linear Cubic Quadratic

+ linear

Quadratic

+ cubic

ROC-AUC

X 0.863

X 0.865

X 0.862

X 0.865

X 0.863

X 0.863

X 0.863

X 0.862

TABLE 6 Classification of malaria cells using fused features vector.

Classifier Infected Un-infected Accy Pi Rec F1e

Linear X 99.2% 0.99 0.99 0.99

X 99.2% 0.99 0.99 0.99

Quadratic X 97.64% 0.98 0.97 0.98

X 97.64% 0.97 0.98 0.98

Cubic X 95.97% 0.97 0.95 0.96

X 95.97% 0.95 0.96 0.96

Boosted X 96.17% 0.97 0.96 0.96

X 96.17% 0.96 0.97 0.96

Bagged X 96.39% 0.97 0.96 0.96

X 96.39% 0.96 0.97 0.96

Subspace discriminant X 97.49% 1.00 0.95 0.97

X 97.49% 0.96 1.00 0.98

TABLE 7 Classification of malaria cells in terms of mean predicted scores using fused features vector.

Boosted Bagged Subspace discriminant

+ boosted

Subspace discriminant

+ bagged

Linear Cubic Quadratic

+ linear

Quadratic

+ cubic

ROC-AUC

X 0.951

X 0.952

X 0.951

X 0.952

X 0.951

X 0.951

X 0.951

X 0.951

accuracy of 94.79% (32). NC–GCN model is used for feature

extraction and malaria cells are classified with 94.17% accuracy

(48). The pre-trained inception-v3 and VGG-19 models are

used for feature extraction. The average achieved accuracy

is 96%.

Compared to the most recent techniques used in this

research a method is proposed to investigate the deep

features analysis using efficient-net-b0 and shuffle-net. These

features are used for classification in two ways. First, the

MRFO method is applied to the extracted features of both

models and the best-selected features are passed to the

classifiers. In the second way, extracted features are serially

fused and optimum features are selected using the MRFO

method. In this experiment, we observed that the fused
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FIGURE 7

Mean predicted scores using fused features vector (A) boosted, bagged, and discriminant kernels of ensemble classifier and (B) linear, cubic, and

quadratic kernels of SVM.

TABLE 8 Proposed classification method results comparison.

Ref# Year Accuracy

(46) 2022 97.68%

(47) 2022 94.00% using SVM, 90.00% XG-Boost, 80.00% and neural

networks classifier

(32) 2022 94.79%

(48) 2022 94.17%

(49) 2022 96.00%

Proposed Method 99.20%

features vector performs significant improvement in malaria

cell classification.

Conclusion

Parasite malaria segmentation and classification is an

intricate task due to the large variation and illumination in

microscopic malaria images. Therefore, in this research, a

method is proposed in which the quality of the input images

is improved by applying a pre-processing method. The RGB

microscopic malaria images are converted into CIELab color

space. The luminance channel is selected for further processing

to improve the image contrast. The best-segmented results

of the malaria cells are achieved in the third cluster. The

segmented images are fed to the proposed classification model.

The proposed method more accurately classifies the malaria

cells due to features fusion, and optimum features selected

by the MRFO method. The proposed method provides an

accuracy of 95.16% on the individual best-selected features

vector and 99.2% on the fused best-selected features vector.

Furthermore, to authenticate the performance of the proposed

classification method ROC-AUC values are computed using

individual classifiers such as linear, cubic, bagged, boosted, and

the fusion of cubic + quadratic, and linear + quadratic, bagged

+ subspace discrimination, boosted+ subspace+ discriminant

classifiers. In this experiment highest, the 0.95 ROC-AUC was

achieved using a bagged + subspace discriminant classifier. In

comparison to the most recent approaches, the experimental

results show that the fused features vector produces the

best outcomes.
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